1
|
Zlomuzica A, Plank L, Kodzaga I, Dere E. A fatal alliance: Glial connexins, myelin pathology and mental disorders. J Psychiatr Res 2023; 159:97-115. [PMID: 36701970 DOI: 10.1016/j.jpsychires.2023.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Mature oligodendrocytes are myelin forming glial cells which are responsible for myelination of neuronal axons in the white matter of the central nervous system. Myelin pathology is a major feature of severe neurological disorders. Oligodendrocyte-specific gene mutations and/or white matter alterations have also been addressed in a variety of mental disorders. Breakdown of myelin integrity and demyelination is associated with severe symptoms, including impairments in motor coordination, breathing, dysarthria, perception (vision and hearing), and cognition. Furthermore, there is evidence indicating that myelin sheath defects and white matter pathology contributes to the affective and cognitive symptoms of patients with mental disorders. Oligodendrocytes express the connexins GJC2; mCx47 [human (GJC2) and mouse (mCx47) connexin gene nomenclature according to Söhl and Willecke (2003)], GJB1; mCx32, and GJD1; mCx29 in both white and gray matter. Preclinical findings indicate that alterations in connexin expression in oligodendrocytes and astrocytes can induce myelin defects. GJC2; mCx47 is expressed at early embryonic stages in oligodendrocyte precursors cells which precedes central nervous system myelination. In adult humans and animals GJC2, respectively mCx47 expression is essential for oligodendrocyte function and ensures adequate myelination as well as myelin maintenance in the central nervous system. In the past decade, evidence has accumulated suggesting that mental disorders can be accompanied by changes in connexin expression, myelin sheath defects and corresponding white matter alterations. This dual pathology could compromise inter-neuronal information transfer, processing and communication and eventually contribute to behavioral, sensory-motor, affective and cognitive symptoms in patients with mental disorders. The induction of myelin repair and remyelination in the central nervous system of patients with mental disorders could help to restore normal neuronal information propagation and ameliorate behavioral and cognitive symptoms in individuals with mental disorders.
Collapse
Affiliation(s)
- Armin Zlomuzica
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787, Bochum, Germany.
| | - Laurin Plank
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787, Bochum, Germany
| | - Iris Kodzaga
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787, Bochum, Germany
| | - Ekrem Dere
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787, Bochum, Germany; Sorbonne Université, UFR des Sciences de la Vie, 9 quai Saint Bernard, F-75005, Paris, France.
| |
Collapse
|
2
|
Lubetzki C, Sol-Foulon N, Desmazières A. Nodes of Ranvier during development and repair in the CNS. Nat Rev Neurol 2020; 16:426-439. [DOI: 10.1038/s41582-020-0375-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2020] [Indexed: 01/01/2023]
|
3
|
Giaume C, Naus CC, Sáez JC, Leybaert L. Glial Connexins and Pannexins in the Healthy and Diseased Brain. Physiol Rev 2020; 101:93-145. [PMID: 32326824 DOI: 10.1152/physrev.00043.2018] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Over the past several decades a large amount of data have established that glial cells, the main cell population in the brain, dynamically interact with neurons and thus impact their activity and survival. One typical feature of glia is their marked expression of several connexins, the membrane proteins forming intercellular gap junction channels and hemichannels. Pannexins, which have a tetraspan membrane topology as connexins, are also detected in glial cells. Here, we review the evidence that connexin and pannexin channels are actively involved in dynamic and metabolic neuroglial interactions in physiological as well as in pathological situations. These features of neuroglial interactions open the way to identify novel non-neuronal aspects that allow for a better understanding of behavior and information processing performed by neurons. This will also complement the "neurocentric" view by facilitating the development of glia-targeted therapeutic strategies in brain disease.
Collapse
Affiliation(s)
- Christian Giaume
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Christian C Naus
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Juan C Sáez
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Luc Leybaert
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Nans A, Einheber S, Salzer JL, Stokes DL. Electron tomography of paranodal septate-like junctions and the associated axonal and glial cytoskeletons in the central nervous system. J Neurosci Res 2010; 89:310-9. [PMID: 21259318 DOI: 10.1002/jnr.22561] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 10/08/2010] [Accepted: 10/19/2010] [Indexed: 12/13/2022]
Abstract
The polarized domains of myelinated axons are specifically organized to maximize the efficiency of saltatory conduction. The paranodal region is directly adjacent to the node of Ranvier and contains specialized septate-like junctions that provide adhesion between axons and glial cells and that constitute a lateral diffusion barrier for nodal components. To complement and extend earlier studies on the peripheral nervous system, electron tomography was used to image paranodal regions from the central nervous system (CNS). Our three-dimensional reconstructions revealed short filamentous linkers running directly from the septate-like junctions to neurofilaments, microfilaments, and organelles within the axon. The intercellular spacing between axons and glia was measured to be 7.4 ± 0.6 nm, over twice the value previously reported in the literature (2.5-3.0 nm). Averaging of individual junctions revealed a bifurcated structure in the intercellular space that is consistent with a dimeric complex of cell adhesion molecules composing the septate-like junction. Taken together, these findings provide new insight into the structural organization of CNS paranodes and suggest that, in addition to providing axo-glial adhesion, cytoskeletal linkage to the septate-like junctions may be required to maintain axonal domains and to regulate organelle transport in myelinated axons.
Collapse
Affiliation(s)
- Andrea Nans
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA
| | | | | | | |
Collapse
|
5
|
Pedraza L, Huang JK, Colman D. Disposition of axonal caspr with respect to glial cell membranes: Implications for the process of myelination. J Neurosci Res 2010; 87:3480-91. [PMID: 19170162 DOI: 10.1002/jnr.22004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Neurofascin-155 (NF155) and caspr are transmembrane proteins found at discrete locations early during development of the nervous system. NF155 is present in the oligodendrocyte cell body and processes, whereas caspr is on the axonal surface. In mature nerves, these proteins are clustered at paranodes, flanking the node of Ranvier. To understand how NF155 and caspr become localized to the paranodal regions of myelinated nerves, we have studied their distribution over time in myelinating cultures. Our observations indicate that these two proteins are recruited to the cell surface at the contact zone between axons and oligodendrocytes, where they trans-interact. This association explains the early pattern of caspr distribution, a helical coil that winds around the axon, resembling the turns of the myelin sheath. Caspr, an axonal membrane protein, therefore seems to move in register with the overlying myelinating cell via its interactions with myelin proteins. We suggest that NF155 is the glial cell membrane protein responsible for caspr distribution. The pair act as interacting partners on either side of the axoglial contact area. Most likely, there are other proteins on the axonal surface whose distribution is equally influenced by interaction with the nascent myelin sheath. The fact that caspr follows the movement of the spiraling membrane has a direct affect on the interpretation of the way in which myelin is formed.
Collapse
Affiliation(s)
- Liliana Pedraza
- Montreal Neurological Institute, Program in Neuroengineering, McGill University, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
6
|
Schnapp B, Peracchia C, Mugnaini E. The paranodal axo-glial junction in the central nervous system studied with thin sections and freeze-fracture. Neuroscience 2001; 1:181-90. [PMID: 11370229 DOI: 10.1016/0306-4522(76)90075-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The lateral belts of the myelin sheath wind helically around the paranodal region of the axon. The lateral belt coil leaves an imprint on the axon and thus confers a conspicuous, indented configuration to the freeze-fracture faces of the axolemma. The contact area between the axolemma and the lateral belt membrane is the site of an extensive and unusual cell junction (axo-glial junction). In thin sections the junctional membranes are undulated, the peaks in one membrane mirroring the peaks in the other. The transverse bands (intercellular septa) are in register with the undulations. The intercellular space measures about 30 A. In freeze-fracture replicas, the undulations are evident as alternating ridges and grooves which run strictly parallel and are oriented at an angle with respect to the helical path of the lateral belt. Both junctional membranes contain parallel rows of intramembrane particles which coincide with the ridges and grooves and, therefore, with the intercellular septa. The center-to-center distance between septa or, equivalently, between adjacent rows of particles measures approximately 250 A. Although the axo-glial junction possesses structurally symmetrical features, there exist important differences between the two junctional membranes. The intramembrane particles of the glial and the axonal membrane differ in cleaving properties. Furthermore, in some of the fibres the E face of the junctional axolemma displays a crystalline array which is not present in the fracture faces of the glial membrane. The axo-glial junction is limited to the paranodal region, although the inner belt of the myelin sheath may form occasional junctional spots with the internodal region proper of the axolemma. The classification and the presumptive functions of the paranodal axo-glial junction are briefly discussed.
Collapse
Affiliation(s)
- B Schnapp
- Laboratory of Neuromorphology, Department of Biobehavioral Sciences, U-154, University of Connecticut, Storrs, CT 06268, USA
| | | | | |
Collapse
|
7
|
Spray DC, Dermietzel R. X-linked dominant Charcot—Marie—Tooth disease and other potential gap-junction diseases of the nervous system. Trends Neurosci 1995. [DOI: 10.1016/0166-2236(95)80004-l] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Abstract
Evidence is reviewed that the paranodal axoglial junction plays important roles in the differentiation and function of myelinated axons. In myelin-deficient axons, ion flux across the axolemma is greater than that in myelinated fibers because a larger proportion of the axolemma is active during continuous, as opposed to saltatory, conduction. In addition, older myelin-deficient rats that have developed spontaneous seizures display small foci of node-like E-face particle accumulations in CNS axons as well as more diffuse regions of increased particle density and number. Assuming that the E-face particles represent sodium channels, such regions could underlie high sodium current density during activity, low threshold for excitation, and increased extracellular potassium accumulation. Depending on the degree of spontaneous channel opening, they could also represent sites of spontaneous generation of activity. The appearance of seizures and their gradual increase in frequency and severity could represent an increase in the number of such regions. In addition, diminution in the dimensions of the extracellular space during maturation would result in increased extracellular resistance, which, together with increasing axonal diameter, would tend to increase the likelihood of ephaptic interaction among neighboring axons as well as the likelihood of extracellular potassium rises to levels that could cause spontaneous activity.
Collapse
Affiliation(s)
- J Rosenbluth
- Department of Physiology, New York University School of Medicine, New York 10016
| |
Collapse
|
9
|
MacKenzie ML, Ghabriel MN, Allt G. Nodes of Ranvier and Schmidt-Lanterman incisures: an in vivo lanthanum tracer study. JOURNAL OF NEUROCYTOLOGY 1984; 13:1043-55. [PMID: 6534973 DOI: 10.1007/bf01148601] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The permeability of the tight junctional system of myelin, at the juxtanodal myelin terminal loops and Schmidt-Lanterman incisures, was investigated using the ionic tracer lanthanum (a) in vivo followed by fixation, (b) concurrently with fixation, (c) following fixation. Employing the same methods the juxtanodal membrane complex formed between myelin loops and axolemma was also tested. The results of this study demonstrate that the periaxonal space (between axon and Schwann cell) is apparently accessible to lanthanum via the myelin loop-axolemmal junction, irrespective of the mode of exposure of myelinated fibres to the tracer. Similarly, the tight junctions between adjacent myelin terminal loops apparently do not prevent lanthanum penetration either in living or in fixed nerves. By contrast the tracer obtained access to the extracellular space within incisures only in vivo. The results are interpreted in terms of the permeability of nodes and incisures in vivo to physiologically important ions and related to current concepts of the electrophysiology of the myelinated nerve fibre.
Collapse
|
10
|
Abstract
In developing rat peripheral fibers, nodal specialization appears early, prior to myelin compaction, and is first detected as a junction between the axon and the overhanging Schwann cell process characterized by a uniformly wide (approximately 18 nm) intercellular gap containing a patchy dense substance and a cytoplasmic undercoating subjacent to the axolemma. The gap width is rather consistent but the axolemmal undercoating is more variable and lower in density than that found at more mature nodes of Ranvier, and it is also highly variable in length, ranging from 0.5 to 3 micron. The outermost Schwann cell layer is usually prominent with a large volume of cytoplasm and many organelles. In freeze-fracture replicas, modal specializations are characterized by accumulations of large (approximately 10 nm) particles in the axolemma, especially the E face, but immature nodes generally have a lower particle concentration than mature nodes. No node-like particle aggregates have been found in axons not intimately associated with Schwann cells. Mature paranodal axon-Schwann cell junctions are usually formed first by the loops closest to the node and are characterized by a 2-3 nm gap between the apposed membranes, periodic intercellular densities (transverse bands) in the gap and cisternae flattened against the junctional Schwann cell membrane. The loops further removed from the node display a wider gap containing irregularly spaced or diffuse intercellular densities, or none. Mature junctions appear relatively late in the rat, and it is not unusual to find developing nodes with several Schwann cell loops present that do not indent the axolemma significantly and are not associated with the paracrystalline pattern characteristic of the mature junctional axolemma. In such instances, the nodal particle aggregates do not have sharply circumscribed boundaries. The majority of the developing nodes are asymmetric with one paranodal segment more mature than the other.
Collapse
|
11
|
Jones HB, Cavanagh JB. Distortions of the nodes of Ranvier from axonal distension by filamentous masses in hexacarbon intoxication. JOURNAL OF NEUROCYTOLOGY 1983; 12:439-58. [PMID: 6683751 DOI: 10.1007/bf01159384] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A study has been made of the structural changes of nodal and paranodal regions of the nodes of Ranvier of peripheral nerves of rats in which marked accumulations of neurofilaments have occurred within axons under the influence of 2,5-hexanediol over 10 weeks. The neurofilamentous masses caused distension of the axon at two points of apparent weakness as they attempted to slide through the axonal constriction at the nodes. Principally, a spiral axonal protrusion pushed into the zone of unattached myelin loops in the proximal paranodal spinous bracelet of Nageotte. This led to a conical widening of the paranodal constriction and considerable attenuation of the overlying myelin. No degeneration of the myelin occurred however. Alternatively, or additionally, a protrusion occurred of the axon at the nodal region which increased the nodal gap width and occasionally compressed and displaced the adjacent distal paranodal constriction which could have led to some obstruction of axoplasmic flow. Swelling of distal paranodal regions occurred later and was usually associated with proximal swelling. It was also accompanied by evidence suggesting transnodal passage of filamentous material. Sometimes, however, striking nodal constriction occurred in association with symmetrical paranodal swelling. These observations suggest that the spiral glial-axonal relationships at nodes of Ranvier are capable of marked deformation that might allow the intra-axonal neurofilamentous masses to move distally. These findings are discussed in relation to the structural features of the paranodal constrictions.
Collapse
|
12
|
Hirano A, Dembitzer HM. Further studies on the transverse bands. JOURNAL OF NEUROCYTOLOGY 1982; 11:861-6. [PMID: 6185646 DOI: 10.1007/bf01148304] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
|
14
|
Zagoren JC, Raine CS, Suzuki K. Cation binding at the node of Ranvier: I. Localization of binding sites during development. Brain Res 1982; 242:19-25. [PMID: 7104726 DOI: 10.1016/0006-8993(82)90491-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cations are known to bind to the node of Ranvier and the paranodal regions of myelinated fibers. The integrity of these specialized structures is essential for normal conduction. Sites of cation binding can be microscopically identified by the electrondense histochemical reaction product formed by the precipitate of copper sulfate/potassium ferrocyanide. This technique was used to study the distribution of cation binding during normal development of myelinating fibers. Sciatic nerves of C57B1 mice, at 1, 3, 5, 6, 7, 8, 9, 13, 16, 18, 24 and 30 days of age, were prepared for electron microscopy following fixation in phosphate-buffered 2.5% glutaraldehyde and 1% osmic acid, microdissection and incubation in phosphate-buffered 0.1 M cupric sulfate followed by 0.1 M potassium ferrocyanide. Localization of reaction product was studied by light and electron microscopy. By light microscopy, no reaction product was observed prior to 9 days of age. At 13 days, a few nodes and paranodes exhibited reaction product. This increased in frequency and intensity up to 30 days when almost all nodes or paranodes exhibited reaction product. Ultrastructurally, diffuse reaction product was first observed at 3 days of age in the axoplasm of the node, in the paranodal extracellular space of the terminal loops, in the Schwann cell proper and in the terminal loops of Schwann cell cytoplasm. When myelinated axons fulfilled the criteria for mature nodes, reaction product was no longer observed in the Schwann cell cytoplasm, while the intensity of reaction product in the nodal axoplasm and paranodal extracellular space of the terminal loops increased. Reaction product in the latter site appeared to be interrupted by the transverse bands. These results suggest that cation binding accompanies nodal maturity and that the Schwann cell may play a role in production or storage of the cation binding substance during myelinogenesis and development.
Collapse
|
15
|
Tao-Cheng JH, Rosenbluth J. Development of nodal and paranodal membrane specializations in amphibian peripheral nerves. Brain Res 1982; 255:577-94. [PMID: 6978754 DOI: 10.1016/0165-3806(82)90055-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Peripheral nerves from the hind legs of frog tadpoles were examined in order to ascertain the pattern of development of nodal and paranodal specializations in myelinated fibers. In thin sections the earliest detectable node-related specializations resemble "intermediate" junctions between axons and Schwann cell processes. These occur in individually ensheathed axons near the edges of the sheath segments and could represent early nodal or paranodal components or transient structures. The characteristic nodal "undercoating" is indistinct and highly variable in thickness in immature fibers and its density is lower in developing nodes than in adult nodes. Corresponding freeze-fracture replicas of developing axons demonstrate aggregates of nodal E face particles whose concentration is lower than that in the adult. Such aggregates usually occur immediately adjacent to Schwann cell indentations, even though early in development the latter may not exhibit the paracrystalline pattern seen in the adult paranodal axolemma. On rare occasions, node-like particle aggregates and presumptive nodal undercoatings have been observed without recognizable paranodal junctions or indentations nearby. However, neither specialization has been found in axons not individually ensheathed by Schwann cells. Paranodal Schwann cell loops are widely separated and irregularly arranged in the developing nodes, and the paranodal regions flanking a node usually mature asymmetrically. Differentiated paranodal junctions appear early in axons ensheathed by only a few loose Schwann cell lamellae. However, such junctions are not formed by all paranodal loops; they consistently appear first in the loops close to the node and only later in those further removed. No junctional specialization has been observed in either the axolemma or the Schwann cell membrane without the close association of the other.
Collapse
|
16
|
Cavanagh JB. The pattern of recovery of axons in the nervous system of rats following 2,5-hexanediol intoxication: a question of rheology? Neuropathol Appl Neurobiol 1982; 8:19-34. [PMID: 7200198 DOI: 10.1111/j.1365-2990.1982.tb00254.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Rats have been dosed with 2,5-hexanediol for 48 days and then allowed to recover. The changes in the accumulations of neurofilamentous masses in various pathways in CNS and PNS have been followed by light microscopy over the subsequent 9 weeks. It was found that many CNS pathways allow the argyrophilic masses to pass to their terminals from whence they subsequently disappear, usually over 5-6 weeks. Little or no axonal degeneration is seen where this happens. The same occurs in many peripheral nerves, particularly cranial nerves. However, in many tracts in the spinal cord and in many axons in the longer peripheral nerves, filamentous masses remain and becomes associated with axon degeneration, and, in tracts, gliosis. The importance of paranodal constrictions at nodes of Ranvier which tend to be greater in larger diameter axons is emphasized as a likely mechanism for the axon degeneration which largely took place during the recovery period.
Collapse
|
17
|
Wiley-Livingston CA, Ellisman MH. Myelination-dependent axonal membrane specializations demonstrated in insufficiently myelinated nerves of the dystrophic mouse. Brain Res 1981; 224:55-67. [PMID: 7284840 DOI: 10.1016/0006-8993(81)91116-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
"Dystrophic' mice of the 129/ReJ-Dy strain have a genetic defect affecting Schwann cell proliferation. Spinal nerve roots of these animals contain myelinated and unmyelinated axons in addition to groups of large "amyelinated' axons. In affected regions of the spinal roots, myelinated axons are missing their myelin sheaths. Where the myelination terminates or begins, half-nodes are created. Freeze-fracture analysis of these half-nodes shows that only the myelinated side contains rows of dimeric particles in the axonal P-face of the paranode. The P-face on the amyelinated side of a half-node, and the remainder of the amyelinated axon. contains a dense even distribution of particles, many of which are the size of dimeric-particle subunits, but only a few of which are arranged into short rows. As the long circumferential rows are not found on the unmyelinated side of the myelinated side of the half-node we conclude that the paranodal rows of dimeric particles are dependent upon myelination for their organization.
Collapse
|
18
|
Stolinski C, Breathnach AS, Martin B, Thomas PK, King RH, Gabriel G. Associated particle aggregates in juxtaparanodal axolemma and adaxonal Schwann cell membrane of rat peripheral nerve. JOURNAL OF NEUROCYTOLOGY 1981; 10:679-91. [PMID: 6975804 DOI: 10.1007/bf01262597] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Freeze-fracture observations have been made on unfixed cryoprotected, and glutaraldehyde-perfused and cryoprotected rat sciatic nerve. In the juxtaparanodal region of the internode, numerous particle clusters were observed on the axolemmal E face and rings of particles of uniform size on the P face of the adaxonal Schwann cell membrane. Both of these particle aggregates were concentrated in the internodal region immediately adjacent to the paranode (juxtaparanodal). The findings provide evidence for a close association between the two particle formations, suggesting a unitary structure forming links between the axolemma and Schwann cell membrane. Figures are given for the density distribution of these particles at the juxtaparanodal region. They were rarely observed on membrane fracture faces of the general internodal regions. It is possible that these particle formations may represent potassium channels or that they could provide channels for other metabolic communication between the Schwann cell and the axon.
Collapse
|
19
|
Tao-Cheng JH, Rosenbluth J. Nodal and paranodal membrane structure in complementary freeze-fracture replicas of amphibian peripheral nerves. Brain Res 1980; 199:249-65. [PMID: 6251942 DOI: 10.1016/0006-8993(80)90688-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Complementary freeze-fracture replicas of frog peripheral nerves have revealed new details of membrane structures at the node of Ranvier and paranodal axon-Schwann cell junction. At the node both E and P fracture faces of the axolemma have high particle concentrations (approximately 1350/sq. micron and 1600/sq. micron respectively) and these particles do not overlap when tracings from the respective fracture faces are superimposed. A high proportion of the E face particles are large (> 9.5 nm) and cast long shadows while the proportion of large particles in the P face is much lower. In the paranodal region the diagonal pattern of parallel rows in the junctional axolemma always has the same orientation within a given fracture face. In the E face, the parallel rows form a positive (+ 30 degrees) angle to the groove below and in the P face, a negative (-30 degrees) angle to the ridge above. This implies that the diagonal pattern derives from asymmetric subunits that are able to associate along only one axis and are unable to 'flip over' with respect to the junctional membranes.
Collapse
|
20
|
Wiley CA, Ellisman MH. Rows of dimeric-particles within the axolemma and juxtaposed particles within glia, incorporated into a new model for the paranodal glial-axonal junction at the node of Ranvier. J Cell Biol 1980; 84:261-80. [PMID: 7380883 PMCID: PMC2110539 DOI: 10.1083/jcb.84.2.261] [Citation(s) in RCA: 106] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Using freeze-fracture techniques, we have analyzed the glial-axonal junction (GAJ) between Schwann cells and axons in the peripheral nervous system, and between oligodendrocytes and axons in the central nervous system of the rat. We have identified a new set of dimeric-particles arranged in circumferential rows within the protoplasmic fracture faces (P-faces) of the paranodal axolemma in the region of glial-axonal juxtaposition. These particles, 260 A in length, composed of two 115-A subunits, are observed in both aldehyde-fixed and nonfixed preparations. The rows of dimeric-particles within the axonal P-face are associated with complementary rows of pits within the external fracture face (E-face) of the paranodal axolemma. These axonal particles are positioned between rows of 160-A particles that occur in both fracture faces of the glial loops in the same region. We observed, in addition to these previously described 160-A particles, a new set of 75-A glial particles within the glial P-faces of the GAJ. These 75-A particles form rows that are centered between the rows of 160-A particles and are therefore superimposed over the rows of dimeric-particles within the paranodal axolemma. Our new findings are interpreted with respect to methods of specimen preparation as well as to a potential role for the paranodal organ in saltatory conduction. We conclude that this particle-rich junction between axon and glia could potentially provide an intricate mechanism for ion exchange between these two cell types.
Collapse
|
21
|
Rosenbluth J. Aberrant axon-Schwann cell junctions in dystrophic mouse nerves. JOURNAL OF NEUROCYTOLOGY 1979; 8:655-72. [PMID: 553151 DOI: 10.1007/bf01208515] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
'Amyelinated' axons in the spinal roots of dystrophic mouse nerves lack typical nodal and paranodal membrane specializations. However, at the periphery of the amyelinated bundles some of the naked axons form aberrant junctions with Schwann cells belonging to neighbouring myelinated axons. These junctions are characterized by a narrow intercellular cleft containing regularly-spaced densities that closely resemble the 'transverse bands' found at paranodal axoglial junctions with respect to both configuration and spacing. In addition, the Schwann cells sometimes extend fingerlike projections towards amyelinated axons in regions where the axolemma has a dense cytoplasmic undercoating. Such regions resemble nodes of Ranvier, where Schwann cell processes interlace over the axolemma. Freeze-fracture replicas show no typical nodal or paranodal membrane specializations in the amyelinated fibres where they are apposed to each other. However, isolated paracrystalline patches of membrane occur corresponding to the aberrant junctions between amyelinated axons and Schwann cells at the periphery of the bundles. The observations show that structural differentiation of the axolemma occurs only where axons are in intimate contact with myelinating cells and does not develop independently in the amyelinated regions. Sodium channels, which are normally concentrated in the specialized nodal membrane, are, therefore, probably distributed uniformly along the amyelinated axon segments that show no sign of such regional differentiation. In addition, it is shown that Schwann cells are capable of forming specialized junctions with more than one axon at the same time.
Collapse
|
22
|
Rosenbluth J. Glial membrane specializations in extraparanodal regions. JOURNAL OF NEUROCYTOLOGY 1978; 7:709-19. [PMID: 310449 DOI: 10.1007/bf01205146] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Previous freeze-fracture studies of central myelinated nerve fibres have demonstrated a distinctive junction in the paranodal region formed between the terminal loops of the glial cell and the axolemma. This unique junction is characterized by the presence of diagonally oriented rows of particles in the P face and to a lesser extent in the E face of the glial cell and an equivalent pattern in the axolemma. In both, the rows are spaced at 250--300 A intervals. Although this junction was originally thought to be peculiar to the paranodal region, examples of the same pattern have now been seen in extraparanodal regions in the central nervous system where they appear as circumscribed patches of membrane exhibiting a pattern identical to that in the paranodal glial loops. All examples found were in the immediate vicinity of myelinated nerve fibres and in one case the membrane containing the specialized patch was identified as a lamella of a myelin sheath. These observations constitute evidence that this distinctive membrane specialization is not limited to the paranodal axoglial junction but can also be found in glial membrane specialization is not limited to the paranodal axoglial junction but can also be found in glial membranes not in immediate contact with the specialized membrane of the paranodal axolemma.
Collapse
|
23
|
Abstract
The junctional complex of oligodendrocytes was studied by means of different electron microscopical techniques. This complex is composed of the following junctional membrane formations: 1) tight junctional domains in the oligodendrocytic membrane near the some of the cells, 2) fasciae occludentes or focal tight junctions on the outer oligodendrocytic loop of myelin and on the outermost myelin membrane, 3) gap junctions of considerable size variations, either on membranes near the soma or on peripheral oligodendrocytic processes, and 4) non-paranodal transverse bands. The different types of oligodendrocytic junctions are discussed in terms of their functional implications.
Collapse
|
24
|
Kristol C, Sandri C, Akert K. Intramembranous particles at the nodes of Ranvier of the cat spinal cord: a morphometric study. Brain Res 1978; 142:391-400. [PMID: 638742 DOI: 10.1016/0006-8993(78)90903-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Size and distribution of intramembranous particles at nodes of Ranvier of the cat spinal cord were investigated by the freeze-etching technique and compared with those at the internodal axon. The particles are larger (up to 20 nm) at the nodal than at the internodal segment (up to 13 nm), and these large particles are more densely packed in the nodal (400 per sq micrometer) than in the internodal E (external) face (4 per sq micrometer). The nodal E face reveals a much denser overall population (1200--1300 per sq micrometer) of particles than the internodal E face (100--200 per sq micrometer), while at the P (protoplasmic) face the particle density is similar in nodal and internodal segments (1200--1600 per sq micrometer). It is suggested that the large nodal particles may be related to the mechanism of nerve excitation.
Collapse
|
25
|
Reier PJ, Tabira T, Webster HD. Hexachlorophene-induced myelin lesions in the amphibian central nervous system. A freeze-fracture study. J Neurol Sci 1978; 35:257-74. [PMID: 632834 DOI: 10.1016/0022-510x(78)90008-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Selected References. PROGRESS IN BRAIN RESEARCH 1977. [DOI: 10.1016/s0079-6123(08)64116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Abstract
The freeze-fractured membrane of the central myelin sheath has three classes of particulate components: (i) Particles inherent to the compact myelin lamellae. These are distributed at random and cleave predominantly with the P (protoplasmic) face. (ii) Particles which comprise the intramyelinic tight junctions. These are arranged in strands and are located at the inner and outer mesaxon, the paranodal loops, the cytoplasmic incisures, and occasionally within the compact regions of the myelin sheath. (iii) Particles localized exclusively at the portion of the paranodal loop membrane involved in the septate-like junction with the axolemma. These are regularly spaced and are organized in parallel rows. In the central myelin sheaths of bullfrogs fixed by perfusion with aldehydes and cryoprotected in 30% glycerol, the randomly distributed particles differ in size and shape from those of the axolemma. They possess a reasonably well defined bimodal distribution with respect to particle shape--most can be described either as globules or as ellipsoids. The globular particles range in diameter from 60 to 150 A. The ellipsoidal particles are 100-200 A long and 15-50 A wide. The total number of particles per square micron on the P face is approximately 1500. About half of these are of the globular type and half of the ellipsoidal type. In poorly fixed specimens, loss of interlamellar adhesion and loss of randomly distributed particles seem to coincide. Evidence is presented against the hypothesis that the tight junctions between compact myelin lamellae represent the radial component of the myelin. The possible relation between the types of particulate components seen in freeze-fracture and the classes of protein isolated from central myelin fractions is briefly discussed.
Collapse
Affiliation(s)
- B Schnapp
- Laboratory of Neuromorphology, Department of Biobehavioral Sciences, University of Connecticut, Storrs, CT 06268, USA
| | | |
Collapse
|
28
|
Reale E, Luciano L, Spitznas M. Zonulae occludentes of the myelin lamellae in the nerve fibre layer of the retina and in the optic nerve of the rabbit: a demonstration by the freeze-fracture method. JOURNAL OF NEUROCYTOLOGY 1975; 4:131-40. [PMID: 1123652 DOI: 10.1007/bf01098778] [Citation(s) in RCA: 39] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ridges and grooves composing extensive zonulae occludentes are revealed by the freeze-fracture method on split myelin lamellae in the nerve fibre layer of the retina and in the optic nerve of the rabbit. The junctions are located immediately internal to the outer loop of the myelin sheath and in corresponding areas of deeper myelin layers. They follow a straight or gently undulating course along the axis of the fibres. Only at the paranodal region of nodes of Ranvier do they deviate and assume a transverse course, The strands of these zonulae occludentes probably represent the radial thickenings of the intraperiod line described in thin sections.
Collapse
|
29
|
Dermietzel R. Junctions in the central nervous system of the cat. 3. Gap junctions and membrane-associated orthogonal particle complexes (MOPC) in astrocytic membranes. Cell Tissue Res 1974; 149:121-35. [PMID: 4609220 DOI: 10.1007/bf00209055] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|