1
|
Clot CR, Vexler L, de La O Leyva-Perez M, Bourke PM, Engelen CJM, Hutten RCB, van de Belt J, Wijnker E, Milbourne D, Visser RGF, Juranić M, van Eck HJ. Identification of two mutant JASON-RELATED genes associated with unreduced pollen production in potato. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:79. [PMID: 38472376 PMCID: PMC10933213 DOI: 10.1007/s00122-024-04563-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/24/2024] [Indexed: 03/14/2024]
Abstract
KEY MESSAGE Multiple QTLs control unreduced pollen production in potato. Two major-effect QTLs co-locate with mutant alleles of genes with homology to AtJAS, a known regulator of meiotic spindle orientation. In diploid potato the production of unreduced gametes with a diploid (2n) rather than a haploid (n) number of chromosomes has been widely reported. Besides their evolutionary important role in sexual polyploidisation, unreduced gametes also have a practical value for potato breeding as a bridge between diploid and tetraploid germplasm. Although early articles argued for a monogenic recessive inheritance, the genetic basis of unreduced pollen production in potato has remained elusive. Here, three diploid full-sib populations were genotyped with an amplicon sequencing approach and phenotyped for unreduced pollen production across two growing seasons. We identified two minor-effect and three major-effect QTLs regulating this trait. The two QTLs with the largest effect displayed a recessive inheritance and an additive interaction. Both QTLs co-localised with genes encoding for putative AtJAS homologs, a key regulator of meiosis II spindle orientation in Arabidopsis thaliana. The function of these candidate genes is consistent with the cytological phenotype of mis-oriented metaphase II plates observed in the parental clones. The alleles associated with elevated levels of unreduced pollen showed deleterious mutation events: an exonic transposon insert causing a premature stop, and an amino acid change within a highly conserved domain. Taken together, our findings shed light on the natural variation underlying unreduced pollen production in potato and will facilitate interploidy breeding by enabling marker-assisted selection for this trait.
Collapse
Affiliation(s)
- Corentin R Clot
- Plant Breeding, Wageningen University and Research, Po Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Lea Vexler
- Plant Breeding, Wageningen University and Research, Po Box 386, 6700 AJ, Wageningen, The Netherlands
- Teagasc, Crops Research, Oak Park, Carlow, R93 XE12, Ireland
| | | | - Peter M Bourke
- Plant Breeding, Wageningen University and Research, Po Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Christel J M Engelen
- Plant Breeding, Wageningen University and Research, Po Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Ronald C B Hutten
- Plant Breeding, Wageningen University and Research, Po Box 386, 6700 AJ, Wageningen, The Netherlands
| | - José van de Belt
- Laboratory of Genetics, Wageningen University and Research, Po Box 16, 6700 AA, Wageningen, The Netherlands
| | - Erik Wijnker
- Laboratory of Genetics, Wageningen University and Research, Po Box 16, 6700 AA, Wageningen, The Netherlands
| | - Dan Milbourne
- Teagasc, Crops Research, Oak Park, Carlow, R93 XE12, Ireland
| | - Richard G F Visser
- Plant Breeding, Wageningen University and Research, Po Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Martina Juranić
- Plant Breeding, Wageningen University and Research, Po Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Herman J van Eck
- Plant Breeding, Wageningen University and Research, Po Box 386, 6700 AJ, Wageningen, The Netherlands.
| |
Collapse
|
2
|
Clot CR, Klein D, Koopman J, Schuit C, Engelen CJM, Hutten RCB, Brouwer M, Visser RGF, Jurani M, van Eck HJ. Crossover shortage in potato is caused by StMSH4 mutant alleles and leads to either highly uniform unreduced pollen or sterility. Genetics 2024; 226:iyad194. [PMID: 37943687 PMCID: PMC10763545 DOI: 10.1093/genetics/iyad194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
The balanced segregation of homologous chromosomes during meiosis is essential for fertility and is mediated by crossovers (COs). A strong reduction of CO number leads to the unpairing of homologous chromosomes after the withdrawal of the synaptonemal complex. This results in the random segregation of univalents during meiosis I and ultimately to the production of unbalanced and sterile gametes. However, if CO shortage is combined with another meiotic alteration that restitutes the first meiotic division, then uniform and balanced unreduced male gametes, essentially composed of nonrecombinant homologs, are produced. This mitosis-like division is of interest to breeders because it transmits most of the parental heterozygosity to the gametes. In potato, CO shortage, a recessive trait previously referred to as desynapsis, was tentatively mapped to chromosome 8. In this article, we have fine-mapped the position of the CO shortage locus and identified StMSH4, an essential component of the class I CO pathway, as the most likely candidate gene. A 7 base-pair insertion in the second exon of StMSH4 was found to be associated with CO shortage in our mapping population. We also identified a second allele with a 3,820 base-pair insertion and confirmed that both alleles cannot complement each other. Such nonfunctional alleles appear to be common in potato cultivars. More than half of the varieties we tested are carriers of mutational load at the StMSH4 locus. With this new information, breeders can choose to remove alleles associated with CO shortage from their germplasm to improve fertility or to use them to produce highly uniform unreduced male gametes in alternative breeding schemes.
Collapse
Affiliation(s)
- Corentin R Clot
- Plant Breeding, Wageningen University & Research, Wageningen, 6700 AJ, The Netherlands
- Graduate School Experimental Plant Sciences, Wageningen University & Research, Wageningen, 6708 PB, The Netherlands
| | - Dennis Klein
- Plant Breeding, Wageningen University & Research, Wageningen, 6700 AJ, The Netherlands
| | - Joey Koopman
- Plant Breeding, Wageningen University & Research, Wageningen, 6700 AJ, The Netherlands
| | - Cees Schuit
- Bejo Zaden B.V., Warmenhuizen, 1749 CZ, The Netherlands
| | - Christel J M Engelen
- Plant Breeding, Wageningen University & Research, Wageningen, 6700 AJ, The Netherlands
| | - Ronald C B Hutten
- Plant Breeding, Wageningen University & Research, Wageningen, 6700 AJ, The Netherlands
| | - Matthijs Brouwer
- Plant Breeding, Wageningen University & Research, Wageningen, 6700 AJ, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research, Wageningen, 6700 AJ, The Netherlands
| | - Martina Jurani
- Plant Breeding, Wageningen University & Research, Wageningen, 6700 AJ, The Netherlands
| | - Herman J van Eck
- Plant Breeding, Wageningen University & Research, Wageningen, 6700 AJ, The Netherlands
| |
Collapse
|
3
|
Wolters PJ, Wouters D, Kromhout EJ, Huigen DJ, Visser RGF, Vleeshouwers VGAA. Qualitative and Quantitative Resistance against Early Blight Introgressed in Potato. BIOLOGY 2021; 10:biology10090892. [PMID: 34571769 PMCID: PMC8471710 DOI: 10.3390/biology10090892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 11/27/2022]
Abstract
Simple Summary Early blight is a disease of potato caused by the Alternaria fungus (notably A. solani). Fungicides that are commonly used to protect potato against the disease are losing their effectiveness and an alternative control method is desired. In this research, we identified several relatives of potato from Central and South America that have a high natural resistance against early blight. Although these plants belong to other species, it was possible to cross them with cultivated potato. The resistance was inherited in offspring plants, but, interestingly, the different species seem to contain distinct types of resistance. More detailed studies will help increase our knowledge of the mechanism(s) that cause resistance. Highly resistant offspring plants can be used to develop new potato varieties with a natural resistance to early blight. Abstract Early blight is a disease of potato that is caused by Alternaria species, notably A. solani. The disease is usually controlled with fungicides. However, A. solani is developing resistance against fungicides, and potato cultivars with genetic resistance to early blight are currently not available. Here, we identify two wild potato species, which are both crossable with cultivated potato (Solanum tuberosum), that show promising resistance against early blight disease. The cross between resistant S. berthaultii and a susceptible diploid S. tuberosum gave rise to a population in which resistance was inherited quantitatively. S. commersonii subsp. malmeanum was also crossed with diploid S. tuberosum, despite a differing endosperm balance number. This cross resulted in triploid progeny in which resistance was inherited dominantly. This is somewhat surprising, as resistance against necrotrophic plant pathogens is usually a quantitative trait or inherited recessively according to the inverse-gene-for-gene model. Hybrids with high levels of resistance to early blight are present among progeny from S. berthaultii as well as S. commersonii subsp. malmeanum, which is an important step towards the development of a cultivar with natural resistance to early blight.
Collapse
|
4
|
Sun P, Nishiyama S, Asakuma H, Voorrips RE, Fu J, Tao R. Genomics-based discrimination of 2n gamete formation mechanisms in polyploids: a case study in nonaploid Diospyros kaki 'Akiou'. G3 (BETHESDA, MD.) 2021; 11:6288453. [PMID: 34849809 PMCID: PMC8496294 DOI: 10.1093/g3journal/jkab188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022]
Abstract
Unreduced gametes (2n gametes), possessing double the haploid genome, whatever ploidy that happens to be, are a common source of ploidy variation in plant populations. First and second division restitution (FDR and SDR) are the dominant mechanisms of 2n gamete production; all else being equal, FDR gametes have a higher degree of heterozygosity, thus they are advantageous in breeding. The discrimination of these mechanisms from the consequence of hybridization is challenging, especially in higher polyploids, and usually requires information on centromere location. In this study, we propose a genotyping-based strategy to uncover the mechanisms of 2n gamete formation in progeny that has a higher ploidy than its parents. Simulation of 2n gamete production revealed that FDR and SDR pathways can be discriminated based on allele transmission patterns alone without information on centromere location. We applied this strategy to study the formation mechanism of a nonaploid Diospyros kaki ‘Akiou', which was bred via hybridization between D. kaki hexaploid cultivars. The result demonstrated that ‘Akiou' was derived from the fertilization of a normal female gamete by a 2n male gamete and that this 2n gamete was produced through FDR. Consequently, the distinct duplex transmission pattern in the FDR gamete enabled us to infer the genomic characteristics of polyploid persimmon. The method could be tested only for the plant being polypoid, which allows for the ability to discriminate causes of 2n gamete formation using allele dosage in progeny, and will be useful in future studies of polyploid genomics.
Collapse
Affiliation(s)
- Peng Sun
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.,Key Laboratory of Non-timber Forest Germplasm Enhancement & Utilization of State Forestry and Grassland Administration, Zhengzhou 450003, China.,Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China.,National Innovation Alliance of Persimmon Industry, Zhengzhou 450003, China
| | - Soichiro Nishiyama
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hideaki Asakuma
- Fukuoka Agriculture and Forestry Research Center, Chikushino, Fukuoka 818-8549, Japan
| | - Roeland E Voorrips
- Department of Plant Breeding, Wageningen University & Research, Wageningen, the Netherlands
| | - Jianmin Fu
- Key Laboratory of Non-timber Forest Germplasm Enhancement & Utilization of State Forestry and Grassland Administration, Zhengzhou 450003, China.,Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China.,National Innovation Alliance of Persimmon Industry, Zhengzhou 450003, China
| | - Ryutaro Tao
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
5
|
Prinzenberg AE, Víquez-Zamora M, Harbinson J, Lindhout P, van Heusden S. Chlorophyll fluorescence imaging reveals genetic variation and loci for a photosynthetic trait in diploid potato. PHYSIOLOGIA PLANTARUM 2018; 164:163-175. [PMID: 29314007 DOI: 10.1111/ppl.12689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/02/2018] [Indexed: 05/28/2023]
Abstract
Physiology and genetics are tightly interrelated. Understanding the genetic basis of a physiological trait such as the quantum yield of the photosystem II, or photosynthetic responses to environmental changes will benefit the understanding of these processes. By means of chlorophyll fluorescence (CF) imaging, the quantum yield of photosystem II can be determined rapidly, precisely and non-invasively. In this article, the genetic control and variation in the steady-state quantum yield of PSII (ΦPSII ) is analyzed for diploid potato plants. Current progress in potato research and breeding is slow due to high levels of heterozygosity and complexity of tetraploid genetics. Diploid potatoes offer the possibility of overcoming this problem and advance research for one of the globally most important staple foods. With the help of a diploid genetic mapping population two genetic loci that were strongly associated with differences in ΦPSII were identified. This is a proof of principle that genetic analysis for ΦPSII can be done on potato. The effects of three different stress conditions that are important in potato cultivation were also tested: salt stress, low temperature and deficiency in the macronutrient phosphate. For the last two stresses, significant decreases in photosynthetic activity could be shown, revealing potential for stress detection with CF based tools. In general, our findings show the potential of high-throughput phenotyping for physiological research and breeding in potato.
Collapse
Affiliation(s)
- Aina E Prinzenberg
- Solynta, Dreijenlaan 2, Wageningen 6703HA, The Netherlands
- Horticulture and Product Physiology, Wageningen University and Research, P.O. Box 16, Wageningen 6700AA, The Netherlands
| | | | - Jeremy Harbinson
- Horticulture and Product Physiology, Wageningen University and Research, P.O. Box 16, Wageningen 6700AA, The Netherlands
| | - Pim Lindhout
- Solynta, Dreijenlaan 2, Wageningen 6703HA, The Netherlands
| | - Sjaak van Heusden
- Solynta, Dreijenlaan 2, Wageningen 6703HA, The Netherlands
- Plant Breeding, Wageningen University and Research, P.O. Box 386, Wageningen 6700 AJ, The Netherlands
| |
Collapse
|
6
|
Rouiss H, Bakry F, Froelicher Y, Navarro L, Aleza P, Ollitrault P. Origin of C. latifolia and C. aurantiifolia triploid limes: the preferential disomic inheritance of doubled-diploid 'Mexican' lime is consistent with an interploid hybridization hypothesis. ANNALS OF BOTANY 2018; 121:571-585. [PMID: 29293884 PMCID: PMC5838810 DOI: 10.1093/aob/mcx179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/14/2017] [Indexed: 05/23/2023]
Abstract
Background and Aims Two main types of triploid limes are produced worldwide. The 'Tahiti' lime type (Citrus latifolia) is predominant, while the 'Tanepao' type (C. aurantiifolia) is produced to a lesser extent. Both types result from natural interspecific hybridization involving a diploid gamete of C. aurantiifolia 'Mexican' lime type (itself a direct interspecific C. micrantha × C. medica hybrid). The meiotic behaviour of a doubled-diploid 'Mexican' lime, the interspecific micrantha/medica recombination and the resulting diploid gamete structures were analysed to investigate the possibility that 'Tahiti' and 'Tanepao' varieties are derived from natural interploid hybridization. Methods A population of 85 tetraploid hybrids was established between a doubled-diploid clementine and a doubled-diploid 'Mexican' lime and used to infer the genotypes of 'Mexican' lime diploid gametes. Meiotic behaviour was studied through combined segregation analysis of 35 simple sequenbce repeat (SSR) and single nucleotide polymorphismn (SNP) markers covering the nine citrus chromosomes and cytogenetic studies. It was supplemented by pollen viability assessment. Key Results Pollen viability of the doubled-diploid Mexican lime (64 %) was much higher than that of the diploid. On average, 65 % of the chromosomes paired as bivalents and 31.4 % as tetravalents. Parental heterozygosity restitution ranged from 83 to 99 %. Disomic inheritance with high preferential pairing values was deduced for three chromosomes. Intermediate inheritances, with disomic trend, were found for five chromosomes, and an intermediate inheritance was observed for one chromosome. The average effective interspecific recombination rate was low (1.2 cM Mb-1). Conclusion The doubled-diploid 'Mexican' lime had predominantly disomic segregation, producing interspecific diploid gamete structures with high C. medica/C. micrantha heterozygosity, compatible with the phylogenomic structures of triploid C. latifolia and C. aurantiifolia varieties. This disomic trend limits effective interspecific recombination and diversity of the diploid gamete population. Interploid reconstruction breeding using doubled-diploid lime as one parent is a promising approach for triploid lime diversification.
Collapse
Affiliation(s)
- H Rouiss
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
- Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes (UMR Agap), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Petit-Bourg, Guadeloupe, France
| | - F Bakry
- Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes (UMR Agap), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier, France
| | - Y Froelicher
- Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes (UMR Agap), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), San Giuliano, Corse, France
| | - L Navarro
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - P Aleza
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - P Ollitrault
- Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes (UMR Agap), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Petit-Bourg, Guadeloupe, France
| |
Collapse
|
7
|
Rouiss H, Cuenca J, Navarro L, Ollitrault P, Aleza P. Unreduced Megagametophyte Production in Lemon Occurs via Three Meiotic Mechanisms, Predominantly Second-Division Restitution. FRONTIERS IN PLANT SCIENCE 2017; 8:1211. [PMID: 28747921 PMCID: PMC5506204 DOI: 10.3389/fpls.2017.01211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/27/2017] [Indexed: 05/23/2023]
Abstract
Unreduced (2n) gametes have played a pivotal role in polyploid plant evolution and are useful for sexual polyploid breeding in various species, particularly for developing new seedless citrus varieties. The underlying mechanisms of 2n gamete formation were recently revealed for Citrus reticulata but remain poorly understood for other citrus species, including lemon (C. limon [L.] Burm. f.). Here, we investigated the frequency and causal meiotic mechanisms of 2n megagametophyte production in lemon. We genotyped 48progeny plants of two lemon genotypes, "Eureka Frost" and "Fino", using 16 Simple Sequence Repeat (SSR) and 18 Single Nucleotide Polymorphism (SNP) markers to determine the genetic origin of the progenies and the underlying mechanisms for 2n gamete formation. We utilized a maximum-likelihood method based on parental heterozygosity restitution (PHR) of centromeric markers and analysis of PHR patterns along the chromosome. The frequency of 2n gamete production was 4.9% for "Eureka Frost" and 8.3% for "Fino", with three meiotic mechanisms leading to 2n gamete formation. We performed the maximum-likelihood method at the individual level via centromeric marker analysis, finding that 88% of the hybrids arose from second-division restitution (SDR), 7% from first-division restitution (FDR) or pre-meiotic doubling (PRD), and 5% from post-meiotic genome doubling (PMD). The pattern of PHR along LG1 confirmed that SDR is the main mechanism for 2n gamete production. Recombination analysis between markers in this LG revealed partial chiasma interference on both arms. We discuss the implications of these restitution mechanisms for citrus breeding and lemon genetics.
Collapse
Affiliation(s)
- Houssem Rouiss
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones AgrariasMoncada, Valencia, Spain
- Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes (UMR Agap), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Station de RoujolPetit-Bourg, Guadeloupe, France
| | - José Cuenca
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones AgrariasMoncada, Valencia, Spain
| | - Luis Navarro
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones AgrariasMoncada, Valencia, Spain
| | - Patrick Ollitrault
- Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes (UMR Agap), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Station de RoujolPetit-Bourg, Guadeloupe, France
| | - Pablo Aleza
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones AgrariasMoncada, Valencia, Spain
| |
Collapse
|
8
|
Buso JA, Boiteux LS, Tai GC, Peloquin SJ. Chromosome regions between centromeres and proximal crossovers are the physical sites of major effect loci for yield in potato: genetic analysis employing meiotic mutants. Proc Natl Acad Sci U S A 1999; 96:1773-8. [PMID: 9990100 PMCID: PMC15591 DOI: 10.1073/pnas.96.4.1773] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Meiotic mutant (2n) gametes formed by first-division restitution without crossover (FDR-NCO) are expected to be superior to FDR with crossover (FDR-CO) because they transmit to the progeny, without disruption by recombination, almost 100% of the parental genotype. FDR-CO transfers approximately 80% of the parental heterozygosity and a large fraction of the epistatic interactions. Another genetic expectation associated with both FDR gametes is their equivalence for the phenotypic expression of traits controlled by genes residing between centromeres and proximal crossover sites. This set of unique cytogenetic features of FDR mutants was employed here as a tool to infer physical location of quantitative trait loci controlling total tuber yield (TTY) in potato. Two assays were conducted to verify the superiority of FDR-NCO over FDR-CO gametes for TTY by using progenies from 4x-2x factorial crosses. Male clones were 2n-pollen producers by either FDR-CO or FDR-NCO mechanisms. Compared with the 4x parents, TTY of the progenies ranged from 41% to 175% (i.e., high-parent heterosis). However, no significant TTY differences were observed between FDR-CO and FDR-NCO families. In addition, the size of variance components of males was smaller than females and near zero. Our results reinforce the hypothesis that genes controlling yielding ability have a predominant physical location between centromeres and proximal chiasmata. Quantitative trait loci in chromosome regions with reduced levels of recombination may provide a partial explanation for the slow progress in increasing TTY through conventional 4x-4x crosses and for the often high degree of heterosis obtained by introgressing genetic diversity via 4x-2x crosses in potato.
Collapse
Affiliation(s)
- J A Buso
- Centro Nacional de Pesquisa de Hortalicas (CNPH)-Empresa Brasileira de Pesquisa Agropecuaria (EMBRAPA), Caixa Postal 218, 70359-970 Brasilia-DF, Brazil
| | | | | | | |
Collapse
|