1
|
Yang X, Cheng X, Wang G, Song S, Ding X, Xiong H, Wang C, Zhao J, Li T, Deng P, Liu X, Chen C, Ji W. Cytogenetic identification and molecular mapping for the wheat-Thinopyrum ponticum introgression line with resistance to Fusarium head blight. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:191. [PMID: 39046492 DOI: 10.1007/s00122-024-04686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024]
Abstract
KEY MESSAGE Xinong 511, a new wheat-Thinopyrum ponticum variety with excellent fusarium head blight resistance, the QTLs were mapped to the wheat chromosomes 5B and 7A with named QFhb.nwafu-5B and QFhb.nwafu-7A, respectively. Novel Fusarium head blight (FHB) resistance germplasms and genes are valuable for wheat improvement and breeding efforts. Thinopyrum ponticum, a wild relative of common wheat, is a valuable germplasm of disease resistance for wheat improvement and breeding. Xinong 511 (XN511) is a high-quality wheat variety widely cultivated in the Yellow and Huai Rivers Valley of China with stable FHB-resistance. Through analysis of pedigree materials of the wheat cultivar XN511, we found that the genetic material and FHB resistance from Th. ponticum were transmitted to the introgression line, indicating that the FHB resistance in XN511 likely originates from Th. ponticum. To further explore the genetic basis of FHB resistance in XN511, QTL mapping was conducted using the RILs population of XN511 and the susceptible line Aikang 58 (AK58). Survey with makers closely-linked to Fhb1, Fhb2, Fhb4, Fhb5, and Fhb7, indicated that both XN511 and the susceptible lines do not contain these QTL. Using bulked segregant analysis RNA-seq (BSR-Seq) and newly developed allele-specific PCR (AS-PCR) markers, QTLs in XN511 were successfully located on wheat chromosomes 5B and 7A. These findings are significant for further understanding and utilizing FHB resistance genes in wheat improvement.
Collapse
Affiliation(s)
- Xiaoying Yang
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Xiaofang Cheng
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Guangyi Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Siyuan Song
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Xu Ding
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Hui Xiong
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Changyou Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, China
| | - Jixin Zhao
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, China
| | - Tingdong Li
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, China
| | - Pingchuan Deng
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, China
| | - Xinlun Liu
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, China
| | - Chunhuan Chen
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, China
| | - Wanquan Ji
- College of Agronomy, Northwest A&F University, Yangling, 712100, China.
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, China.
| |
Collapse
|
2
|
Xiao B, Qie Y, Jin Y, Yu N, Sun N, Liu W, Wang X, Wang J, Qian Z, Zhao Y, Yuan T, Li L, Wang F, Liu C, Ma P. Genetic basis of an elite wheat cultivar Guinong 29 with harmonious improvement between multiple diseases resistance and other comprehensive traits. Sci Rep 2024; 14:14336. [PMID: 38906938 PMCID: PMC11192888 DOI: 10.1038/s41598-024-64998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
Fungal diseases, such as powdery mildew and rusts, significantly affect the quality and yield of wheat. Pyramiding diverse types of resistance genes into cultivars represents the preferred strategy to combat these diseases. Moreover, achieving collaborative improvement between diseases resistance, abiotic stress, quality, and agronomic and yield traits is difficult in genetic breeding. In this study, the wheat cultivar, Guinong 29 (GN29), showed high resistance to powdery mildew and stripe rust at both seedling and adult plant stages, and was susceptible to leaf rust at the seedling stage but slow resistance at the adult-plant stage. Meanwhile, it has elite agronomic and yield traits, indicating promising coordination ability among multiple diseases resistance and other key breeding traits. To determine the genetic basis of these elite traits, GN29 was tested with 113 molecular markers for 98 genes associated with diseases resistance, stress tolerance, quality, and adaptability. The results indicated that two powdery mildew resistance (Pm) genes, Pm2 and Pm21, confirmed the outstanding resistance to powdery mildew through genetic analysis, marker detection, genomic in situ hybridization (GISH), non-denaturing fluorescence in situ hybridization (ND-FISH), and homology-based cloning; the stripe rust resistance (Yr) gene Yr26 and leaf rust resistance (Lr) genes Lr1 and Lr46 conferred the stripe rust and slow leaf rust resistance in GN29, respectively. Meanwhile, GN29 carries dwarfing genes Rht-B1b and Rht-D1a, vernalization genes vrn-A1, vrn-B1, vrn-D1, and vrn-B3, which were consistent with the phenotypic traits in dwarf characteristic and semi-winter property; carries genes Dreb1 and Ta-CRT for stress tolerance to drought, salinity, low temperature, and abscisic acid (ABA), suggesting that GN29 may also have elite stress-tolerance ability; and carries two low-molecular-weight glutenin subunit genes Glu-B3b and Glu-B3bef which contributed to high baking quality. This study not only elucidated the genetic basis of the elite traits in GN29 but also verified the capability for harmonious improvement in both multiple diseases resistance and other comprehensive traits, offering valuable information for breeding breakthrough-resistant cultivars.
Collapse
Affiliation(s)
- Bei Xiao
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Yanmin Qie
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Key Laboratory of Crop Genetic and Breeding, Shijiazhuang, 050035, China
| | - Yuli Jin
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Ningning Yu
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Nina Sun
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Wei Liu
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Xiaolu Wang
- Crop Research Institute, Shandong Academy of Agriculture Sciences, Jinan, 250100, China
| | - Jiaojiao Wang
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Zejun Qian
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Ya Zhao
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Tangyu Yuan
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Linzhi Li
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Fengtao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agriculture Sciences, Jinan, 250100, China.
| | - Pengtao Ma
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China.
| |
Collapse
|
3
|
Li J, Guan H, Wang Y, Dong C, Trethowan R, McIntosh RA, Zhang P. Cytological and molecular characterization of wheat lines carrying leaf rust and stem rust resistance genes Lr24 and Sr24. Sci Rep 2024; 14:12816. [PMID: 38834653 DOI: 10.1038/s41598-024-63835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/03/2024] [Indexed: 06/06/2024] Open
Abstract
Previous studies showed that Australian wheat cultivars Janz and Sunco carry leaf rust and stem rust resistance genes Lr24 and Sr24 derived from Thinopyrum ponticum chromosome arm 3AgL. However, the size of the alien segments carrying Lr24 and Sr24 in the lines were not determined. In this study, we used non-denaturing fluorescence in situ hybridization (ND-FISH), genomic in situ hybridization (GISH), and PCR-based landmark unique gene (PLUG) markers to visualize the alien segments in Janz and Sunco, and further compared them with the segments in US cultivars Agent and Amigo. The fraction length (FL) of the alien translocation in Agent was 0.70-1.00, whereas those in Janz, Sunco, and Amigo were smaller, at FL 0.85-1.00. It was deduced that the alien gene RAg encoding for red grain color and rust resistance genes Lr24 and Sr24 on chromosome arm 3AgL were in bins of FL 0.70-0.85 and 0.85-1.00, respectively. We retrieved and extracted nucleotide-binding site-leucine-rich repeat (NBS-LRR) receptor genes corresponding to the region of Lr24 and Sr24 on chromosomes 3E, and 3J, 3Js and 3St from the reference genome sequences of Th. elongatum and Th. intermedium, respectively. A set of molecular markers developed for Lr24 and Sr24 from those extracted NBS-LRR genes will provide valuable information for fine mapping and cloning of these genes.
Collapse
Affiliation(s)
- Jianbo Li
- Plant Breeding Institute, School of Life and Environment Sciences, The University of Sydney, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia
| | - Haixia Guan
- Plant Breeding Institute, School of Life and Environment Sciences, The University of Sydney, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia
| | - Yuqi Wang
- Plant Breeding Institute, School of Life and Environment Sciences, The University of Sydney, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Chongmei Dong
- Plant Breeding Institute, School of Life and Environment Sciences, The University of Sydney, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia
| | - Richard Trethowan
- Plant Breeding Institute, School of Life and Environment Sciences, The University of Sydney, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia
| | - Robert A McIntosh
- Plant Breeding Institute, School of Life and Environment Sciences, The University of Sydney, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia.
| | - Peng Zhang
- Plant Breeding Institute, School of Life and Environment Sciences, The University of Sydney, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia.
| |
Collapse
|
4
|
Xu S, Lyu Z, Zhang N, Li M, Wei X, Gao Y, Cheng X, Ge W, Li X, Bao Y, Yang Z, Ma X, Wang H, Kong L. Genetic mapping of the wheat leaf rust resistance gene Lr19 and development of translocation lines to break its linkage with yellow pigment. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:200. [PMID: 37639002 DOI: 10.1007/s00122-023-04425-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023]
Abstract
KEY MESSAGE The leaf rust resistance gene Lr19, which is present on the long arm of chromosome 7E1 in Thinopyrum ponticum, was mapped within a 0.3-cM genetic interval, and translocation lines were developed to break its linkage with yellow pigmentation The leaf rust resistance locus Lr19, which was transferred to wheat (Triticum aestivum) from its relative Thinopyrum ponticum in 1966, still confers broad resistance to most known races of the leaf rust pathogen Puccinia triticina (Pt) worldwide. However, this gene has not previously been fine-mapped, and its tight linkage with a gene causing yellow pigmentation has limited its application in bread wheat breeding. In this study, we genetically mapped Lr19 using a bi-parental population from a cross of two wheat-Th. ponticum substitution lines, the Lr19-carrying line 7E1(7D) and the leaf rust-susceptible line 7E2(7D). Genetic analysis of the F2 population and the F2:3 families showed that Lr19 was a single dominant gene. Genetic markers allowed the gene to be mapped within a 0.3-cM interval on the long arm of Th. ponticum chromosome 7E1, flanked by markers XsdauK3734 and XsdauK2839. To reduce the size of the Th. ponticum chromosome segment carrying Lr19, the Chinese Spring Ph1b mutant was employed to promote recombination between the homoeologous chromosomes of the wheat chromosome 7D and the Th. ponticum chromosome 7E1. Two translocation lines with short Th. ponticum chromosome fragments carrying Lr19 were identified using the genetic markers closely linked to Lr19. Both translocation lines were resistant to 16 Pt races collected throughout China. Importantly, the linkage between Lr19 and yellow pigment content was broken in one of the lines. Thus, the Lr19 linked markers and translocation lines developed in this study are valuable resources in marker-assisted selection as part of common wheat breeding programs.
Collapse
Affiliation(s)
- Shoushen Xu
- National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Zhongfan Lyu
- National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Na Zhang
- College of Plant Protection, Technological Innovation Center for Biological Control Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, 071001, Hebei, People's Republic of China
| | - Mingzhu Li
- National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Xinyi Wei
- National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Yuhang Gao
- National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Xinxin Cheng
- National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Wenyang Ge
- National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Xuefeng Li
- National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Yinguang Bao
- National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Zujun Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, Sichun, People's Republic of China
| | - Xin Ma
- National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Hongwei Wang
- National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| | - Lingrang Kong
- National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| |
Collapse
|
5
|
Bokore FE, Cuthbert RD, Knox RE, Hiebert CW, Pozniak CJ, Berraies S, Ruan Y, Meyer B, Hucl P, McCallum BD. Genetic mapping of leaf rust ( Puccinia triticina Eriks) resistance genes in six Canadian spring wheat cultivars. FRONTIERS IN PLANT SCIENCE 2023; 14:1130768. [PMID: 37021307 PMCID: PMC10067638 DOI: 10.3389/fpls.2023.1130768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/09/2023] [Indexed: 06/19/2023]
Abstract
The Canada Western Red Spring wheat (Triticum aestivum L.) cultivars AAC Concord, AAC Prevail, CDC Hughes, Lillian, Glenlea, and elite line BW961 express a spectrum of resistance to leaf rust caused by Puccinia triticina Eriks. This study aimed to identify and map the leaf rust resistance of the cultivars using three doubled haploid populations, AAC Prevail/BW961 (PB), CDC Hughes/AAC Concord (HC), and Lillian/Glenlea (LG). The populations were evaluated for seedling resistance in the greenhouse and adult plant disease response in the field at Morden, MB for 3 years and genotyped with the 90K wheat Infinium iSelect SNP array. Genetic maps were constructed to perform QTL analysis on the seedling and field leaf rust data. A total of three field leaf rust resistance QTL segregated in the PB population, five in the HC, and six in the LG population. In the PB population, BW961 contributed two QTL on chromosomes 2DS and 7DS, and AAC Prevail contributed a QTL on 4AL consistent across trials. Of the five QTL in HC, AAC Concord contributed two QTL on 4AL and 7AL consistent across trials and a QTL on 3DL.1 that provided seedling resistance only. CDC Hughes contributed two QTL on 1DS and 3DL.2. Lillian contributed four QTL significant in at least two of the three trials on 2BS, 4AL, 5AL, and 7AL, and Glenlea two QTL on 4BL and 7BL. The 1DS QTL from CDC Hughes, the 2DS from BW961, the 4AL from the AAC Prevail, AAC Concord, and Lillian, and the 7AL from AAC Concord and Lillian conferred seedling leaf rust resistance. The QTL on 4AL corresponded with Lr30 and was the same across cultivars AAC Prevail, AAC Concord, and Lillian, whereas the 7AL corresponding with LrCen was coincident between AAC Concord and Lillian. The 7DS and 2DS QTL in BW961 corresponded with Lr34 and Lr2a, respectively, and the 1DS QTL in CDC Hughes with Lr21. The QTL identified on 5AL could represent a novel gene. The results of this study will widen our knowledge of leaf rust resistance genes in Canadian wheat and their utilization in resistance breeding.
Collapse
Affiliation(s)
- Firdissa E. Bokore
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Richard D. Cuthbert
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Ron E. Knox
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Colin W. Hiebert
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Curtis J. Pozniak
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Samia Berraies
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Yuefeng Ruan
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Brad Meyer
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Pierre Hucl
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Brent D. McCallum
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| |
Collapse
|
6
|
Noweiska A, Bobrowska R, Spychała J, Tomkowiak A, Kwiatek MT. Multiplex PCR assay for the simultaneous identification of race specific and non-specific leaf resistance genes in wheat (Triticum aestivum L.). J Appl Genet 2023; 64:55-64. [PMID: 36577933 PMCID: PMC9837178 DOI: 10.1007/s13353-022-00745-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/04/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022]
Abstract
Race-nonspecific resistance is a key to sustainable management of pathogens in bread wheat (Triticum aestivum L.) breeding. It is more durable compared to race-specific immunity, conferred by the major genes (R), which are often overcome by pathogens. The accumulation of the genes, which provide the resistance to a specific race of a pathogen, together with the introduction of race-non-specific resistance genes is the most effective strategy aimed at preventing the breakdown of genetically conditioned immunity. PCR markers improved the productivity and accuracy of classical plant breeding by means of marker-assisted selection (MAS). Multiplexing assays provide increased throughput, reduced reaction cost, and conservation of limited sample material, which are beneficial for breeding purposes. Here, we described the process of customizing multiplex PCR assay for the simultaneous identification of the major leaf rust resistance genes Lr19, Lr24, Lr26, and Lr38, as well as the slow rusting, race-nonspecific resistance genes: Lr34 and Lr68, in thirteen combinations. The adaptation of PCR markers for multiplex assays relied on: (1) selection of primers with an appropriate length; (2) selection of common annealing/extension temperature for given primers; and (3) PCR mixture modifications consisting of increased concentration of primers for the scanty band signals or decreased concentration of primers for the strong bands. These multiplex PCR protocols can be integrated into a marker-assisted selection of the leaf rust-resistant wheat genotypes.
Collapse
Affiliation(s)
- Aleksandra Noweiska
- Department of Genetics and Plant Breeding, Faculty of Agronomy, Horticulture and Bioengineering, Poznań University of Life Sciences, 11 Dojazd Str, 60-632 Poznań, Poland
| | - Roksana Bobrowska
- Department of Genetics and Plant Breeding, Faculty of Agronomy, Horticulture and Bioengineering, Poznań University of Life Sciences, 11 Dojazd Str, 60-632 Poznań, Poland
| | - Julia Spychała
- Department of Genetics and Plant Breeding, Faculty of Agronomy, Horticulture and Bioengineering, Poznań University of Life Sciences, 11 Dojazd Str, 60-632 Poznań, Poland
| | - Agnieszka Tomkowiak
- Department of Genetics and Plant Breeding, Faculty of Agronomy, Horticulture and Bioengineering, Poznań University of Life Sciences, 11 Dojazd Str, 60-632 Poznań, Poland
| | - Michał T. Kwiatek
- Department of Genetics and Plant Breeding, Faculty of Agronomy, Horticulture and Bioengineering, Poznań University of Life Sciences, 11 Dojazd Str, 60-632 Poznań, Poland
| |
Collapse
|
7
|
Zhang L, Zhao X, Liu J, Wang X, Gong W, Zhang Q, Liu Y, Yan H, Meng Q, Liu D. Evaluation of the resistance to Chinese predominant races of Puccinia triticina and analysis of effective leaf rust resistance genes in wheat accessions from the U.S. National Plant Germplasm System. FRONTIERS IN PLANT SCIENCE 2022; 13:1054673. [PMID: 36388507 PMCID: PMC9645796 DOI: 10.3389/fpls.2022.1054673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Puccinia triticina, which is the causative agent of wheat leaf rust, is widely spread in China and most other wheat-planting countries around the globe. Cultivating resistant wheat cultivars is the most economical, effective, and environmentally friendly method for controlling leaf rust-caused yield damage. Exploring the source of resistance is very important in wheat resistance breeding programs. In order to explore more effective resistance sources for wheat leaf rust, the resistance of 112 wheat accessions introduced from the U.S. National Plant Germplasm System were identified using a mixture of pathogenic isolates of THTT, THTS, PHTT, THJT and THJS which are the most predominant races in China. As a result, all of these accessions showed high resistance at seedling stage, of which, ninety-nine accessions exhibited resistance at adult plant stage. Eleven molecular markers of eight effective leaf rust resistance genes in China were used to screen the 112 accessions. Seven effective leaf rust resistance genes Lr9, Lr19, Lr24, Lr28, Lr29, Lr38 and Lr45 were detected, except Lr47. Twenty-three accessions had only one of those seven effective leaf rust resistance gene. Eleven accessions carried Lr24+Lr38, and 7 accessions carried Lr9+Lr24+Lr38, Lr24+Lr38+Lr45, Lr24+Lr29+Lr38 and Lr19+Lr38+Lr45 respectively. The remaining seventy-one accessions had none of those eight effective leaf rust resistance genes. This study will provide theoretical guidance for rational utilization of these introduted wheat accessions directly or for breeding the resistant wheat cultivars.
Collapse
Affiliation(s)
- Lin Zhang
- College of Plant Protection, Hebei Agricultural University, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, China
- School of Landscape and Ecological Engineering, Hebei Engineering University, Handan, China
| | - Xuefang Zhao
- College of Plant Protection, Hebei Agricultural University, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, China
| | - Jingxian Liu
- College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Xiaolu Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Shandong Wheat Technology Innovation Center, Jinan, China
- National Engineering Laboratory of Wheat and Maize, Shandong Wheat Technology Innovation Center, Jinan, China
- Key Laboratory of Wheat Biology and Genetic Improvement in the North HuangHuai River Valley of Ministry of Agriculture, Shandong Wheat Technology Innovation Center, Jinan, China
| | - Wenping Gong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Shandong Wheat Technology Innovation Center, Jinan, China
- National Engineering Laboratory of Wheat and Maize, Shandong Wheat Technology Innovation Center, Jinan, China
- Key Laboratory of Wheat Biology and Genetic Improvement in the North HuangHuai River Valley of Ministry of Agriculture, Shandong Wheat Technology Innovation Center, Jinan, China
| | - Quanguo Zhang
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Yuping Liu
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Hongfei Yan
- College of Plant Protection, Hebei Agricultural University, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, China
| | - Qingfang Meng
- College of Plant Protection, Hebei Agricultural University, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, China
| | - Daqun Liu
- College of Plant Protection, Hebei Agricultural University, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, China
| |
Collapse
|
8
|
Sunilkumar V, Krishna H, Devate NB, Manjunath KK, Chauhan D, Singh S, Sinha N, Singh JB, Prakasha TL, Pal D, Sivasamy M, Jain N, Singh GP, Singh PK. Marker assisted improvement for leaf rust and moisture deficit stress tolerance in wheat variety HD3086. FRONTIERS IN PLANT SCIENCE 2022; 13:1035016. [PMID: 36352858 PMCID: PMC9638138 DOI: 10.3389/fpls.2022.1035016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
There is a significant yield reduction in the wheat crop as a result of different biotic and abiotic stresses, and changing climate, among them moisture deficit stress and leaf rust are the major ones affecting wheat worldwide. HD3086 is a high-yielding wheat variety that has been released for commercial cultivation under timely sown irrigated conditions in the Indo-Gangetic plains of India. Variety HD3086 provides a good, stable yield, and it is the choice of millions of farmers in India. It becomes susceptible to the most prevalent pathotypes 77-5 and 77-9 of Puccinia triticina (causing leaf rust) in the production environment and its potential yield cannot be realized under moisture deficit stress. The present study demonstrates the use of a marker-assisted back cross breeding approach to the successful transfer of leaf rust resistance gene Lr24 and QTLs linked to moisture deficit stress tolerance in the background of HD3086. The genotype HI1500 was used as a donor parent that possesses leaf rust-resistant gene Lr24, which confers resistance against the major pathotypes found in the production environment. It possesses inbuilt tolerance under abiotic stresses with superior quality traits. Foreground selection for gene Lr24 and moisture deficit stress tolerance QTLs linked to Canopy temperature (CT), Normal Differential Vegetation Index (NDVI) and Thousand Kernel Weight (TKW) in different generations of the backcrossing and selection. In BC2F2, foreground selection was carried out to identify homozygous lines based on the linked markers and were advanced following pedigree based phenotypic selection. The selected lines were evaluated against P. triticina pathotypes 77-5 and 77-9 under controlled conditions. Recurrent parent recovery of the selected lines ranged from 78-94%. The identified lines were evaluated for their tolerance to moisture stress under field conditions and their resistance to rust under artificial epiphytotic conditions for two years. In BC2F5 generation, eight positive lines for marker alleles were selected which showed resistance to leaf rust and recorded an improvement in component traits of moisture deficit stress tolerance such as CT, NDVI, TKW and yield compared to the recurrent parent HD3086. The derived line is named HD3471 and is nominated for national trials for testing and further release for commercial cultivation.
Collapse
Affiliation(s)
- V.P. Sunilkumar
- Division of Genetics, Icar- Indian Agricultural Research Institute, New Delhi, India
| | - Hari Krishna
- Division of Genetics, Icar- Indian Agricultural Research Institute, New Delhi, India
| | - Narayana Bhat Devate
- Division of Genetics, Icar- Indian Agricultural Research Institute, New Delhi, India
| | | | - Divya Chauhan
- Division of Genetics, Icar- Indian Agricultural Research Institute, New Delhi, India
| | - Shweta Singh
- Division of Genetics, Icar- Indian Agricultural Research Institute, New Delhi, India
| | - Nivedita Sinha
- Division of Genetics, Icar- Indian Agricultural Research Institute, New Delhi, India
| | - Jang Bahadur Singh
- Division of Genetics, Icar- Indian Agricultural Research Institute, New Delhi, India
| | - T. L. Prakasha
- Division of Genetics, Icar- Indian Agricultural Research Institute, New Delhi, India
| | - Dharam Pal
- Division of Genetics, Icar- Indian Agricultural Research Institute, New Delhi, India
| | - M. Sivasamy
- Division of Genetics, Icar- Indian Agricultural Research Institute, New Delhi, India
| | - Neelu Jain
- Division of Genetics, Icar- Indian Agricultural Research Institute, New Delhi, India
| | - G. P. Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - P. K. Singh
- Division of Genetics, Icar- Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
9
|
Jin Y, Shi F, Liu W, Fu X, Gu T, Han G, Shi Z, Sheng Y, Xu H, Li L, An D. Identification of Resistant Germplasm and Detection of Genes for Resistance to Powdery Mildew and Leaf Rust from 2,978 Wheat Accessions. PLANT DISEASE 2021; 105:3900-3908. [PMID: 34129353 DOI: 10.1094/pdis-03-21-0532-re] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Powdery mildew and leaf rust, caused by Blumeria graminis f. sp. tritici and Puccinia triticina, respectively, are widespread diseases of wheat worldwide. The use of resistant cultivars is considered the most economical, environment-friendly, and effective method to control these diseases. In the present study, a collection of 2,978 wheat accessions consisting of 1,394 advanced breeding lines, 1,078 Chinese cultivars, 291 introduced cultivars, 132 lines containing alien chromosomes, and 83 landraces was tested for reactions to powdery mildew and leaf rust. The results indicated that 659 wheat accessions (22.1%) were highly resistant to a widely prevalent B. graminis f. sp. tritici isolate, E09, at the seedling stage, and 390 were consistently resistant to the mixture of B. graminis f. sp. tritici isolates at the adult plant stage. Meanwhile, 63 accessions (2.1%) were highly resistant to leaf rust at the adult plant stage, of which 54 were resistant to a predominant and highly virulent P. triticina race, THTT, at the seedling stage. Notably, 17 accessions were resistant to both powdery mildew and leaf rust. To detect known genes for resistance to powdery mildew and leaf rust, these accessions were tested with gene-specific or tightly linked markers for seven powdery mildew genes (Pm genes; Pm2, Pm4, Pm5, Pm6, Pm8, Pm21, and Pm24) and 10 Lr genes (Lr1, Lr9, Lr10, Lr19, Lr20, Lr24, Lr26, Lr34, Lr37, and Lr46). Of the 659 powdery mildew-resistant accessions, 328 might carry single Pm genes and 191 carry combined Pm genes. Pm2 was detected at the highest frequency of 59.6%, followed by Pm8, Pm6, Pm21, Pm4, and Pm5, whereas Pm24 was not detected. In addition, 139 accessions might contain unknown Pm genes different from those tested in this study. In the 63 accessions resistant to leaf rust, four leaf rust genes (Lr genes; Lr1, Lr10, Lr26, and Lr34) were detected in 41 accessions singly or in combination, whereas six genes (Lr9, Lr19, Lr20, Lr24, Lr37, and Lr46) were not detected. Twenty-two accessions might contain unknown Lr genes different from those tested in this study. This study not only provided important information for rationally distributing resistance genes in wheat breeding programs, but also identified resistant germplasm that might have novel genes to enrich the diversity of resistance sources.
Collapse
Affiliation(s)
- Yuli Jin
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fengyu Shi
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weihua Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyi Fu
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Tiantian Gu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhipeng Shi
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Sheng
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongxing Xu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Lihui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Javadi H, Dadkhodaie A, Heidari B. Molecular Marker Analysis of Stem Rust Resistance Genes in Some Iranian Wheat Genotypes. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721050029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Atia MAM, El-Khateeb EA, Abd El-Maksoud RM, Abou-Zeid MA, Salah A, Abdel-Hamid AME. Mining of Leaf Rust Resistance Genes Content in Egyptian Bread Wheat Collection. PLANTS (BASEL, SWITZERLAND) 2021; 10:1378. [PMID: 34371581 PMCID: PMC8309345 DOI: 10.3390/plants10071378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/15/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022]
Abstract
Wheat is a major nutritional cereal crop that has economic and strategic value worldwide. The sustainability of this extraordinary crop is facing critical challenges globally, particularly leaf rust disease, which causes endless problems for wheat farmers and countries and negatively affects humanity's food security. Developing effective marker-assisted selection programs for leaf rust resistance in wheat mainly depends on the availability of deep mining of resistance genes within the germplasm collections. This is the first study that evaluated the leaf rust resistance of 50 Egyptian wheat varieties at the adult plant stage for two successive seasons and identified the absence/presence of 28 leaf rust resistance (Lr) genes within the studied wheat collection. The field evaluation results indicated that most of these varieties demonstrated high to moderate leaf rust resistance levels except Gemmeiza 1, Gemmeiza 9, Giza162, Giza 163, Giza 164, Giza 165, Sids 1, Sids 2, Sids 3, Sakha 62, Sakha 69, Sohag 3 and Bany Swif 4, which showed fast rusting behavior. On the other hand, out of these 28 Lr genes tested against the wheat collection, 21 Lr genes were successfully identified. Out of 15 Lr genes reported conferring the adult plant resistant or slow rusting behavior in wheat, only five genes (Lr13, Lr22a, Lr34, Lr37, and Lr67) were detected within the Egyptian collection. Remarkedly, the genes Lr13, Lr19, Lr20, Lr22a, Lr28, Lr29, Lr32, Lr34, Lr36, Lr47, and Lr60, were found to be the most predominant Lr genes across the 50 Egyptian wheat varieties. The molecular phylogeny results also inferred the same classification of field evaluation, through grouping genotypes characterized by high to moderate leaf rust resistance in one cluster while being highly susceptible in a separate cluster, with few exceptions.
Collapse
Affiliation(s)
- Mohamed A. M. Atia
- Molecular Genetics and Genome Mapping Laboratory, Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Eman A. El-Khateeb
- Department of Botany, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Reem M. Abd El-Maksoud
- Department of Nucleic Acid & Protein Structure, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Mohamed A. Abou-Zeid
- Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Arwa Salah
- Molecular Genetics and Genome Mapping Laboratory, Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Amal M. E. Abdel-Hamid
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Roxy, Cairo 11341, Egypt;
| |
Collapse
|
12
|
Wu H, Kang Z, Li X, Li Y, Li Y, Wang S, Liu D. Identification of Wheat Leaf Rust Resistance Genes in Chinese Wheat Cultivars and the Improved Germplasms. PLANT DISEASE 2020; 104:2669-2680. [PMID: 32729796 DOI: 10.1094/pdis-12-19-2619-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Leaf rust is an important wheat disease that is a significant hindrance for wheat production in most areas of the world. Breeding resistant cultivars can effectively and economically control the disease. In the present study, a wheat collection consisting of 100 cultivars from China and 18 improved germplasms from global landrace donors together with 36 known single Lr gene lines were tested with 20 strains of Puccinia triticina Eriks. in the seedling stage to postulate the Lr gene in the cultivars and germplasms. In addition, 12 diagnostic molecular markers specific to 10 Lr genes were used to detect the presence of the Lr genes in the wheat collection. Resistance to leaf rust of these cultivars at the adult plant stage was tested in fields under natural infection during the 2016 to 2018 cropping seasons in Baoding, Hebei Province. The gene postulation combined with molecular marker detection showed that six Lr genes (Lr1, Lr26, Lr33, Lr34, Lr45, and Lr46) were identified in 44 wheat accessions, including 37 cultivars and seven improved germplasms. Among the 44 wheat accessions postulated with Lr genes, Lr1 was present in four accessions, Lr26 in 12 accessions, Lr33 in two accessions, Lr34 in 14 accessions, Lr45 in three accessions, and Lr46 in 16 accessions. In the collection of 118 cultivars/germplasms, 34 wheat lines displayed adult-plant resistance carrying Lr34, Lr46, and/or underdetermined genes. Therefore, a high level of leaf rust resistance can be achieved through the combination of all-stage resistance and adult-plant resistance genes together in wheat cultivars.
Collapse
Affiliation(s)
- Hui Wu
- College of Plant Protection, Hebei Agricultural University/Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, Hebei 071001, China
| | - Zhanhai Kang
- College of Plant Protection, Hebei Agricultural University/Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, Hebei 071001, China
| | - Xing Li
- College of Plant Protection, Hebei Agricultural University/Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, Hebei 071001, China
| | - Yanyan Li
- College of Plant Protection, Hebei Agricultural University/Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, Hebei 071001, China
| | - Yi Li
- College of Plant Protection, Hebei Agricultural University/Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, Hebei 071001, China
| | - Shuo Wang
- College of Plant Protection, Hebei Agricultural University/Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, Hebei 071001, China
| | - Daqun Liu
- College of Plant Protection, Hebei Agricultural University/Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, Hebei 071001, China
| |
Collapse
|
13
|
Gebrewahid TW, Zhang PP, Yao ZJ, Li ZF, Liu DQ. Identification of Leaf Rust Resistance Genes in Bread Wheat Cultivars from Ethiopia. PLANT DISEASE 2020; 104:2354-2361. [PMID: 32697658 DOI: 10.1094/pdis-12-19-2606-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Wheat leaf rust, caused by Puccinia triticina (Pt), is a widespread disease of bread wheat worldwide. In the present study, 50 wheat cultivars from Ethiopia and 34 differential lines, mostly near-isogenic lines (NILs) in the background of Thatcher with known resistance genes to leaf rust (Lr), were tested with 14 Pt races in the greenhouse to postulate Lr genes at the seedling stage. Field experiments were also conducted to identify adult plant responses to leaf rust in Baoding in the 2017-2018 and 2018-2019 growing seasons and in Zhoukou in the 2018-2019 growing season. Thirteen Lr genes (Lr1, Lr18, Lr3ka, Lr15, Lr26, Lr20, Lr14a, Lr30, Lr2a, Lr11, Lr34, Lr46, and Lr68) either singly or in combination were found in 39 cultivars. Known Lr genes were not present in the remaining 11 cultivars. Lr1 and Lr46, each in 13 cultivars, and Lr34 in 12 cultivars were the most commonly identified resistance genes. Less frequently identified genes included Lr26 (five cultivars); Lr30 and Lr18 (each present in four cultivars); Lr15, Lr3ka, and Lr2a (each identified in three cultivars); and Lr68 (two cultivars). Evidence for the existence of Lr11, Lr20, and Lr14a (each in one cultivar) was also obtained. Twenty-one cultivars were found to have slow rusting resistance to leaf rust in the field tests. The results should be valuable for cultivar selection with combinations of effective Lr genes and used in breeding new cultivars with improved resistance to leaf rust in Ethiopia and China.
Collapse
Affiliation(s)
- Takele Weldu Gebrewahid
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
- College of Agriculture, Aksum University, Shire-Indaslassie, Tigray 314, Ethiopia
| | - Pei-Pei Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Zhan-Jun Yao
- College of Agronomy, Agricultural University of Hebei/North China Key Laboratory for Crop Germplasm Resources, Baoding, Hebei 071001, China
| | - Zai-Feng Li
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Da-Qun Liu
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
| |
Collapse
|
14
|
Luján Basile SM, Ramírez IA, Crescente JM, Conde MB, Demichelis M, Abbate P, Rogers WJ, Pontaroli AC, Helguera M, Vanzetti LS. Haplotype block analysis of an Argentinean hexaploid wheat collection and GWAS for yield components and adaptation. BMC PLANT BIOLOGY 2019; 19:553. [PMID: 31842779 PMCID: PMC6916457 DOI: 10.1186/s12870-019-2015-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/03/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Increasing wheat (Triticum aestivum L.) production is required to feed a growing human population. In order to accomplish this task a deeper understanding of the genetic structure of cultivated wheats and the detection of genomic regions significantly associated with the regulation of important agronomic traits are necessary steps. To better understand the genetic basis and relationships of adaptation and yield related traits, we used a collection of 102 Argentinean hexaploid wheat cultivars genotyped with the 35k SNPs array, grown from two to six years in three different locations. Based on SNPs data and gene-related molecular markers, we performed a haplotype block characterization of the germplasm and a genome-wide association study (GWAS). RESULTS The genetic structure of the collection revealed four subpopulations, reflecting the origin of the germplasm used by the main breeding programs in Argentina. The haplotype block characterization showed 1268 blocks of different sizes spread along the genome, including highly conserved regions like the 1BS chromosome arm where the 1BL/1RS wheat/rye translocation is located. Based on GWAS we identified ninety-seven chromosome regions associated with heading date, plant height, thousand grain weight, grain number per spike and fruiting efficiency at harvest (FEh). In particular FEh stands out as a promising trait to raise yield potential in Argentinean wheats; we detected fifteen haplotypes/markers associated with increased FEh values, eleven of which showed significant effects in all three evaluated locations. In the case of adaptation, the Ppd-D1 gene is consolidated as the main determinant of the life cycle of Argentinean wheat cultivars. CONCLUSION This work reveals the genetic structure of the Argentinean hexaploid wheat germplasm using a wide set of molecular markers anchored to the Ref Seq v1.0. Additionally GWAS detects chromosomal regions (haplotypes) associated with important yield and adaptation components that will allow improvement of these traits through marker-assisted selection.
Collapse
Affiliation(s)
- Silvana Marisol Luján Basile
- Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-INBIOTEC-CONICET, Facultad de Agronomía, UNCPBA., Av. República de Italia, Azul, 7300 Argentina
| | - Ignacio Abel Ramírez
- Unidad Integrada Balcarce Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata - Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología, Ruta 226, km 73.5, Balcarce, 24105 Argentina
| | - Juan Manuel Crescente
- Laboratorio de Biotecnología, EEA INTA Marcos Juárez, Grupo Biotecnología y Recursos Genéticos, Instituto Nacional de Tecnología Agropecuaria, Ruta 12 s/n, Marcos Juárez, 2580 Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)., Buenos Aires, Argentina
| | - Maria Belén Conde
- Laboratorio de Biotecnología, EEA INTA Marcos Juárez, Grupo Biotecnología y Recursos Genéticos, Instituto Nacional de Tecnología Agropecuaria, Ruta 12 s/n, Marcos Juárez, 2580 Argentina
| | - Melina Demichelis
- Laboratorio de Biotecnología, EEA INTA Marcos Juárez, Grupo Biotecnología y Recursos Genéticos, Instituto Nacional de Tecnología Agropecuaria, Ruta 12 s/n, Marcos Juárez, 2580 Argentina
| | - Pablo Abbate
- Unidad Integrada Balcarce Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata - Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología, Ruta 226, km 73.5, Balcarce, 24105 Argentina
| | - William John Rogers
- Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-INBIOTEC-CONICET, Facultad de Agronomía, UNCPBA., Av. República de Italia, Azul, 7300 Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)., Buenos Aires, Argentina
| | - Ana Clara Pontaroli
- Unidad Integrada Balcarce Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata - Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología, Ruta 226, km 73.5, Balcarce, 24105 Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)., Buenos Aires, Argentina
| | - Marcelo Helguera
- Laboratorio de Biotecnología, EEA INTA Marcos Juárez, Grupo Biotecnología y Recursos Genéticos, Instituto Nacional de Tecnología Agropecuaria, Ruta 12 s/n, Marcos Juárez, 2580 Argentina
| | - Leonardo Sebastián Vanzetti
- Laboratorio de Biotecnología, EEA INTA Marcos Juárez, Grupo Biotecnología y Recursos Genéticos, Instituto Nacional de Tecnología Agropecuaria, Ruta 12 s/n, Marcos Juárez, 2580 Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)., Buenos Aires, Argentina
| |
Collapse
|
15
|
Laroche A, Frick M, Graf RJ, Larsen J, Laurie JD. Pyramiding disease resistance genes in elite winter wheat germplasm for Western Canada. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cj.2019.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Identification of COS markers specific for Thinopyrum elongatum chromosomes preliminary revealed high level of macrosyntenic relationship between the wheat and Th. elongatum genomes. PLoS One 2018; 13:e0208840. [PMID: 30540828 PMCID: PMC6291125 DOI: 10.1371/journal.pone.0208840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/25/2018] [Indexed: 11/19/2022] Open
Abstract
Thinopyrum elongatum (Host) D.R. Dewey has served as an important gene source for wheat breeding improvement for many years. The exact characterization of its chromosomes is important for the detailed analysis of prebreeding materials produced with this species. The major aim of this study was to identify and characterize new molecular markers to be used for the rapid analysis of E genome chromatin in wheat background. Sixty of the 169 conserved orthologous set (COS) markers tested on diverse wheat-Th. elongatum disomic/ditelosomic addition lines were assigned to various Th. elongatum chromosomes and will be used for marker-assisted selection. The macrosyntenic relationship between the wheat and Th. elongatum genomes was investigated using EST sequences. Several rearrangements were revealed in homoeologous chromosome groups 2, 5, 6 and 7, while chromosomes 1 and 4 were conserved. Molecular cytogenetic and marker analysis showed the presence of rearranged chromosome involved in 6ES and 2EL arms in the 6E disomic addition line. The selected chromosome arm-specific COS markers will make it possible to identify gene introgressions in breeding programmes and will also be useful in the development of new chromosome-specific markers, evolutionary analysis and gene mapping.
Collapse
|
17
|
Molecular charactarization of wheat advanced lines for leaf rust resistant genes using SSR markers. Microb Pathog 2018; 123:348-352. [PMID: 30053601 DOI: 10.1016/j.micpath.2018.07.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 12/31/2022]
Abstract
A total of fifty seven wheat advanced lines were screened to detect the existence of leaf rust resistant genes (Lr9, Lr13, Lr19, Lr24, Lr26, Lr28, Lr32, Lr34, Lr35, Lr36, Lr37, Lr39 and Lr46) using thirteen SSR markers. Only four markers for Lr13, Lr32, Lr34 and Lr35 produced separate, reproducible bands which indicated the positive linkage of leaf rust resistance with these SSR markers. The highest frequency was observed for Lr32 (100%), as it was detected in all fifty seven lines, followed by Lr34 (89.4%) in 51 lines, Lr35 (87.7%) in 50 lines and Lr13 (31.5%) in 18 lines respectively. All the four resistant genes were identified in fifteen lines which is only 26% of the studied population. These results indicate that there are limited number of variant genes for leaf rust resistance in the studied wheat advanced lines. Therefore, strategies for arraying these genes to lengthen infection resistance are advised to eliminate wheat rust diseases. In addition, more reliable and capable markers are essential to be settled for marker assisted selection of these and other genes.
Collapse
|
18
|
Gebrewahid TW, Yao ZJ, Yan XC, Gao P, Li ZF. Identification of Leaf Rust Resistance Genes in Chinese Common Wheat Cultivars. PLANT DISEASE 2017; 101:1729-1737. [PMID: 30676921 DOI: 10.1094/pdis-02-17-0247-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Puccinia triticina Eriks. (Pt), the causal agent of wheat (Triticum aestivum L.) leaf rust, is the most widespread disease of common wheat worldwide. In the present study, 83 wheat cultivars from three provinces of China and 36 tester lines with known leaf rust resistance (Lr) genes were inoculated in the greenhouse with 18 Pt pathotypes to identify seedling effective Lr genes. Field tests were also performed to characterize slow leaf rusting responses at the adult plant growth stage in Baoding and Zhoukou in the 2014-15 and 2015-16 cropping seasons. Twelve Lr genes, viz. Lr1, Lr26, Lr3ka, Lr11, Lr10, Lr2b, Lr13, Lr21, Lr34, Lr37, Lr44, and Lr46 either singly or in combination were identified in 41 cultivars. Known Lr genes were not detected in the remaining 42 cultivars. The most commonly identified resistance genes were Lr26 (20 cultivars), Lr46 (18 cultivars), and Lr1 (eight cultivars). Less frequently detected genes included Lr13, Lr34, and Lr37 (each present in four cultivars), Lr10 (three cultivars), and Lr3ka and Lr44 (each in two cultivars). Evidence for the presence of genes Lr11, Lr2b, and Lr21 (each in one cultivar) was also obtained. Seventeen cultivars were found to have slow rusting resistance in both field growing seasons.
Collapse
Affiliation(s)
- Takele Weldu Gebrewahid
- College of Agronomy, Agricultural University of Hebei/North China Key Laboratory for Crop Germplasm Resources, Baoding 071001, China; and College of Agriculture, Aksum University, Ethiopia
| | - Zhan-Jun Yao
- College of Agronomy, Agricultural University of Hebei/North China Key Laboratory for Crop Germplasm Resources, Baoding 071001, China
| | - Xiao-Cui Yan
- College of Agronomy, Agricultural University of Hebei/North China Key Laboratory for Crop Germplasm Resources, Baoding 071001, China
| | - Pu Gao
- College of Plant Protection, Agricultural University of Hebei/Biological Control Center for Plant Disease and Pests of Hebei Province, Baoding 071001, China
| | - Zai-Feng Li
- College of Plant Protection, Agricultural University of Hebei/Biological Control Center for Plant Disease and Pests of Hebei Province, Baoding 071001, China
| |
Collapse
|
19
|
Dai Y, Duan Y, Liu H, Chi D, Cao W, Xue A, Gao Y, Fedak G, Chen J. Molecular Cytogenetic Characterization of two Triticum-Secale-Thinopyrum Trigeneric Hybrids Exhibiting Superior Resistance to Fusarium Head Blight, Leaf Rust, and Stem Rust Race Ug99. FRONTIERS IN PLANT SCIENCE 2017; 8:797. [PMID: 28555151 PMCID: PMC5430057 DOI: 10.3389/fpls.2017.00797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/27/2017] [Indexed: 05/29/2023]
Abstract
Fusarium head blight (FHB), leaf rust, and stem rust are the most destructive fungal diseases in current world wheat production. The diploid wheatgrass, Thinopyrum elongatum (Host) Dewey (2n = 2x = 14, EE) is an excellent source of disease resistance genes. Two new Triticum-Secale-Thinopyrum trigeneric hybrids were derived from a cross between a hexaploid triticale (X Triticosecale Wittmack, 2n = 6x = 42, AABBRR) and a hexaploid Triticum trititrigia (2n = 6x = 42, AABBEE), were produced and analyzed using genomic in situ hybridization and molecular markers. The results indicated that line RE21 contained 14 A-chromosomes, 14 B-chromosomes, three pairs of R-chromosomes (4R, 6R, and 7R), and four pairs of E-chromosomes (1E, 2E, 3E, and 5E) for a total chromosome number of 2n = 42. Line RE62 contained 14 A-chromosomes, 14 B-chromosomes, six pairs of R-chromosomes, and one pair of translocation chromosomes between chromosome 5R and 5E, for a total chromosome number of 2n = 42. At the seedling and adult growth stages under greenhouse conditions, line RE21 showed high levels of resistance to FHB, leaf rust, and stem rust race Ug99, and line RE62 was highly resistant to leaf rust and stem rust race Ug99. These two lines (RE21 and RE62) display superior disease resistance characteristics and have the potential to be utilized as valuable germplasm sources for future wheat improvement.
Collapse
Affiliation(s)
- Yi Dai
- College of Bioscience and Biotechnology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou UniversityYangzhou, China
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, OttawaON, Canada
| | - Yamei Duan
- College of Bioscience and Biotechnology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou UniversityYangzhou, China
| | - Huiping Liu
- College of Bioscience and Biotechnology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou UniversityYangzhou, China
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, OttawaON, Canada
| | - Dawn Chi
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, OttawaON, Canada
| | - Wenguang Cao
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, OttawaON, Canada
| | - Allen Xue
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, OttawaON, Canada
| | - Yong Gao
- College of Bioscience and Biotechnology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou UniversityYangzhou, China
- Jiangsu Key Laboratories of Crop Genetics and Physiology, Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, China
| | - George Fedak
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, OttawaON, Canada
| | - Jianmin Chen
- College of Bioscience and Biotechnology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou UniversityYangzhou, China
- Jiangsu Key Laboratories of Crop Genetics and Physiology, Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, China
| |
Collapse
|
20
|
Sibikeev SN, Badaeva ED, Gultyaeva EI, Druzhin AE, Shishkina AA, Dragovich AY, Kroupin PY, Karlov GI, Khuat TM, Divashuk MG. Comparative analysis of Agropyron intermedium (Host) Beauv 6Agi and 6Agi2 chromosomes in bread wheat cultivars and lines with wheat–wheatgrass substitutions. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417030115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Sadeghabad AA, Dadkhodaie A, Heidari B, Razi H, Mostowfizadeh-Ghalamfarsa R. Microsatellite markers for the Triticum timopheevi-derived leaf rust resistance gene Lr18 on wheat 5BL chromosome. BREEDING SCIENCE 2017; 67:129-134. [PMID: 28588389 PMCID: PMC5445969 DOI: 10.1270/jsbbs.16148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/07/2016] [Indexed: 06/07/2023]
Abstract
Leaf rust, caused by Puccinia triticina, is a common wheat disease worldwide. Developing resistant cultivars through deploying new or pyramiding resistance genes in a suitable line, is the most effective approach to control this disease. However, to stack genes in a genotype, efficient and reliable markers are required. In the present study, F2 plants and their corresponding F3 families from a cross between the resistant line; Thatcher (Tc) Lr18, and the susceptible cultivar 'Boolani' were used to map rust resistance gene, Lr18 using SSR markers on chromosome 5BL of hexaploid wheat. The P. triticina pathotype no 15 was used to inoculate plants. Out of 20 primers tested, eight showed polymorphism between the two parents and were subsequently genotyped in the entire F2 population. The markers Xgpw7425 and Xwmc75 flanked the locus at a distance of 0.3 and 1.2 cM, respectively. Analysis of 81 genotypes from different backgrounds with these two markers confirmed their usefulness in screening absence or presence of Lr18. Therefore, these markers can be used for gene postulation and marker-assisted selection (MAS) of this gene in wheat breeding programs in future.
Collapse
Affiliation(s)
- Ali Aliakbari Sadeghabad
- Department of Crop Production and Plant Breeding, School of Agriculture, Shiraz University,
Shiraz,
Iran
| | - Ali Dadkhodaie
- Department of Crop Production and Plant Breeding, School of Agriculture, Shiraz University,
Shiraz,
Iran
| | - Bahram Heidari
- Department of Crop Production and Plant Breeding, School of Agriculture, Shiraz University,
Shiraz,
Iran
| | - Hooman Razi
- Department of Crop Production and Plant Breeding, School of Agriculture, Shiraz University,
Shiraz,
Iran
| | | |
Collapse
|
22
|
Kruppa K, Türkösi E, Mayer M, Tóth V, Vida G, Szakács É, Molnár-Láng M. McGISH identification and phenotypic description of leaf rust and yellow rust resistant partial amphiploids originating from a wheat × Thinopyrum synthetic hybrid cross. J Appl Genet 2016; 57:427-437. [PMID: 26922334 PMCID: PMC5061834 DOI: 10.1007/s13353-016-0343-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/15/2016] [Indexed: 11/28/2022]
Abstract
A Thinopyrum intermedium × Thinopyrum ponticum synthetic hybrid wheatgrass is an excellent source of leaf and stem rust resistance produced by N.V.Tsitsin. Wheat line Mv9kr1 was crossed with this hybrid (Agropyron glael) in Hungary in order to transfer its advantageous agronomic traits into wheat. As the wheat parent was susceptible to leaf rust, the transfer of resistance was easily recognizable in the progenies. Three different partial amphiploid lines with leaf rust resistance were selected from the wheat/Thinopyrum hybrid derivatives by multicolour genomic in situ hybridization. Chromosome counting on the partial amphiploids revealed 58 chromosomes (18 wheatgrass) in line 194, 56 (14 wheatgrass) in line 195 and 54 (12 wheatgrass) in line 196. The wheat chromosomes present in these lines were identified and the wheatgrass chromosomes were characterized by fluorescence in situ hybridization using the repetitive DNA probes Afa-family, pSc119.2 and pTa71. The 3D wheat chromosome was missing from the lines. Molecular marker analysis showed the presence of the Lr24 leaf rust resistance gene in lines 195 and 196. The morphological traits were evaluated in the field during two consecutive seasons in two different locations.
Collapse
Affiliation(s)
- Klaudia Kruppa
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Edina Türkösi
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Marianna Mayer
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Viola Tóth
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Gyula Vida
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Éva Szakács
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Márta Molnár-Láng
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-2462, Martonvásár, Brunszvik u. 2, Hungary.
| |
Collapse
|
23
|
Goutam U, Kukreja S, Yadav R, Salaria N, Thakur K, Goyal AK. Recent trends and perspectives of molecular markers against fungal diseases in wheat. Front Microbiol 2015; 6:861. [PMID: 26379639 PMCID: PMC4548237 DOI: 10.3389/fmicb.2015.00861] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/06/2015] [Indexed: 01/24/2023] Open
Abstract
Wheat accounts for 19% of the total production of major cereal crops in the world. In view of ever increasing population and demand for global food production, there is an imperative need of 40-60% increase in wheat production to meet the requirement of developing world in coming 40 years. However, both biotic and abiotic stresses are major hurdles for attaining the goal. Among the most important diseases in wheat, fungal diseases pose serious threat for widening the gap between actual and attainable yield. Fungal disease management, mainly, depends on the pathogen detection, genetic and pathological variability in population, development of resistant cultivars and deployment of effective resistant genes in different epidemiological regions. Wheat protection and breeding of resistant cultivars using conventional methods are time-consuming, intricate and slow processes. Molecular markers offer an excellent alternative in development of improved disease resistant cultivars that would lead to increase in crop yield. They are employed for tagging the important disease resistance genes and provide valuable assistance in increasing selection efficiency for valuable traits via marker assisted selection (MAS). Plant breeding strategies with known molecular markers for resistance and functional genomics enable a breeder for developing resistant cultivars of wheat against different fungal diseases.
Collapse
Affiliation(s)
- Umesh Goutam
- Department of Biotechnology, Lovely Professional University, PhagwaraPunjab, India
| | - Sarvjeet Kukreja
- Department of Biotechnology, Lovely Professional University, PhagwaraPunjab, India
| | - Rakesh Yadav
- Department of Bio and Nano technology, Guru Jambheshwar University of Science and TechnologyHisar, India
| | - Neha Salaria
- Department of Biotechnology, Lovely Professional University, PhagwaraPunjab, India
| | - Kajal Thakur
- Department of Biotechnology, Lovely Professional University, PhagwaraPunjab, India
| | - Aakash K. Goyal
- International Center for Agriculture Research in the Dry Areas (ICARDA)Morocco
| |
Collapse
|
24
|
Analysis of the Thinopyrum elongatum Transcriptome under Water Deficit Stress. Int J Genomics 2015; 2015:265791. [PMID: 25722968 PMCID: PMC4334436 DOI: 10.1155/2015/265791] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/13/2015] [Accepted: 01/20/2015] [Indexed: 12/01/2022] Open
Abstract
The transcriptome of Thinopyrum elongatum under water deficit stress was analyzed using RNA-Seq technology. The results showed that genes involved in processes of amplification of stress signaling, reductions in oxidative damage, creation of protectants, and roots development were expressed differently, which played an important role in the response to water deficit. The Th. elongatum transcriptome research highlights the activation of a large set of water deficit-related genes in this species and provides a valuable resource for future functional analysis of candidate genes in the water deficit stress response.
Collapse
|
25
|
Imbaby IA, Mahmoud MA, Hassan MEM, Abd-El-Aziz ARM. Identification of leaf rust resistance genes in selected egyptian wheat cultivars by molecular markers. ScientificWorldJournal 2014; 2014:574285. [PMID: 24511291 PMCID: PMC3913395 DOI: 10.1155/2014/574285] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 11/21/2013] [Indexed: 11/17/2022] Open
Abstract
Leaf rust, caused by Puccinia triticina Eriks., is a common and widespread disease of wheat (Triticum aestivum L.) in Egypt. Host resistance is the most economical, effective, and ecologically sustainable method of controlling the disease. Molecular markers help to determine leaf rust resistance genes (Lr genes). The objective of this study was to identify Lr genes in fifteen wheat cultivars from Egypt. Ten genes, Lr13, Lr19, Lr24, Lr26, Lr34, Lr35 Lr36, Lr37, Lr39, and Lr46, were detected in fifteen wheat cultivars using various molecular markers. The most frequently occurring genes in fifteen Egyptian wheat cultivars were Lr13, Lr24, Lr34, and Lr36 identified in all the cultivars used, followed by Lr26 and Lr35 (93%), Lr39 (66%), Lr37 (53%), and Lr46 (26.6%) of the cultivars, and finally Lr19 was present in 33.3% of cultivars. It is concluded that there was a good variation in Lr genes carried by wheat cultivars commercially grown in Egypt. Therefore, strategies for deploying resistance genes to prolong effective disease resistance are suggested to control wheat leaf rust disease.
Collapse
Affiliation(s)
- I. A. Imbaby
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - M. A. Mahmoud
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - M. E. M. Hassan
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - A. R. M. Abd-El-Aziz
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 1145, Saudi Arabia
| |
Collapse
|
26
|
Vanzetti LS, Yerkovich N, Chialvo E, Lombardo L, Vaschetto L, Helguera M. Genetic structure of Argentinean hexaploid wheat germplasm. Genet Mol Biol 2013; 36:391-9. [PMID: 24130447 PMCID: PMC3795179 DOI: 10.1590/s1415-47572013000300014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/15/2013] [Indexed: 11/22/2022] Open
Abstract
The identification of genetically homogeneous groups of individuals is an ancient issue in population genetics and in the case of crops like wheat, it can be valuable information for breeding programs, genetic mapping and germplasm resources. In this work we determined the genetic structure of a set of 102 Argentinean bread wheat (Triticum aestivum L.) elite cultivars using 38 biochemical and molecular markers (functional, closely linked to genes and neutral ones) distributed throughout 18 wheat chromosomes. Genetic relationships among these lines were examined using model-based clustering methods. In the analysis three subpopulations were identified which correspond largely to the origin of the germplasm used by the main breeding programs in Argentina.
Collapse
Affiliation(s)
- Leonardo S Vanzetti
- Grupo Biotecnología y Recursos Genéticos, INTA EEA Marcos Juárez, Marcos Juárez, Córdoba, Argentina . ; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
27
|
ZHANG N, YANG WX, LIU DQ. Identification and Molecular Tagging of Leaf Rust Resistance Gene (Lr24) in Wheat. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/s1671-2927(11)60190-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
28
|
Singh A, Pallavi JK, Gupta P, Prabhu KV. Identification of microsatellite markers linked to leaf rust resistance gene Lr25 in wheat. J Appl Genet 2011; 53:19-25. [PMID: 22033869 DOI: 10.1007/s13353-011-0070-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 09/17/2011] [Accepted: 09/27/2011] [Indexed: 11/29/2022]
Abstract
The leaf rust resistance gene Lr25, transferred from Secale cereale L. into wheat and located on chromosome 4B, imparts resistance to all pathotypes of leaf rust in South-East Asia. In an F(2)-derived F(3) population, created by crossing TcLr25 that carries the gene Lr25 for leaf rust resistance with leaf rust-susceptible parent Agra Local, three microsatellite markers located on the long arm of chromosome 4B were found to be linked to the Lr25 locus. The donor parent TcLr25 is a near-isogenic line derived from the variety Thatcher. The most virulent pathotype of leaf rust in the South-East Asian region, designated 77-5 (121R63-1), was used for challenging the population under artificially controlled conditions. The marker Xgwm251 behaved as a co-dominant marker placed 3.8 cM away from the Lr25 locus on 4BL. Two null allele markers, Xgwm538 and Xgwm6, in the same linkage group were located at a distance of 3.8 cM and 16.2 cM from the Lr25 locus, respectively. The genetic sequence of Xgwm251, Lr25, Xgwm538, and Xgwm6 covered a total length of 20 cM on 4BL. The markers were validated for their specificity to Lr25 resistance in a set of 43 wheat genetic stocks representing 43 other Lr genes.
Collapse
Affiliation(s)
- Anupam Singh
- National Phytotron Facility, Indian Agricultural Research Institute, New Delhi, India
| | | | | | | |
Collapse
|
29
|
Paux E, Sourdille P, Mackay I, Feuillet C. Sequence-based marker development in wheat: advances and applications to breeding. Biotechnol Adv 2011; 30:1071-88. [PMID: 21989506 DOI: 10.1016/j.biotechadv.2011.09.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 08/24/2011] [Accepted: 09/25/2011] [Indexed: 01/04/2023]
Abstract
In the past two decades, the wheat community has made remarkable progress in developing molecular resources for breeding. A wide variety of molecular tools has been established to accelerate genetic and physical mapping for facilitating the efficient identification of molecular markers linked to genes and QTL of agronomic interest. Already, wheat breeders are benefiting from a wide range of techniques to follow the introgression of the most favorable alleles in elite material and develop improved varieties. Breeders soon will be able to take advantage of new technological developments based on Next Generation Sequencing. In this paper, we review the molecular toolbox available to wheat scientists and breeders for performing fundamental genomic studies and breeding. Special emphasis is given on the production and detection of single nucleotide polymorphisms (SNPs) that should enable a step change in saturating the wheat genome for more efficient genetic studies and for the development of new selection methods. The perspectives offered by the access to an ordered full genome sequence for further marker development and enhanced precision breeding is also discussed. Finally, we discuss the advantages and limitations of marker-assisted selection for supporting wheat improvement.
Collapse
Affiliation(s)
- Etienne Paux
- INRA-UBP 1095, Genetics Diversity and Ecophysiology of Cereals, 234 Avenue du Brézet, Clermont-Ferrand, France
| | | | | | | |
Collapse
|
30
|
Sela H, Loutre C, Keller B, Schulman A, Nevo E, Korol A, Fahima T. Rapid linkage disequilibrium decay in the Lr10 gene in wild emmer wheat (Triticum dicoccoides) populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:175-187. [PMID: 20859611 DOI: 10.1007/s00122-010-1434-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 08/25/2010] [Indexed: 05/29/2023]
Abstract
INTRODUCTION Recombination is a key evolutionary factor enhancing diversity. However, the effect of recombination on diversity in inbreeding species is expected to be low. To estimate this effect, recombination and diversity patterns of Lr10 gene were studied in natural populations of the inbreeder species, wild emmer wheat (Triticum dicoccoides). Wild emmer wheat is the progenitor of most cultivated wheats and it harbors rich genetic resources for disease resistance. Lr10 is a leaf rust resistance gene encoding three domains: a coiled-coil, nucleotide-binding site, and leucine-rich repeat (CC-NBS-LRR). RESULTS Lr10 was sequenced from 58 accessions representing 12 diverse habitats in Israel. Diversity analysis revealed a high rate of synonymous and non-synonymous substitutions (d (S) = 0.029, d (N) = 0.018, respectively) in the NBS-LRR domains. Moreover, in contrast to other resistance genes, in Lr10 the CC domain was more diverse than the NBS-LRR domains (d (S) = 0.069 vs. 0.029, d (N) = 0.094 vs. 0.018) and was subjected to positive selection in some of the populations. Seventeen recombination events were detected between haplotypes, especially in the CC domain. Linkage disequilibrium (LD) analysis has shown a rapid decay from r (2) = 0.5 to r (2) = 0.1 within a 2-kb span. CONCLUSION These results suggest that recombination is a diversifying force for the R-gene, Lr10, in the selfing species T. dicoccoides. This is the first report of a short-range LD decay in wild emmer wheat.
Collapse
Affiliation(s)
- Hanan Sela
- Department of Evolutionary and Environmental Biology, Institute of Evolution, Faculty of Natural Sciences, University of Haifa, Mt. Carmel, Haifa, 31905, Israel
| | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Loutre C, Wicker T, Travella S, Galli P, Scofield S, Fahima T, Feuillet C, Keller B. Two different CC-NBS-LRR genes are required for Lr10-mediated leaf rust resistance in tetraploid and hexaploid wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:1043-54. [PMID: 19769576 DOI: 10.1111/j.1365-313x.2009.04024.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Comparative study of disease resistance genes in crop plants and their relatives provides insight on resistance gene function, evolution and diversity. Here, we studied the allelic diversity of the Lr10 leaf rust resistance gene, a CC-NBS-LRR coding gene originally isolated from hexaploid wheat, in 20 diploid and tetraploid wheat lines. Besides a gene in the tetraploid wheat variety 'Altar' that is identical to the hexaploid wheat Lr10, two additional, functional resistance alleles showing sequence diversity were identified by virus-induced gene silencing in tetraploid wheat lines. In contrast to most described NBS-LRR proteins, the N-terminal CC domain of LR10 was found to be under strong diversifying selection. A second NBS-LRR gene at the Lr10 locus, RGA2, was shown through silencing to be essential for Lr10 function. Interestingly, RGA2 showed much less sequence diversity than Lr10. These data demonstrate allelic diversity of functional genes at the Lr10 locus in tetraploid wheat, and these new genes can now be analyzed for agronomic relevance. Lr10-based resistance is highly unusual both in its dependence on two, only distantly, related CC-NBS-LRR proteins, as well as in the pattern of diversifying selection in the N-terminal domain. This indicates a new and complex molecular mechanism of pathogen detection and signal transduction.
Collapse
Affiliation(s)
- Caroline Loutre
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Hanemann A, Schweizer GF, Cossu R, Wicker T, Röder MS. Fine mapping, physical mapping and development of diagnostic markers for the Rrs2 scald resistance gene in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:1507-22. [PMID: 19789848 DOI: 10.1007/s00122-009-1152-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 08/30/2009] [Indexed: 05/08/2023]
Abstract
The Rrs2 gene confers resistance to the fungal pathogen Rhynchosporium secalis which causes leaf scald, a major barley disease. The Rrs2 gene was fine mapped to an interval of 0.08 cM between markers 693M6_6 and P1D23R on the distal end of barley chromosome 7HS using an Atlas (resistant) x Steffi (susceptible) mapping population of 9,179 F(2)-plants. The establishment of a physical map of the Rrs2 locus led to the discovery that Rrs2 is located in an area of suppressed recombination within this mapping population. The analysis of 58 barley genotypes revealed a large linkage block at the Rrs2 locus extending over several hundred kb which is present only in Rrs2 carrying cultivars. Due to the lack of recombination in the mapping population and the presence of a Rrs2-specific linkage block, we assume a local chromosomal rearrangement (alien introgression or inversion) in Rrs2 carrying varieties. The variety analysis led to the discovery of eight SNPs which were diagnostic for the Rrs2 phenotype. Based on these SNPs diagnostic molecular markers (CAPS and pyrosequencing markers) were developed which are highly useful for marker-assisted selection in resistance gene pyramiding programmes for Rhynchosporium secalis resistance in barley.
Collapse
Affiliation(s)
- Anja Hanemann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466, Gatersleben, Germany.
| | | | | | | | | |
Collapse
|
34
|
Cloutier S, McCallum BD, Loutre C, Banks TW, Wicker T, Feuillet C, Keller B, Jordan MC. Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. PLANT MOLECULAR BIOLOGY 2007; 65:93-106. [PMID: 17611798 DOI: 10.1007/s11103-007-9201-8] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 06/08/2007] [Indexed: 05/16/2023]
Abstract
In hexaploid wheat, leaf rust resistance gene Lr1 is located at the distal end of the long arm of chromosome 5D. To clone this gene, an F(1)-derived doubled haploid population and a recombinant inbred line population from a cross between the susceptible cultivar AC Karma and the resistant line 87E03-S2B1 were phenotyped for resistance to Puccinia triticina race 1-1 BBB that carries the avirulence gene Avr1. A high-resolution genetic map of the Lr1 locus was constructed using microsatellite, resistance gene analog (RGA), BAC end (BE), and low pass (LP) markers. A physical map of the locus was constructed by screening a hexaploid wheat BAC library from cultivar Glenlea that is known to have Lr1. The locus comprised three RGAs from a gene family related to RFLP marker Xpsr567. Markers specific to each paralog were developed. Lr1 segregated with RGA567-5 while recombinants were observed for the other two RGAs. Transformation of the susceptible cultivar Fielder with RGA567-5 demonstrated that it corresponds to the Lr1 resistance gene. In addition, the candidate gene was also confirmed by virus-induced gene silencing. Twenty T (1) lines from resistant transgenic line T (0)-938 segregated for resistance, partial resistance and susceptibility to Avr1 corresponding to a 1:2:1 ratio for a single hemizygous insertion. Transgene presence and expression correlated with the phenotype. The resistance phenotype expressed by Lr1 seemed therefore to be dependant on the zygosity status. T (3)-938 sister lines with and without the transgene were further tested with 16 virulent and avirulent rust isolates. Rust reactions were all as expected for Lr1 thereby providing additional evidence toward the Lr1 identity of RGA567-5. Sequence analysis of Lr1 indicated that it is not related to the previously isolated Lr10 and Lr21 genes and unlike these genes, it is part of a large gene family.
Collapse
Affiliation(s)
- Sylvie Cloutier
- Cereal Research Centre, Agriculture and Agri-Food Canada, R3T 2M9, Winnipeg, MB, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Gajnullin NR, Lapochkina IF, Zhemchuzhina AI, Kiseleva MI, Kolomiets TM, Kovalenko ED. Phytopathological and molecular genetic identification of leaf rust resistance genes in common wheat accessions with alien genetic material. RUSS J GENET+ 2007. [DOI: 10.1134/s1022795407080078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Gupta SK, Charpe A, Prabhu KV, Haque QMR. Identification and validation of molecular markers linked to the leaf rust resistance gene Lr19 in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 113:1027-36. [PMID: 16896713 DOI: 10.1007/s00122-006-0362-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2005] [Accepted: 07/04/2006] [Indexed: 05/11/2023]
Abstract
A leaf rust resistance gene Lr19 on the chromosome 7DL of wheat derived from Agropyron elongatum was tagged with random amplified polymorphic DNA (RAPD) and microsatellite markers. The F(2) population of 340 plants derived from a cross between the leaf rust resistant near-isogenic line (NIL) of Thatcher (Tc + Lr19) and leaf rust susceptible line Agra Local that segregated for dominant monogenic leaf rust resistance was utilized for generating the mapping population. The molecular markers were mapped in the F(2) derived F(3) homozygous population of 140 seedlings. Sixteen RAPD markers were identified as linked to the alien gene Lr19 among which eight were in a coupling phase linkage. Twelve RAPD markers co-segregated with Lr19 locus. Nine microsatellite markers located on the long arm of chromosome 7D were also mapped as linked to the gene Lr19, including 7 markers which co-segregated with Lr19 locus, thus generating a saturated region carrying 25 molecular markers linked to the gene Lr19 within 10.2 +/- 0.062 cM on either side of the locus. Two RAPD markers S265(512) and S253(737) which flanked the locus Lr19 were converted to sequence characterized amplified region markers SCS265(512) and SCS253(736), respectively. The marker SCS265(512) was linked with Lr19 in a coupling phase and the marker SCS253(736) was linked in a repulsion phase, which when used together mimicked one co-dominant marker capable of distinguishing the heterozygous resistant seedlings from the homozygous resistant. The molecular markers were validated on NILs mostly in Thatcher background isogenic for 44 different Lr genes belonging to both native and alien origin. The validation for polymorphism in common leaf rust susceptible cultivars also confirmed the utility of these tightly linked markers to the gene Lr19 in marker-assisted selection.
Collapse
Affiliation(s)
- Sudhir Kumar Gupta
- National Phytotron Facility, Indian Agricultural Research Institute, New Delhi 110012, India
| | | | | | | |
Collapse
|
37
|
Tyryshkin LG, Gul’tyaeva EI, Alpat’eva NV, Kramer I. Identification of effective leaf-rust resistance genes in wheat (Triticum aestivum) using STS markers. RUSS J GENET+ 2006. [DOI: 10.1134/s1022795406060111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Urbanovich OY, Malyshev SV, Dolmatovich TV, Kartel NA. Identification of leaf rust resistance genes in wheat (Triticum aestivum L.) cultivars using molecular markers. RUSS J GENET+ 2006. [DOI: 10.1134/s1022795406050127] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Gupta SK, Charpe A, Koul S, Prabhu KV, Haq QMR. Development and validation of molecular markers linked to an Aegilops umbellulata-derived leaf-rust-resistance gene, Lr9, for marker-assisted selection in bread wheat. Genome 2006; 48:823-30. [PMID: 16391688 DOI: 10.1139/g05-051] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An Aegilops umbellulata-derived leaf-rust-resistance gene, Lr9, was tagged with 3 random amplified polymorphic DNA (RAPD) markers, which mapped within 1.8 cM of gene Lr9 located on chromosome 6BL of wheat. The markers were identified in an F2 population segregating for leaf-rust resistance, which was generated from a cross between 2 near-isogenic lines that differed in the alien gene Lr9 in a widely adopted agronomic background of cultivar 'HD 2329'. Disease phenotyping was done in controlled environmental conditions by inoculating the population with the most virulent pathotype, 121 R63-1 of Puccinia triticina. One RAPD marker, S5550, located at a distance of 0.8+/-0.008 cM from the Lr9 locus, was converted to sequence-characterized amplified region (SCAR) marker SCS5550. The SCAR marker was validated for its specificity to gene Lr9 against 44 of the 50 known Lr genes and 10 wheat cultivars possessing the gene Lr9. Marker SCS5550 was used with another SCAR marker, SCS73719, previously identified as being linked to gene Lr24 on a segregating F2 population to select for genes Lr9 and Lr24, respectively, demonstrating the utility of the 2 markers in marker-assisted gene pyramiding for leaf-rust resistance in wheat.
Collapse
Affiliation(s)
- Sudhir Kumar Gupta
- National Phytotron Facility, Indian Agricultural Research Institute, New Delhi, India
| | | | | | | | | |
Collapse
|
40
|
Fedak G, Han F. Characterization of derivatives from wheat-Thinopyrum wide crosses. Cytogenet Genome Res 2005; 109:360-7. [PMID: 15753597 DOI: 10.1159/000082420] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Accepted: 05/10/2004] [Indexed: 11/19/2022] Open
Abstract
Partial amphiploids are lines that contain 42 (38-42) wheat and 14 (14-18) alien chromosomes. They are derived by backcrossing wheat onto hybrids between wheat and either Thinopyrum intermedium (6x) or Th. ponticum (10x). GISH analysis has shown that, with possibly one exception, the alien genomes (chromosome sets) in partial amphiploids are found to be hybrids i.e. composed of chromosomes from more than one alien genome. The individual partial amphiploids are meiotically stable and nearly perfectly fertile, but hybrids between different lines were characterized by varying numbers of unpaired chromosomes and consequently variable degrees of sterility. Translocated chromosomes involving different Thinopyrum genomes or Thinopyrum and wheat genomes were found in partial amphiploids and consequently in the addition lines derived from them. Partial amphiploids have proven to be an excellent tertiary gene pool for wheat improvement, containing resistance to biotic stresses not present in wheat itself. Resistance to Barley Yellow Dwarf Virus (BYDV) and Wheat Streak Mosaic Virus (WSMV) have been found in partial amphiploids and addition lines derived from both Th. intermedium and Th. ponticum. Excellent resistance to Fusarium head blight has been found on a Th. intermedium chromosome that had substituted for chromosome 2D in wheat. Genes for resistance to leaf rust and stem rust have already been incorporated into wheat and tagged with molecular markers.
Collapse
Affiliation(s)
- G Fedak
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, Canada.
| | | |
Collapse
|
41
|
Mago R, Bariana HS, Dundas IS, Spielmeyer W, Lawrence GJ, Pryor AJ, Ellis JG. Development of PCR markers for the selection of wheat stem rust resistance genes Sr24 and Sr26 in diverse wheat germplasm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:496-504. [PMID: 15918008 DOI: 10.1007/s00122-005-2039-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Accepted: 04/12/2005] [Indexed: 05/02/2023]
Abstract
The use of major resistance genes is the most cost-effective strategy for preventing stem rust epidemics in Australian wheat crops. The long-term success of this strategy is dependent on combining resistance genes that are effective against all predominant races of the pathogen, a task greatly assisted by the use of molecular markers linked to individual resistance genes. The wheat stem rust resistance genes Sr24 and Sr26 (derived from Agropyron elongatum) and SrR and Sr31 (derived from rye) are available in wheat as segments of alien chromosome translocated to wheat chromosomes. Each of these genes provides resistance to all races of wheat stem rust currently found in Australia . We have developed robust PCR markers for Sr24 and Sr26 (this study) and SrR and Sr31 (previously reported) that are applicable across a wide selection of Australian wheat germplasm. Wheat lines have recently become available in which the size of the alien segments containing Sr26, SrR and Sr31 has been reduced. Newly developed PCR-markers can be used to identify the presence of the shorter alien segment in all cases. Assuming that these genes have different gene-for-gene specificities and that the wheat industry will discourage the use of varieties carrying single genes only, the newly developed PCR markers will facilitate the incorporation of two or more of the genes Sr24, Sr26, SrR and Sr31 into wheat lines and have the potential to provide durable control to stem rust in Australia and elsewhere.
Collapse
Affiliation(s)
- R Mago
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia.
| | | | | | | | | | | | | |
Collapse
|
42
|
Ling HQ, Qiu J, Singh RP, Keller B. Identification and genetic characterization of an Aegilops tauschii ortholog of the wheat leaf rust disease resistance gene Lr1. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 109:1133-8. [PMID: 15258740 DOI: 10.1007/s00122-004-1734-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Aegilops tauschii (goat grass) is the progenitor of the D genome in hexaploid bread wheat. We have screened more than 200 Ae. tauschii accessions for resistance against leaf rust (Puccinia triticina) isolates,which are avirulent on the leaf rust resistance gene Lrl. Approximately 3.5% of the Ae. tauschii accessions displayed the same low infection type as the tester line Thatcher Lrl. The accession Tr.t. 213, which showed resistance after artificial infection with Lrl isolates both in Mexico and in Switzerland, was chosen for further analysis. Genetic analysis showed that the resistance in this accession is controlled by a single dominant gene,which mapped at the same chromosomal position as Lrl in wheat. It was delimited in a 1.3-cM region between the restriction fragment length polymorphism (RFLP) markers ABC718 and PSR567 on chromosome 5DL of Ae.tauschii. The gene was more tightly linked to PSR567(0.47 cM) than to ABC718 (0.79 cM). These results indicate that the resistance gene in Ae. tauschii accession Tr.t. 213 is an ortholog of the leaf rust resistance gene Lrlof bread wheat, suggesting that Lrl originally evolved in diploid goat grass and was introgressed into the wheat D genome during or after domestication of hexaploidwheat. Compared to hexaploid wheat, higher marker polymorphism and recombination frequencies were ob-served in the region of the Lrl ortholog in Ae. tauschii. The identification of LrlAe, the orthologous gene of wheatLrl, in Ae. tauschii will allow map-based cloning of Lrlfrom this genetically simpler, diploid genome.
Collapse
Affiliation(s)
- Hong-Qing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing, China.
| | | | | | | |
Collapse
|
43
|
Li H, Chen Q, Conner RL, Guo B, Zhang Y, Graf RJ, Laroche A, Jia X, Liu G, Chu C. Molecular characterization of a wheat--Thinopyrum ponticum partial amphiploid and its derivatives for resistance to leaf rust. Genome 2004; 46:906-13. [PMID: 14608407 DOI: 10.1139/g03-053] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Leaf rust (caused by Puccinia triticina Eriks.) occurs annually in most wheat-growing areas of the world. Thinopyrum ponticum (Podp.) Z.-W. Liu & R.-C. Wang has provided several leaf rust resistance genes to protect wheat from this fungal disease. Three chromosome substitution lines, Ji806, Ji807, and Ji859, and two chromosome addition lines, Ji791 and Ji924, with a winter growing habit were developed from crosses between wheat (Triticum aestivum L. em Thell.) and the wheat - Th. ponticum partial amphiploid line 693. These lines were resistant to leaf rust isolates from China. Sequence-tagged site (STS) analysis with the J09-STS marker, which is linked to the gene Lr24, revealed that the partial amphiploid line 693 and all of the substitution and addition lines carried gene Lr24. Genomic in situ hybridization (GISH) analysis was carried out on chromosome preparations using total genomic DNA from Pseudoroegneria strigosa (M. Bieb) A. Löve (St genome, 2n = 14) as a probe in the presence of total genomic DNA from T. aestivum 'Chinese Spring' wheat (ABD genomes, 2n = 42). The GISH analysis demonstrated that these lines had a pair of chromosomes displaying the typical pattern of a Js genome chromosome. This indicates that the chromosome that carries gene Lr24 belonged to the Js genome of Th. ponticum. In addition to 40 wheat chromosomes, eight Js and eight J genome chromosomes were also differentiated by GISH in the partial amphiploid line 693. Since most sources of Lr24 have a red grain color, the white-colored seeds in all of these substitution and addition lines, together with high protein content in some of the lines, make them very useful as a donor source for winter wheat breeding programs.
Collapse
Affiliation(s)
- Hongjie Li
- The Key Laboratory of Photosynthesis and Environmental Molecular Physiology Institute of Botany, Chinese Academy of Sciences, Beijing, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhang Z, Xu J, Xu Q, Larkin P, Xin Z. Development of novel PCR markers linked to the BYDV resistance gene Bdv2 useful in wheat for marker-assisted selection. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 109:433-439. [PMID: 15067508 DOI: 10.1007/s00122-004-1649-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Accepted: 02/23/2004] [Indexed: 05/24/2023]
Abstract
The distal segment of the long arm of the Thinopyrum intermedium chromosome 7Ai1 carries the barley yellow dwarf virus (BYDV) resistance gene Bdv2. This segment was transferred to the distal region of the long arm of wheat chromosome 7D in the Yw series of translocation lines by using the ph1b mutant to induce homoeologous pairing. To transfer Bdv2 to commercial varieties, we developed two resistance gene-analog polymorphism (RGAP) markers, Tgp-1(350) and Tgp-2(210), and one randomly amplified polymorphic DNA (RAPD) marker, OPD04(1300). The diagnostic fragments of the RGAP marker Tgp-1(350) and the RAPD marker OPD04(1300) were cloned, sequenced and converted into sequence-characterized amplified region (SCAR) markers, named SC-gp1 and SC-D04, respectively. SC-gp1 and SC-D04 were validated based on available translocation lines and segregating F(2) individuals. Our results indicated that the SCAR markers co-segregated with the BYDV resistance associated with Bdv2. Therefore, they can be used as a low-cost, high-throughput alternative to conventional phenotypic screening in wheat-breeding programs exploiting Bdv2. The marker-assisted selection for BYDV resistance was successfully performed in a wheat-breeding program.
Collapse
Affiliation(s)
- Zengyan Zhang
- Key Laboratory of Crop Genetics and Breeding of Ministry of Agriculture, Institute of Crop Breeding and Cultivation, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | | | | | | | | |
Collapse
|
45
|
Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci U S A 2003; 100:15253-8. [PMID: 14645721 PMCID: PMC299976 DOI: 10.1073/pnas.2435133100] [Citation(s) in RCA: 282] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Accepted: 10/07/2003] [Indexed: 11/18/2022] Open
Abstract
More than 50 leaf rust resistance (Lr) genes against the fungal pathogen Puccinia triticina have been identified in the wheat gene pool, and a large number of them have been extensively used in breeding. Of the 50 Lr genes, all are known only from their phenotype and/or map position except for Lr21, which was cloned recently. For many years, the problems of molecular work in the large (1.6 x 10(10) bp), highly repetitive (80%), and hexaploid bread wheat (Triticum aestivum L.) genome have hampered map-based cloning. Here, we report the isolation of the Lr gene Lr10 from hexaploid wheat by using a combination of subgenome map-based cloning and haplotype studies in the genus Triticum. Lr10 is a single-copy gene on chromosome 1AS. It encodes a CC-NBS-LRR type of protein with an N-terminal domain, which is under diversifying selection. When overexpressed in transgenic wheat plants, Lr10 confers enhanced resistance to leaf rust. Lr10 has similarities to RPM1 in Arabidopsis thaliana and to resistance gene analogs in rice and barley, but is not closely related to other wheat Lr genes based on Southern analysis. We conclude that map-based cloning of genes of agronomic importance in hexaploid wheat is now feasible, opening perspectives for molecular bread wheat improvement trough transgenic strategies and diagnostic allele detection.
Collapse
Affiliation(s)
- Catherine Feuillet
- Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
46
|
William M, Singh RP, Huerta-Espino J, Islas SO, Hoisington D. Molecular marker mapping of leaf rust resistance gene lr46 and its association with stripe rust resistance gene yr29 in wheat. PHYTOPATHOLOGY 2003; 93:153-9. [PMID: 18943129 DOI: 10.1094/phyto.2003.93.2.153] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
ABSTRACT Leaf and stripe rusts, caused by Puccinia triticina and P. striiformis, respectively, are globally important fungal diseases of wheat that cause significant annual yield losses. A gene that confers slow rusting resistance to leaf rust, designated as Lr46, has recently been located on wheat chromosome 1B. The objectives of our study were to establish the precise genomic location of gene Lr46 using molecular approaches and to determine if there was an association of this locus with adult plant resistance to stripe rust. A population of 146 F(5) and F(6) lines produced from the cross of susceptible 'Avocet S' with resistant 'Pavon 76' was developed and classified for leaf rust and stripe rust severity for three seasons. Using patterns of segregation for the two diseases, we estimated that at least two genes with additive effects conferred resistance to leaf rust and three to four genes conferred resistance to stripe rust. Bulked segregant analysis and linkage mapping using amplified fragment length polymorphisms with the 'Avocet' x 'Pavon 76' population, F(3) progeny lines of a single chromosome recombinant line population from the cross 'Lalbahadur' x 'Lalbahadur (Pavon 1B)', and the International Triticeae Mapping Initiative population established the genomic location of Lr46 at the distal end of the long arm of wheat chromosome 1B. A gene that is closely linked to Lr46 and confers moderate levels of adult plant resistance to stripe rust is identified and designated as Yr29.
Collapse
|
47
|
Neu C, Stein N, Keller B. Genetic mapping of the Lr20-Pm1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat. Genome 2002; 45:737-44. [PMID: 12175077 DOI: 10.1139/g02-040] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Lr20-Sr15-Pm1 resistance locus in hexaploid wheat confers resistance to three different fungal wheat pathogens (leaf rust, stem rust, and powdery mildew). It was previously localized in the distal region of chromosome arm 7AL. As a first step towards the isolation of this complex locus, we performed molecular mapping of the Lr20 and Pm1 genes in three F2 populations. In two populations, a cluster of 8 and 12 markers, respectively, cosegregated with the resistance genes. In a third population based on a cross between a susceptible lr20 mutant and a resistant cultivar, all clustered markers were monomorphic. However, in this population the recombination frequency proximal to the Lr20 gene was up to 60 times higher, indicating that the complete genetic linkage of the clustered markers is not due to a close physical linkage of the probes but is caused by suppressed recombination. This was supported by the analysis of Triticum monococcum BAC clones where no physical linkage between cosegregating probes was observed. Suppressed recombination at the Lr20-Pm1 locus is likely the result of an alien introgression of chromatin from an unidentified wild relative species or is due to chromosomal rearrangements.
Collapse
Affiliation(s)
- Christina Neu
- Institute of Plant Biology, University of Zürich, Switzerland
| | | | | |
Collapse
|
48
|
Shao Y, Niu Y, Zhu L, Zhai W, Xu S, Wu L. Identification of an AFLP marker linked to the stripe rust resistance geneYr10 in wheat. ACTA ACUST UNITED AC 2001. [DOI: 10.1007/bf03187033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Guadagnuolo R, Bianchi DS, Felber F. Specific genetic markers for wheat, spelt, and four wild relatives: comparison of isozymes, RAPDs, and wheat microsatellites. Genome 2001. [DOI: 10.1139/g01-050] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three types of markersisozymes, RAPDs (random amplified polymorphic DNAs), and wheat microsatelliteswere tested on wheat, spelt, and four wild wheat relatives (Aegilops cylindrica, Elymus caninus, Hordeum marinum, and Agropyron junceum). The aim was to evaluate their capability to provide specific markers for differentiation of the cultivated and wild species. The markers were set up for subsequent detection of hybrids and introgression of wheat DNA into wild relatives. All markers allowed differentiation of the cultivated from the wild species. Wheat microsatellites were not amplified in all the wild relatives, whereas RAPDs and isozymes exhibited polymorphism for all species. The dendrograms obtained with RAPD and isozyme data separated Swiss wheat cultivars from those collected in Austria and England, while no difference was found between Swiss spelt and wheat. RAPD data provided a weak discrimination between English and Austrian E. caninus. The microsatellite-based dendrogram discriminated populations of Ae. cylindrica, but no clear separation of H. marinum from E. caninus was revealed. The similarity matrices based on the three different sets of data were strongly correlated. The highest value was recorded between the matrices based on RAPDs and isozymes (Mantel's test, r = 0.93). Correlations between the similarity matrix based on microsatellites and matrices based on RAPDs and isozymes were lower: 0.74 and 0.68, respectively. While microsatellites are very useful for comparisons of closely related accessions, they are less suitable for studies involving less-related taxa. Isozymes provide interesting markers for species differentiation, but their use seems less appropriate for studies of within-species genetic variation. RAPDs can produce a large set of markers, which can be used for the evaluation of both between- and within-species genetic variation, more rapidly and easily than isozymes and microsatellites.Key words: Triticeae, isozymes, RAPDs, microsatellites, polymorphism.
Collapse
|
50
|
Chagué V, Fahima T, Dahan A, Sun GL, Korol AB, Ronin YI, Grama A, Röder MS, Nevo E. Isolation of microsatellite and RAPD markers flanking the Yr15 gene of wheat using NILs and bulked segregant analysis. Genome 1999; 42:1050-6. [PMID: 10659769 DOI: 10.1139/g99-064] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microsatellite and random amplified polymorphic DNA (RAPD) primers were used to identify molecular markers linked to the Yr15 gene which confer resistance to stripe rust (Puccina striiformis Westend) in wheat. By using near isogenic lines (NILs) for the Yr15 gene and a F2 mapping population derived from crosses of these lines and phenotyped for resistance, we identified one microsatellite marker (GWM33) and one RAPD marker (OPA19(800)) linked to Yr15. Then, bulked segregant analysis was used in addition to the NILs to identify RAPD markers linked to the target gene. Using this approach, two RAPD markers linked to Yr15 were identified, one in coupling (UBC199(700)) and one in repulsion phase (UBC212(1200)). After MAPMAKER linkage analysis on the F2 population, the two closest markers were shown to be linked to Yr15 within a distance of about 12 cM. The recombination rates were recalculated using the maximum likelihood technique to take into account putative escaped individuals from the stripe rust resistance test and obtain unbiased distance estimates. As a result of this study, the stripe rust resistance gene Yr15 is surrounded by two flanking PCR markers, UBC199(700) and GWM33, at about 5 cM from each side.
Collapse
Affiliation(s)
- V Chagué
- Institute of Evolution, University of Haifa, Mount Carmel, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|