1
|
Fang SA, Eu TI, Chung MC. Isolation and characterization of genome-specific markers in Oryza species with the BB genome. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:300-308. [PMID: 21763541 DOI: 10.1016/j.plantsci.2011.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 05/18/2011] [Accepted: 06/06/2011] [Indexed: 05/31/2023]
Abstract
Wild species of rice with many valuable agronomic traits are an important genetic resource for improving cultivated rice by wide hybridization. Genome- or chromosome-specific markers are useful for monitoring genome introgression and for identifying genome components. From 47 random amplified polymorphic DNAs (RAPDs) of nine Oryza species, three bands (Ogla225, Opun225, and Opun246) were found to be genome specific with distinct sizes. Their specificities were further characterized by Southern hybridization, sequence analysis, and fluorescent in situ hybridization (FISH). Ogla225 is specifically amplified from the AA genome but homologous sequences were conserved among Oryza species. Opun225 occurs at a low copy number although is specifically amplified from Oryza punctata. There are estimated 2000-3300 repeats of Opun246 in each haploid genome of Oryza species with the BB or BBCC genome. Clusters of Opun246 repeats were detected at heterochromatic regions on almost all chromosomes of the BB genomes by FISH. Opun246 may be a useful marker for monitoring the introgression of BB genome or for identifying the conserved components of BB genome in genetic resource. The results from this study and our previous study both indicate that numerous unique repeats play role in the differentiation of the BB genome from other Oryza genomes.
Collapse
Affiliation(s)
- Shao-An Fang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|
2
|
Abstract
The pan-tropical wild relatives of rice grow in a wide variety of habitats: forests, savanna, mountainsides, rivers and lakes. The completion of the sequencing of the rice nuclear and cytoplasmic genomes affords an opportunity to widen our understanding of the genomes of the genus Oryza. Research on the Oryza genus has begun to help to answer questions related to domestication, speciation, polyploidy and ecological adaptation that cannot be answered by studying rice alone. The wild relatives of rice have furnished genes for the hybrid rice revolution, and other genes from Oryza species with major impact on rice yields and sustainable rice production are likely to be found. Care is needed, however, when using wild relatives of rice in experiments and in interpreting the results of these experiments. Careful checking of species identity, maintenance of herbarium specimens and recording of Genbank accession numbers of material used in experiments should be standard procedure when studying wild relatives of rice.
Collapse
Affiliation(s)
- Duncan A Vaughan
- National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | | | | |
Collapse
|
3
|
Gao D, Schmidt T, Jung C. Molecular characterization and chromosomal distribution of species-specific repetitive DNA sequences from Beta corolliflora, a wild relative of sugar beet. Genome 2000; 43:1073-80. [PMID: 11195340 DOI: 10.1139/g00-084] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Repetitive DNA sequences have been isolated from a Sau3AI plasmid library of tetraploid Beta corolliflora (2n = 4x = 36), a wild relative of sugar beet (B. vulgaris). The library was screened by differential hybridization with genomic DNA of B. corolliflora and B. vulgaris. When used as probes for Southern hybridization of genomic DNA, six clones were determined to represent highly repetitive DNA families present only in the B. corolliflora genome. Five other sequences were highly repetitive in B. corolliflora and low or single copy in B. vulgaris. The insert size varied between 43 bp and 448 bp. Two sequences pBC1279 and pBC1944 displayed strong homology to a previously cloned satellite DNA from B. nana. With one exception, sequences are tandemly arranged as revealed by a typical ladder pattern after genomic Southern hybridization. The chromosomal distribution of five probes was determined by fluorescence in situ hybridization (FISH) of mitotic metaphases from B. corolliflora and a triploid hybrid between B. vulgaris and B. corolliflora. Three sequences were spread along all chromosome arms of B. corolliflora while one sequence was present on only six chromosomes. The chromosome-specific sequence pBC216 was found in close vicinity to the 5S rDNA located on B. corolliflora chromosome IV. This set of species-specific sequences has the potential to be used as probes for the identification of monosomic alien addition lines and for marker-assisted gene transfer from wild beet to cultivated beet.
Collapse
Affiliation(s)
- D Gao
- Institute of Crop Science and Plant Breeding, Christian-Albrechts-University of Kiel, Germany
| | | | | |
Collapse
|
4
|
Rajagopal J, Das S, Khurana DK, Srivastava PS, Lakshmikumaran M. Molecular characterization and distribution of a 145-bp tandem repeat family in the genus Populus. Genome 1999; 42:909-18. [PMID: 10584311 DOI: 10.1139/g99-013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This report aims to describe the identification and molecular characterization of a 145-bp tandem repeat family that accounts for nearly 1.5% of the Populus genome. Three members of this repeat family were cloned and sequenced from Populus deltoides and P. ciliata. The dimers of the repeat were sequenced in order to confirm the head-to-tail organization of the repeat. Hybridization-based analysis using the 145-bp tandem repeat as a probe on genomic DNA gave rise to ladder patterns which were identified to be a result of methylation and (or) sequence heterogeneity. Analysis of the methylation pattern of the repeat family using methylation-sensitive isoschizomers revealed variable methylation of the C residues and lack of methylation of the A residues. Sequence comparisons between the monomers revealed a high degree of sequence divergence that ranged between 6% and 11% in P. deltoides and between 4.2% and 8.3% in P. ciliata. This indicated the presence of sub-families within the 145-bp tandem family of repeats. Divergence was mainly due to the accumulation of point mutations and was concentrated in the central region of the repeat. The 145-bp tandem repeat family did not show significant homology to known tandem repeats from plants. A short stretch of 36 bp was found to show homology of 66.7% to a centromeric repeat from Chironomus plumosus. Dot-blot analysis and Southern hybridization data revealed the presence of the repeat family in 13 of the 14 Populus species examined. The absence of the 145-bp repeat from P. euphratica suggested that this species is relatively distant from other members of the genus, which correlates with taxonomic classifications. The widespread occurrence of the tandem family in the genus indicated that this family may be of ancient origin.
Collapse
Affiliation(s)
- J Rajagopal
- Biotechnology Division, TERI, New Delhi, India
| | | | | | | | | |
Collapse
|
5
|
Identification and classification of subspecies of Asian cultivated rice and their hybrids. CHINESE SCIENCE BULLETIN-CHINESE 1998. [DOI: 10.1007/bf02883461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Morgante M, Jurman I, Shi L, Zhu T, Keim P, Rafalski JA. The STR120 satellite DNA of soybean: organization, evolution and chromosomal specificity. Chromosome Res 1997; 5:363-73. [PMID: 9364938 DOI: 10.1023/a:1018492208247] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A highly repeated DNA sequence family, STR120, with tandemly arranged repetitive units (monomers) of approximately 120bp, has been identified in soybean [Glycine max (L.) Merr.]. Five related clones showing tandem repeats of a 120-bp-long monomer were isolated from a soybean genomic library. Results of Southern blotting experiments using three of the clones as probes onto genomic DNA digested with different restriction enzymes were in agreement with a tandem arrangement of these sequences in the genome. A total of 12 monomers were sequenced, showing considerable sequence heterogeneity. A consensus sequence of 126 bp was obtained that exhibits an average similarity of 81% to the sequenced units. In three of the clones identified, neighbouring units are significantly more similar to each other than to units from different clones; in the remaining two clones, however, similarity between the two units observed is low (70%), while the overall similarity between the two clones is high (95%). This indicates that in these cases the repetitive unit may be the dimer rather than the monomer. Based on the presence of direct repeats within each monomer, we suggest that the 120-bp monomer may itself have evolved by duplication of an ancestral 60-bp unit. The STR120 family distribution is limited to annual soybeans and is not found, at least at high-copy number, in related perennial soybeans or other members of the tribe Phaseolae. Fluorescence in situ hybridization (FISH) to metaphase chromosomes using four of the clones as probes shows that the number of chromosomal locations differs depending on the stringency conditions and goes from two to eight when the stringency is progressively lowered. The estimated copy number for one of the clones is from 5000 to 10000, but this may just represent a lower boundary for the whole family in consideration of the high sequence divergence observed within the family. FISH and sequence analysis therefore indicate that different subfamilies as well as higher-order repeat units are present in the STR120 family, very much like those in primate alpha satellite DNA, and that some of the subfamilies seem to exhibit divergence on a chromosomal basis.
Collapse
Affiliation(s)
- M Morgante
- Du Pont Agricultural Products, Biotechnology Research, Experimental Station, Wilmington, DE 19880-0402, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Schmidt T, Kudla J. The molecular structure, chromosomal organization, and interspecies distribution of a family of tandemly repeated DNA sequences of Antirrhinum majus L. Genome 1996; 39:243-8. [PMID: 8984001 DOI: 10.1139/g96-033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Monomers of a major family of tandemly repeated DNA sequences of Antirrhinum majus have been cloned and characterized. The repeats are 163-167 bp long, contain on average 60% A+T residues, and are organized in head-to-tail orientation. According to site-specific methylation differences two subsets of repeating units can be distinguished. Fluorescent in situ hybridization revealed that the repeats are localized at centromeric regions of six of the eight chromosome pairs of A. majus with substantial differences in array size. The monomeric unit shows no homologies to other plant satellite DNAs. The repeat exists in a similar copy number and conserved size in the genomes of six European species of the genus Antirrhinum. Tandemly repeated DNA sequences with homology to the cloned monomer were also found in the North American section Saerorhinum, indicating that this satellite DNA might be of ancient origin and was probably already present in the ancestral genome of both sections.
Collapse
Affiliation(s)
- T Schmidt
- Department of Cell Biology, John Innes Institute, Colney, Norwich, UK
| | | |
Collapse
|
8
|
Schmidt T, Heslop-Harrison JS. High-resolution mapping of repetitive DNA by in situ hybridization: molecular and chromosomal features of prominent dispersed and discretely localized DNA families from the wild beet species Beta procumbens. PLANT MOLECULAR BIOLOGY 1996; 30:1099-1113. [PMID: 8704122 DOI: 10.1007/bf00019545] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Members of three prominent DNA families of Beta procumbens have been isolated as Sau3A repeats. Two families consisting of repeats of about 158 bp and 312 bp are organized as satellite DNAs (Sau3A satellites I and II), whereas the third family with a repeat length of 202 bp is interspersed throughout the genome. Multi-colour flourescence in situ hybridization was used for physical mapping of the DNA families, and has shown that these tandemly organized families occur in large heterochromatic and DAPI positive blocks. The Sau3A satellite I hybridized exclusively around or near the centromeres of 10, 11 or 12 chromosomes. The Sau3A satellite family I showed high intraspecific variability and high-resolution physical mapping was performed on pachytene chromosomes using differentially labelled repeats. The physical order of satellite subfamily arrays along a chromosome was visualized and provided evidence that large arrays of plant satellite repeats are not contiguous and consist of distinct subfamily domains. Re-hybridization of a heterologous rRNA probe to mitotic metaphase chromosomes revealed that the 18S-5.8S-25S rRNA genes are located at subterminal position on one chromosome pair missing repeat clusters of the Sau3A satellite family I. It is known that arrays of Sau3A satellite I repeats are tightly linked to a nematode (Heterodera schachtii) resistance gene and our results show that the gene might be located close to the centromere. Large arrays of the Sau3A satellite II were found in centromeric regions of 16 chromosomes and, in addition, a considerable interspersion of repeats over all chromosomes was observed. The family of interspersed 202 bp repeats is uniformly distributed over all chromosomes and largely excluded from the rRNA gene cluster but shows local amplification in some regions. Southern hybridization has shown that all three families are specific for genomes of the section Procumbentes of the genus Beta.
Collapse
Affiliation(s)
- T Schmidt
- Department of Cell Biology, John Innes Centre, Colney, Norwich, UK
| | | |
Collapse
|
9
|
Stadler M, Stelzer T, Borisjuk N, Zanke C, Schilde-Rentschler L, Hemleben V. Distribution of novel and known repeated elements of Solanum and application for the identification of somatic hybrids among Solanum species. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1995; 91:1271-1278. [PMID: 24170057 DOI: 10.1007/bf00220940] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/1995] [Accepted: 08/18/1995] [Indexed: 06/02/2023]
Abstract
Species-specific repetitive DNA probes are a useful tool for the molecular identification of somatic hybrids. Therefore, the distribution of three repetitive DNA elements of Solanum was investigated in Solanum wild species, Solanum breeding lines, and in more distantly related species of the genera Lycopersicon, Nicotiana, and Datura. The clone pSCH15, obtained from S. circaeifolium, represents a new 168-bp repetitive element; it shows 73-79% sequence similarity to repetitive elements of S. brevidens and Lycopersicon species. The 163-bp element in pSBH6, cloned from S. bulbocastanum, turned out to be very similar (95% sequence homology) to the Lycopersicon element pLEG15/TGRI previously regarded to be present only in species of the genus Lycopersicon and in S. lycopersicoides. Lower sequence similarity of approximately 80% was observed to repetitive elements of S. brevidens which are organized differently. The repeats exhibited different degrees of specificity: by Southern hybridization the element represented by the clone pSBH6 could be detected in almost all Solanum species investigated here but only after long exposure to X-ray film. The previously described "Solanum-specific" element represented by the clone pSA287 was also found, although in a very low copy number, in Lycopersicon esculentum. Therefore, detection of the repetitive elements pSA287 and pSBH6 in those species in which the respective repeat is less represented depends on exposure time. In contrast, the element pSCH15 is prominently present only in a small number of Solanum wild species and - to some extent - in the diploid breeding lines as revealed after long exposure. Use of these repeated elements for the identification of specific genomes in protoplast-fusion hybrids between Solanum wild species and Solanum breeding lines, or between two breeding lines, was evaluated.
Collapse
Affiliation(s)
- M Stadler
- Lehrstuhl für Allgemeine Genetik, Biologisches Institut, Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
10
|
King K, Jobst J, Hemleben V. Differential homogenization and amplification of two satellite DNAs in the genus Cucurbita (Cucurbitaceae). J Mol Evol 1995; 41:996-1005. [PMID: 8587146 DOI: 10.1007/bf00173181] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Two different satellite DNAs exist in the genus Cucurbita which are different with respect to repeat length (350 bp and 170 bp), array size, and sequence homogenization. Whereas the 350-bp satellite DNA is prominent and very homogeneous in all species investigated except for C. maxima and C. lundelliana, the 170-bp satellite is rather evenly distributed in all species. In C. maxima and C. lundelliana the 350-bp satellite is present only in small amounts, but detectable by the sensitive PCR method. These repeats are also very homogeneous, reflecting a silent stage of satellite DNA. In contrast, the 170-bp satellite DNA is intra- and interspecifically heterogeneous. It is striking that the species with no detectable amount of 350-bp satellite contain 170-bp satellite DNA clusters with the highest degree of homogeneity. The evolution of satellite DNA repeats within cultivated and wild species in the genus Cucurbita is elucidated using the sequence data of both satellite DNAs from all species investigated. The value of satellite DNA for phylogenetic analysis between closely related species is discussed.
Collapse
Affiliation(s)
- K King
- Lehrstuhl für Allgemeine Genetik, Universität Tübingen, Germany
| | | | | |
Collapse
|
11
|
Vahedian M, Shi L, Zhu T, Okimoto R, Danna K, Keim P. Genomic organization and evolution of the soybean SB92 satellite sequence. PLANT MOLECULAR BIOLOGY 1995; 29:857-62. [PMID: 8541510 DOI: 10.1007/bf00041174] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Repetitive DNA sequences comprise a large percentage of plant genomes, and their characterization provides information about both species and genome evolution. We have isolated a recombinant clone containing a highly repeated DNA element (SB92) that is homologous to ca. 0.9% of the soybean genome or about 10(5) copies. This repeated sequence is tandemly arranged and is found in four or five major genomic locations. FISH analysis of metaphase chromosomes suggests that two of these locations are centromeric. We have determined the sequence of two cloned repeats and performed genomic sequencing to obtain a consensus sequence. The consensus repeat size was 92 bp and exhibited an average of 10% nucleotide substitution relative to the two cloned repeats. This high level of sequence diversity suggests an ancient origin but is inconsistent with the limited phylogenetic distribution of SB92, which is found at high copy number only in the annual soybeans. It therefore seems likely that this sequence is undergoing very rapid evolution.
Collapse
Affiliation(s)
- M Vahedian
- Department of Biological Sciences, Northern Arizona University 86011-5640, USA
| | | | | | | | | | | |
Collapse
|
12
|
Kiefer-Meyer MC, Reddy AS, Delseny M. Characterization of a dispersed repetitive DNA sequence associated with the CCDD genome of wild rice. Genome 1995; 38:681-8. [PMID: 7672603 DOI: 10.1139/g95-086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A HindII repetitive fragment (pOD3) was isolated and cloned from the genomic DNA of an accession of Oryza latifolia, a wild rice species that possesses a tetraploid CCDD genome. Southern blot analysis using this clone as a probe demonstrated that this repetitive DNA sequence had a dispersed organization in the CCDD genome and seemed to be highly specific for this genome type. This fragment is the first CCDD-specific repeated DNA sequence to be described. The hybridization pattern is similar for most CCDD accessions tested, although a few showed no hybridization signal. The nucleotide sequence of the element cloned in pOD3 was determined and analysed. The 1783 base pair long repeated sequence shows no homology with other known nucleotide sequences. In addition, none of the amino acid sequences deduced from the potential open reading frames contained in the pOD3 repeat is homologous to any known protein. The nucleotide sequence presents several internal repeats, direct or inverted, but their significance remains unknown.
Collapse
Affiliation(s)
- M C Kiefer-Meyer
- Laboratoire de Physiologie et Biologie Moléculaire des Plantes, Université de Perpignan, France
| | | | | |
Collapse
|
13
|
Wang ZX, Kurata N, Saji S, Katayose Y, Minobe Y. A chromosome 5-specific repetitive DNA sequence in rice (Oryza sativa L). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1995; 90:907-913. [PMID: 24173043 DOI: 10.1007/bf00222902] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/1994] [Accepted: 09/30/1994] [Indexed: 06/02/2023]
Abstract
Repetitive DNA sequences in the rice genome comprise more than half of the nuclear DNA. The isolation and characterization of these repetitive DNA sequences should lead to a better understanding of rice chromosome structure and genome organization. We report here the characterization and chromosome localization of a chromosome 5-specific repetitive DNA sequence. This repetitive DNA sequence was estimated to have at least 900 copies. DNA sequence analysis of three genomic clones which contain the repeat unit indicated that the DNA sequences have two sub-repeat units of 37 bp and 19 bp, connected by 30-to 90-bp short sequences with high similarity. RFLP mapping and physical mapping by fluorescence in situ hybridization (FISH) indicated that almost all copies of the repetitive DNA sequence are located in the centromeric heterochromatic region of the long arm of chromosome 5. The strategy for cloning such repetitive DNA sequences and their uses in rice genome research are discussed.
Collapse
Affiliation(s)
- Z X Wang
- Rice Genome Research Program, National Institute of Agrobiological Resources /STAFF (Society for Techno-innovation of Agriculture, Forestry and Fisheries) Institute, 2-1-2 Kannondai, Tsukuba, 305, Ibaraki, Japan
| | | | | | | | | |
Collapse
|