1
|
|
2
|
Tan BC, Lim YS, Lau SE. Proteomics in commercial crops: An overview. J Proteomics 2017; 169:176-188. [PMID: 28546092 DOI: 10.1016/j.jprot.2017.05.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/21/2017] [Accepted: 05/19/2017] [Indexed: 02/06/2023]
Abstract
Proteomics is a rapidly growing area of biological research that is positively affecting plant science. Recent advances in proteomic technology, such as mass spectrometry, can now identify a broad range of proteins and monitor their modulation during plant growth and development, as well as during responses to abiotic and biotic stresses. In this review, we highlight recent proteomic studies of commercial crops and discuss the advances in understanding of the proteomes of these crops. We anticipate that proteomic-based research will continue to expand and contribute to crop improvement. SIGNIFICANCE Plant proteomics study is a rapidly growing area of biological research that is positively impacting plant science. With the recent advances in new technologies, proteomics not only allows us to comprehensively analyses crop proteins, but also help us to understand the functions of the genes. In this review, we highlighted recent proteomic studies in commercial crops and updated the advances in our understanding of the proteomes of these crops. We believe that proteomic-based research will continue to grow and contribute to the improvement of crops.
Collapse
Affiliation(s)
- Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia.
| | - Yin Sze Lim
- School of Biosciences, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Su-Ee Lau
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Balbuena TS, Dias LLC, Martins MLB, Chiquieri TB, Santa-Catarina C, Floh EIS, Silveira V. Challenges in proteome analyses of tropical plants. ACTA ACUST UNITED AC 2011. [DOI: 10.1590/s1677-04202011000200001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Genome sequencing of various organisms allow global analysis of gene expression, providing numerous clues on the biological function and involvement in the biological processes studied. Proteomics is a branch of molecular biology and biotechnology that has undergone considerable development in the post-genomic era. Despite the recent significant advancements in proteomics techniques, still there is much to be improved. Due to peculiarities to the plant kingdom, proteomics approaches require adaptations, so as to improve efficiency and accuracy of results in plants. Data generated by proteomics can substantially contribute to the understanding and monitoring of plant physiological events and development of biotechnological strategies. Especially for tropical species, challenges are even greater, in the light of the abundance of secondary metabolites, as well as of the lack of complete genome sequences. This review discusses current topics in proteomics concerning challenges and perspectives, with emphasis on the proteomics of tropical plant species.
Collapse
|
4
|
Schneider M, Bairoch A, Wu CH, Apweiler R. Plant protein annotation in the UniProt Knowledgebase. PLANT PHYSIOLOGY 2005; 138:59-66. [PMID: 15888679 PMCID: PMC1104161 DOI: 10.1104/pp.104.058933] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The Swiss-Prot, TrEMBL, Protein Information Resource (PIR), and DNA Data Bank of Japan (DDBJ) protein database activities have united to form the Universal Protein Resource (UniProt) Consortium. UniProt presents three database layers: the UniProt Archive, the UniProt Knowledgebase (UniProtKB), and the UniProt Reference Clusters. The UniProtKB consists of two sections: UniProtKB/Swiss-Prot (fully manually curated entries) and UniProtKB/TrEMBL (automated annotation, classification and extensive cross-references). New releases are published fortnightly. A specific Plant Proteome Annotation Program (http://www.expasy.org/sprot/ppap/) was initiated to cope with the increasing amount of data produced by the complete sequencing of plant genomes. Through UniProt, our aim is to provide the scientific community with a single, centralized, authoritative resource for protein sequences and functional information that will allow the plant community to fully explore and utilize the wealth of information available for both plant and non-plant model organisms.
Collapse
Affiliation(s)
- Michel Schneider
- Swiss Institute of Bioinformatics, Centre Medical Universitaire, University of Geneva, 1211 Geneva 4, Switzerland.
| | | | | | | |
Collapse
|
5
|
Schneider M, Tognolli M, Bairoch A. The Swiss-Prot protein knowledgebase and ExPASy: providing the plant community with high quality proteomic data and tools. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2004; 42:1013-21. [PMID: 15707838 DOI: 10.1016/j.plaphy.2004.10.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Accepted: 10/01/2004] [Indexed: 05/01/2023]
Abstract
The Swiss-Prot protein knowledgebase provides manually annotated entries for all species, but concentrates on the annotation of entries from model organisms to ensure the presence of high quality annotation of representative members of all protein families. A specific Plant Protein Annotation Program (PPAP) was started to cope with the increasing amount of data produced by the complete sequencing of plant genomes. Its main goal is the annotation of proteins from the model plant organism Arabidopsis thaliana. In addition to bibliographic references, experimental results, computed features and sometimes even contradictory conclusions, direct links to specialized databases connect amino acid sequences with the current knowledge in plant sciences. As protein families and groups of plant-specific proteins are regularly reviewed to keep up with current scientific findings, we hope that the wealth of information of Arabidopsis origin accumulated in our knowledgebase, and the numerous software tools provided on the Expert Protein Analysis System (ExPASy) web site might help to identify and reveal the function of proteins originating from other plants. Recently, a single, centralized, authoritative resource for protein sequences and functional information, UniProt, was created by joining the information contained in Swiss-Prot, Translation of the EMBL nucleotide sequence (TrEMBL), and the Protein Information Resource-Protein Sequence Database (PIR-PSD). A rising problem is that an increasing number of nucleotide sequences are not being submitted to the public databases, and thus the proteins inferred from such sequences will have difficulties finding their way to the Swiss-Prot or TrEMBL databases.
Collapse
Affiliation(s)
- Michel Schneider
- Swiss Institute of Bioinformatics, CMU, 1, Rue Michel Servet, 1211 Geneva-4, Switzerland.
| | | | | |
Collapse
|
6
|
Riccardi F, Gazeau P, Jacquemot MP, Vincent D, Zivy M. Deciphering genetic variations of proteome responses to water deficit in maize leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2004; 42:1003-11. [PMID: 15707837 DOI: 10.1016/j.plaphy.2004.09.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Accepted: 09/29/2004] [Indexed: 05/20/2023]
Abstract
The proteome of the basal part of growing Zea mays leaves was analyzed from 4 to 14 d after stopping watering and in well watered controls. The relative quantity of 46 proteins was found to increase in leaves of plants submitted to water deficit. Different types of responses were observed, some proteins showing a constant increase during water deficit, while others showed stabilization after a first increase or a transient increase. Isoforms encoded by the same gene showed different responses. The response to water deficit showed genetic variation. Some increased proteins were induced specifically in one of the two studied genotypes (e.g. ASR1) while others were significantly induced in both genotypes but to a different level or with different kinetics. Analyses of relations between protein quantities, relative water content (RWC) and abscisic acid (ABA) concentration allowed us to show that the quantitative variation of some proteins (e.g. ABA45 and OSR40 proteins) was linked to differences in ABA accumulation between the genotypes. Other proteins showed genetic variations that were not related to differences in water status or ABA concentration (e.g. a cystatin). Data obtained from these experiments, together with data from other experiments, contribute to the characterization of maize proteome response to drought in different conditions and in different genotypes. This characterization allows the search for candidate proteins, i.e. for protein whose genetic variation of expression could be partly responsible for the variability of plant responses to drought.
Collapse
Affiliation(s)
- Frédérique Riccardi
- UMR de Génétique Végétale du Moulon, Inra/CNRS/UPS/INAPG, Ferme du Moulon, 91190 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
7
|
Hirano H, Islam N, Kawasaki H. Technical aspects of functional proteomics in plants. PHYTOCHEMISTRY 2004; 65:1487-1498. [PMID: 15276446 DOI: 10.1016/j.phytochem.2004.05.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2004] [Revised: 04/14/2004] [Indexed: 05/24/2023]
Abstract
Since the completion of genome sequences of several organisms, attention has been focused to determine the function and functional network of proteins by proteome analysis. This analysis is achieved by separation and identification of proteins, determination of their function and functional network, and construction of an appropriate database. Many improvements in separation and identification of proteins, such as two-dimensional electrophoresis, nano-liquid chromatography and mass spectrometry, have rapidly been achieved. Some new techniques which include top-down mass spectrometry and tandem affinity purification have emerged. These techniques have provided the possibility of high-throughput analysis of function and functional network of proteins in plants. However, to cope with the huge information emerging from proteome analyses, more sophisticated techniques and software are essential. The development and adaptation of such techniques will ease analyses of protein profiling, identification of post-translational modifications and protein-protein interaction, which are vital for elucidation of the protein functions.
Collapse
Affiliation(s)
- Hisashi Hirano
- Kihara Institute for Biological Research, Yokohama City University, Yokohama 244-0813, Japan.
| | | | | |
Collapse
|
8
|
|
9
|
Abstract
Proteome analysis implies the ability to separate proteins as a first step prior to characterization. Thus, the overall performance of the analysis strongly depends on the performance of the separation tool, usually two-dimensional electrophoresis. This review shows how two-dimensional electrophoresis performs with membrane proteins from bacteria or animal or vegetable cells and tissues, the recent progress in this field, and it examines future prospects in this area.
Collapse
Affiliation(s)
- V Santoni
- INRA, Laboratoire de biochemie et physiologie moléculaire des plantes, Montpellier, France
| | | | | |
Collapse
|
10
|
Abstract
PPMdb is a proteome database dedicated to proteins from plant plasma membranes. It provides comprehensive two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) maps, partial amino acid sequences and expression data. All this information is gathered and structured in a relational database, after being analyzed and annotated. PPMdb includes active links to related biological databases (EMBL, GenBank, GenPep, and SWISS-PROT and TrEMBL) as well as to MEDLINE abstracts. Information on specific protein spots can be displayed by clicking on the 2-D maps. In addition, users can query the database by accession number, protein name, pI and MW, and cellular location. Access to PPMdb is available at the following URL: http://sphinx.rug. ac.be:8080.
Collapse
Affiliation(s)
- I Sahnoun
- Department of Plant Genetics, Vlaams Interuniversitair Instituut voor Biotechnologie (VIB), Universiteit Gent, K.L. Ledeganckstraat 35, B-9000, Gent, Belgium
| | | | | | | | | |
Collapse
|
11
|
|
12
|
|
13
|
Bost B, Dillmann C, de Vienne D. Fluxes and metabolic pools as model traits for quantitative genetics. I. The L-shaped distribution of gene effects. Genetics 1999; 153:2001-12. [PMID: 10581302 PMCID: PMC1460848 DOI: 10.1093/genetics/153.4.2001] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The fluxes through metabolic pathways can be considered as model quantitative traits, whose QTL are the polymorphic loci controlling the activity or quantity of the enzymes. Relying on metabolic control theory, we investigated the relationships between the variations of enzyme activity along metabolic pathways and the variations of the flux in a population with biallelic QTL. Two kinds of variations were taken into account, the variation of the average enzyme activity across the loci, and the variation of the activity of each enzyme of the pathway among the individuals of the population. We proposed analytical approximations for the flux mean and variance in the population as well as for the additive and dominance variances of the individual QTL. Monte Carlo simulations based on these approximations showed that an L-shaped distribution of the contributions of individual QTL to the flux variance (R(2)) is consistently expected in an F(2) progeny. This result could partly account for the classically observed L-shaped distribution of QTL effects for quantitative traits. The high correlation we found between R(2) value and flux control coefficients variance suggests that such a distribution is an intrinsic property of metabolic pathways due to the summation property of control coefficients.
Collapse
Affiliation(s)
- B Bost
- Station de Génétique Végétale, INRA/UPS/INAPG, Ferme du Moulon, 91190 Gif-sur-Yvette, France.
| | | | | |
Collapse
|
14
|
Mollenkopf HJ, Jungblut PR, Raupach B, Mattow J, Lamer S, Zimny-Arndt U, Schaible UE, Kaufmann SH. A dynamic two-dimensional polyacrylamide gel electrophoresis database: the mycobacterial proteome via Internet. Electrophoresis 1999; 20:2172-80. [PMID: 10493122 DOI: 10.1002/(sici)1522-2683(19990801)20:11<2172::aid-elps2172>3.0.co;2-m] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Proteome analysis by two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) and mass spectrometry, in combination with protein chemical methods, is a powerful approach for the analysis of the protein composition of complex biological samples. Data organization is imperative for efficient handling of the vast amount of information generated. Thus we have constructed a 2-D PAGE database to store and compare protein patterns of cell-associated and culture-supernatant proteins of different mycobacterial strains. In accordance with the guidelines for federated 2-DE databases, we developed a program that generates a dynamic 2-D PAGE database for the World-Wide-Web to organise and publish, via the internet, our results from proteome analysis of different Mycobacterium tuberculosis as well as Mycobacterium bovis BCG strains. The uniform resource locator for the database is http://www.mpiib-berlin.mpg.de/2D-PAGE and can be read with a Java compatible browser. The interactive hypertext markup language documents displayed are generated dynamically in each individual session from a rational data file, a 2-D gel image file and a map file describing the protein spots as polygons. The program consists of common gateway interface scripts written in PERL, minimizing the administrative workload of the database. Furthermore, the database facilitates not only interactive use, but also worldwide active participation of other scientific groups with their own data, requiring only minimal computer hardware and knowledge of information technology.
Collapse
Affiliation(s)
- H J Mollenkopf
- Max-Planck-Institute for Infection Biology, Department of Immunology, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Thiellement H, Bahrman N, Damerval C, Plomion C, Rossignol M, Santoni V, de Vienne D, Zivy M. Proteomics for genetic and physiological studies in plants. Electrophoresis 1999; 20:2013-26. [PMID: 10451110 DOI: 10.1002/(sici)1522-2683(19990701)20:10<2013::aid-elps2013>3.0.co;2-#] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Proteomics is becoming a necessity in plant biology, as it is in medicine, zoology and microbiology, for deciphering the function and role of the genes that are or will be sequenced. In this review we focus on the various, mainly genetic, applications of the proteomic tools that have been developed in recent years: characterization of individuals or lines, estimation of genetic variability within and between populations, establishment of genetic distances that can be used in phylogenetic studies, characterization of mutants and localization of the genes encoding the revealed proteins. Improvements in specifically devoted software have permitted precise quantification of the variation in amounts of proteins, leading to the concept of "protein quantity loci" which, combined with the "quantitative trait loci" approach, results in testable hypotheses regarding the role of "candidate proteins" in the metabolism or phenotype under study. This new development is exemplified by the reaction of plants to drought, a trait of major agronomic interest. The accumulation of data regarding genomic and cDNA sequencing will be connected to the protein databases currently developed in plants.
Collapse
Affiliation(s)
- H Thiellement
- Département de Botanique et Biologie Végétale, Université de Genève, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Costa P, Pionneau C, Bauw G, Dubos C, Bahrmann N, Kremer A, Frigerio JM, Plomion C. Separation and characterization of needle and xylem maritime pine proteins. Electrophoresis 1999; 20:1098-108. [PMID: 10344291 DOI: 10.1002/(sici)1522-2683(19990101)20:4/5<1098::aid-elps1098>3.0.co;2-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Two-dimensional gel electrophoresis (2-DE) and image analysis are currently used for proteome analysis in maritime pine (Pinus pinaster Ait.). This study presents a database of expressed proteins extracted from needles and xylem, two important tissues for growth and wood formation. Electrophoresis was carried out by isoelectric focusing (IEF) in the first dimension and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in the second. Silver staining made it possible to detect an average of 900 and 600 spots on 2-DE gels from needles and xylem, respectively. A total of 28 xylem and 35 needle proteins were characterized by internal peptide microsequencing. Out of these 63 proteins, 57 (90%) could be identified based on amino acid similarity with known proteins, of which 24 (42%) have already been described in conifers. Overall comparison of both tissues indicated that 29% and 36% of the spots were specific to xylem and needles, respectively, while the other spots were of identical molecular weight and isoelectric point. The homology of spot location in 2-DE patterns was further validated by sequence analysis of proteins present in both tissues. A proteomic database of maritime pine is accessible on the internet (http://www.pierroton.inra.fr/genetics/2D/).
Collapse
Affiliation(s)
- P Costa
- INRA, Laboratoire de Génétique et Amélioration des arbres forestiers, Cestas, France
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Riccardi F, Gazeau P, Zivy M. Protein changes in response to progressive water deficit in maize . Quantitative variation and polypeptide identification. PLANT PHYSIOLOGY 1998; 117:1253-63. [PMID: 9701581 PMCID: PMC34889 DOI: 10.1104/pp.117.4.1253] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/1998] [Accepted: 04/21/1998] [Indexed: 05/17/2023]
Abstract
Three-week-old plants of two unrelated lines of maize (Zea mays L.) and their hybrid were submitted to progressive water stress for 10 d. Changes induced in leaf proteins were studied by two-dimensional electrophoresis and quantitatively analyzed using image analysis. Seventy-eight proteins out of a total of 413 showed a significant quantitative variation (increase or decrease), with 38 of them exhibiting a different expression in the two genotypes. Eleven proteins that increased by a factor of 1.3 to 5 in stressed plants and 8 proteins detected only in stressed plants were selected for internal amino acid microsequencing, and by similarity search 16 were found to be closely related to previously reported proteins. In addition to proteins already known to be involved in the response to water stress (e.g. RAB17 [Responsive to ABA]), several enzymes involved in basic metabolic cellular pathways such as glycolysis and the Krebs cycle (e.g. enolase and triose phosphate isomerase) were identified, as well as several others, including caffeate O-methyltransferase, the induction of which could be related to lignification.
Collapse
Affiliation(s)
- F Riccardi
- Station de Genetique Vegetale, Universite de Paris-Sud/Institut National de la Recherche Agronomique/Institut National Agronomique Paris-Grignon, Centre National de la Recherche Scientifique-Unite de Recherche Associee 2154, la Ferme du Moulo
| | | | | |
Collapse
|
18
|
Humphery-Smith I, Cordwell SJ, Blackstock WP. Proteome research: complementarity and limitations with respect to the RNA and DNA worlds. Electrophoresis 1997; 18:1217-42. [PMID: 9298643 DOI: 10.1002/elps.1150180804] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A methodological overview of proteome analysis is provided along with details of efforts to achieve high-throughput screening (HTS) of protein samples derived from two-dimensional electrophoresis gels. For both previously sequenced organisms and those lacking significant DNA sequence information, mass spectrometry has a key role to play in achieving HTS. Prototype robotics designed to conduct appropriate chemistries and deliver 700-1000 protein (genes) per day to batteries of mass spectrometers or liquid chromatography (LC)-based analyses are well advanced, as are efforts to produce high density gridded arrays containing > 1000 proteins on a single matrix assisted laser desorption ionisation/time-of-flight (MALDI-TOF) sample stage. High sensitivity HTS of proteins is proposed by employing principally mass spectrometry in an hierarchical manner: (i) MALDI-TOF-mass spectrometry (MS) on at least 1000 proteins per day; (ii) electrospray ionisation (ESI)/MS/MS for analysis of peptides with respect to predicted fragmentation patterns or by sequence tagging; and (iii) ESI/MS/MS for peptide sequencing. Genomic sequences when complemented with information derived from hybridisation assays and proteome analysis may herald in a new era of holistic cellular biology. The current preoccupation with the absolute quantity of gene-product (RNA and/or protein) should move backstage with respect to more molecularly relevant parameters, such as: molecular half-life; synthesis rate; functional competence (presence or absence of mutations); reaction kinetics; the influence of individual gene-products on biochemical flux; the influence of the environment, cell-cycle, stress and disease on gene-products; and the collective roles of multigenic and epigenetic phenomena governing cellular processes. Proteome analysis is demonstrated as being capable of proceeding independently of DNA sequence information and aiding in genomic annotation. Its ability to confirm the existence of gene-products predicted from DNA sequence is a major contribution to genomic science. The workings of software engines necessary to achieve large-scale proteome analysis are outlined, along with trends towards miniaturisation, analyte concentration and protein detection independent of staining technologies. A challenge for proteome analysis into the future will be to reduce its dependence on two-dimensional (2-D) gel electrophoresis as the preferred method of separating complex mixtures of cellular proteins. Nonetheless, proteome analysis already represents a means of efficiently complementing differential display, high density expression arrays, expressed sequence tags, direct or subtractive hybridisation, chromosomal linkage studies and nucleic acid sequencing as a problem solving tool in molecular biology.
Collapse
Affiliation(s)
- I Humphery-Smith
- University of Sydney, Centre for Proteome Research and Gene-Product Mapping, National Innovation Centre, Eveleigh, Australia.
| | | | | |
Collapse
|
19
|
Picard P, Bourgoin-Grenèche M, Zivy M. Potential of two-dimensional electrophoresis in routine identification of closely related durum wheat lines. Electrophoresis 1997; 18:174-81. [PMID: 9059841 DOI: 10.1002/elps.1150180131] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Four closely related durum wheat varieties were compared by computer-assisted analysis of two-dimensional electrophoretic maps of leaf proteins. A low inter-varietal polymorphism was revealed and seven reliable qualitatively varying proteins allowed rapid visual identification of genotypes. For numerous spots, presence/absence or quantitative variations were greatly affected by a batch effect. Several criteria that should be used to discard unreliable spots or gels a priori were reviewed. Nevertheless, it was shown that, provided that the experimental design allows the integration of the batch effect, screening for discriminant markers as well as computing distances based on protein quantity variations are possible and allow variety identification. Euclidean and Mahalanobis distances allowed variety discrimination and single gel classification with a minimum risk of error, not only by taking into account the quantitative variations in discriminant proteins selected by analysis of variance, but also by taking into account all reproducible spots. The possible applications of two-dimensional electrophoresis in variety identification are discussed.
Collapse
Affiliation(s)
- P Picard
- Groupe d'Etude et de Contrôle des Variétés et des Semences, Guyancourt, France
| | | | | |
Collapse
|