1
|
CYP2C9, CYP2D6, G6PD, GCLC, GSTM1 and NAT2 gene polymorphisms and risk of adverse reactions to sulfamethoxazole and ciprofloxacin in San Luis Potosí, Mexico. Meta Gene 2019. [DOI: 10.1016/j.mgene.2019.100574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
2
|
Dagostino C, Allegri M, Napolioni V, D'Agnelli S, Bignami E, Mutti A, van Schaik RH. CYP2D6 genotype can help to predict effectiveness and safety during opioid treatment for chronic low back pain: results from a retrospective study in an Italian cohort. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2018; 11:179-191. [PMID: 30425549 PMCID: PMC6205525 DOI: 10.2147/pgpm.s181334] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Opioids are widely used for chronic low back pain (CLBP); however, it is still unclear how to predict their effectiveness and safety. Codeine, tramadol and oxycodone are metabolized by CYP/CYP450 2D6 (CYP2D6), a highly polymorphic enzyme linked to allele-specific related differences in metabolic activity. Purpose CYP2D6 genetic polymorphisms could potentially help to predict the effectiveness and safety of opioid-based drugs in clinical practice, especially in the treatment of CLBP. Patients and methods A cohort of 224 Italian patients with CLBP treated with codeine or oxycodone was retrospectively evaluated to determine whether adverse reactions and effectiveness were related to CYP2D6 single-nucleotide polymorphisms. CYP2D6 genotyping was performed using the xTAG® CYP2D6 Kit v3 (Luminex) to determine CYP2D6 metabolizer phenotype (poor, intermediate, rapid and ultrarapid). Subjects from the cohort were categorized into two groups according to the occurrence of side effects (Case) or benefit (Control) after chronic analgesic treatment. The impact of CYP2D6 polymorphism on treatment outcome was tested at the metabolizer phenotype, diplotype and haplotype levels. Results CYP2D6 polymorphism was significantly associated with opioid treatment outcome (Omnibus P=0.018, for both global haplotype and diplotype distribution test). CYP2D6*6 and *9 carriers, alleles characterized by a reduced (*9) or absent (*6) enzymatic activity, were significantly (P<0.05) associated with therapeutic failure. CYP2D6 ultrarapid metabolizers (CYP2D6*2N patients) showed an increased risk of side effects, as would be predicted. Despite their low frequency, CYP2D6 *1/*11, *4/*6 and *41/* 2N diplotypes showed significant (P<0.05) associations of efficacy and side effects with chronic opioid treatment. Conclusion Our results showed that reduced CYP2D6 activity is correlated with lack of therapeutic effect. We found that the pharmacogenetic analysis of CYP2D6 could be helpful in foreseeing the safety and effectiveness of codeine or oxycodone treatment in CLBP.
Collapse
Affiliation(s)
- Concetta Dagostino
- Department of Medicine and Surgery, University of Parma, Parma 43126, Italy, .,Study In Multidisciplinary Pain Research (SIMPAR), Milan 20100, Italy,
| | - Massimo Allegri
- Study In Multidisciplinary Pain Research (SIMPAR), Milan 20100, Italy, .,Anesthesia and Intensive Care Department, IRCCS Multi Medica Hospital, Milan 20099, Italy.,Italian Pain Institute, Milan 20100, Italy
| | - Valerio Napolioni
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Simona D'Agnelli
- Department of Medicine and Surgery, University of Parma, Parma 43126, Italy,
| | - Elena Bignami
- Department of Medicine and Surgery, University of Parma, Parma 43126, Italy,
| | - Antonio Mutti
- Department of Medicine and Surgery, University of Parma, Parma 43126, Italy,
| | - Ron Hn van Schaik
- Department of Clinical Chemistry, Erasmus MC, 3000 Rotterdam, The Netherlands
| |
Collapse
|
3
|
Lyon E, Gastier Foster J, Palomaki GE, Pratt VM, Reynolds K, Sábato MF, Scott SA, Vitazka P. Laboratory testing of CYP2D6 alleles in relation to tamoxifen therapy. Genet Med 2012; 14:990-1000. [DOI: 10.1038/gim.2012.108] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
4
|
Rasmussen HB, Werge T. Novel variant of CYP2D6*6 is undetected by a commonly used genotyping procedure. Pharmacol Rep 2012; 63:1264-6. [PMID: 22180372 DOI: 10.1016/s1734-1140(11)70649-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 05/11/2011] [Indexed: 10/25/2022]
Abstract
We report the identification of a novel and defective variant of the gene encoding cytochrome P450 2D6 (CYP2D6). This novel variant is a subtype of CYP2D6*6 that was undetected by a commercially available 5' exonuclease-based assay. Because the novel variant was found in only one of 609 individuals, it represents a rare subtype of CYP2D6*6 that may be restricted to a single family or a subpopulation. A procedure for the identification of the novel CYP2D6*6 variant using restriction enzyme treatment of amplified fragments was developed.
Collapse
Affiliation(s)
- Henrik Berg Rasmussen
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospitals, 2 Boserupvej, DK-4000, Roskilde, Denmark.
| | | |
Collapse
|
5
|
Teh LK, Bertilsson L. Pharmacogenomics of CYP2D6: molecular genetics, interethnic differences and clinical importance. Drug Metab Pharmacokinet 2011; 27:55-67. [PMID: 22185816 DOI: 10.2133/dmpk.dmpk-11-rv-121] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CYP2D6 has received intense attention since the beginning of the pharmacogenetic era in the 1970s. This is because of its involvement in the metabolism of more than 25% of the marketed drugs, the large geographical and inter-ethnic differences in the genetic polymorphism and possible drug-induced toxicity. Many interesting reviews have been published on CYP2D6 and this review aims to reinstate the importance of the genetic polymorphism of CYP2D6 in different populations as well as some clinical implications and important drug interactions.
Collapse
Affiliation(s)
- Lay Kek Teh
- Pharmacogenomics Centre PROMISE, Faculty of Pharmacy, Universiti Teknologi MARA, Selangor DE, Malaysia.
| | | |
Collapse
|
6
|
Seripa D, Pilotto A, Panza F, Matera MG, Pilotto A. Pharmacogenetics of cytochrome P450 (CYP) in the elderly. Ageing Res Rev 2010; 9:457-74. [PMID: 20601196 DOI: 10.1016/j.arr.2010.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/28/2010] [Accepted: 06/01/2010] [Indexed: 12/22/2022]
Abstract
The genetics of cytochrome P450 (CYP) is a very active area of multidisciplinary research, overlapping the interest of medicine, biology and pharmacology, being the CYP enzyme system responsible for the metabolism of more than 80% of the commercially available drugs. Variations in CYP encoding genes are responsible for inter-individual differences in CYP production or function, with severe clinical consequences as therapeutic failures (TFs) and adverse drug reactions (ADRs), being ADRs worldwide primary causes of morbidity and mortality in elderly people. In fact, the prevalence of both TFs and ADRs strongly increased in the presence of multiple pharmacological treatments, a common status in subjects aging 65 years and over. The present article explored some basic concepts of human genetics that have important implications in the genetics of CYP. An attempted to transfer these basic concepts to the genetic data reported by the Home Page of The Human Cytochrome P450 (CYP) Allele Nomenclature Committee was also made, focusing on the current knowledge of CYP genetics. The status of what we know and what we need to know is the base for the clinical applications of pharmacogenetics, in which personalized drug treatments constituted the main aim, in particular in patients attending a geriatric ward.
Collapse
Affiliation(s)
- Davide Seripa
- Geriatric Unit & Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 1, 71013 San Giovanni Rotondo (FG), Italy.
| | | | | | | | | |
Collapse
|
7
|
Chiba J, Akaishi A, Ikeda R, Inouye M. Electrochemical detection of insertion/deletion mutations based on enhanced flexibility of bulge-containing duplexes on electrodes. Chem Commun (Camb) 2010; 46:7563-5. [PMID: 20852766 DOI: 10.1039/c0cc02371j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ferrocene-modified DNA probes formed fully matched duplexes and bulge-containing ones with wild-type and insertion/deletion-type complements of clinical importance, respectively. Cyclic voltammetry measurements revealed that the bulge-containing duplexes showed an increased flexibility compared to the fully matched duplexes. The difference in the bending elasticity could be read out electrochemically by square wave voltammetry.
Collapse
Affiliation(s)
- Junya Chiba
- Graduate School of Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan.
| | | | | | | |
Collapse
|
8
|
Abraham JE, Maranian MJ, Driver KE, Platte R, Kalmyrzaev B, Baynes C, Luccarini C, Shah M, Ingle S, Greenberg D, Earl HM, Dunning AM, Pharoah PDP, Caldas C. CYP2D6 gene variants: association with breast cancer specific survival in a cohort of breast cancer patients from the United Kingdom treated with adjuvant tamoxifen. Breast Cancer Res 2010; 12:R64. [PMID: 20731819 PMCID: PMC2949659 DOI: 10.1186/bcr2629] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 07/08/2010] [Accepted: 08/23/2010] [Indexed: 01/16/2023] Open
Abstract
Introduction Tamoxifen is one of the most effective adjuvant breast cancer therapies available. Its metabolism involves the phase I enzyme, cytochrome P4502D6 (CYP2D6), encoded by the highly polymorphic CYP2D6 gene. CYP2D6 variants resulting in poor metabolism of tamoxifen are hypothesised to reduce its efficacy. An FDA-approved pre-treatment CYP2D6 gene testing assay is available. However, evidence from published studies evaluating CYP2D6 variants as predictive factors of tamoxifen efficacy and clinical outcome are conflicting, querying the clinical utility of CYP2D6 testing. We investigated the association of CYP2D6 variants with breast cancer specific survival (BCSS) in breast cancer patients receiving tamoxifen. Methods This was a population based case-cohort study. We genotyped known functional variants (n = 7; minor allele frequency (MAF) > 0.01) and single nucleotide polymorphisms (SNPs) (n = 5; MAF > 0.05) tagging all known common variants (tagSNPs), in CYP2D6 in 6640 DNA samples from patients with invasive breast cancer from SEARCH (Studies of Epidemiology and Risk factors in Cancer Heredity); 3155 cases had received tamoxifen therapy. There were 312 deaths from breast cancer, in the tamoxifen treated patients, with over 18000 years of cumulative follow-up. The association between genotype and BCSS was evaluated using Cox proportional hazards regression analysis. Results In tamoxifen treated patients, there was weak evidence that the poor-metaboliser variant, CYP2D6*6 (MAF = 0.01), was associated with decreased BCSS (P = 0.02; HR = 1.95; 95% CI = 1.12-3.40). No other variants, including CYP2D6*4 (MAF = 0.20), previously reported to be associated with poorer clinical outcomes, were associated with differences in BCSS, in either the tamoxifen or non-tamoxifen groups. Conclusions CYP2D6*6 may affect BCSS in tamoxifen-treated patients. However, the absence of an association with survival in more frequent variants, including CYP2D6*4, questions the validity of the reported association between CYP2D6 genotype and treatment response in breast cancer. Until larger, prospective studies confirming any associations are available, routine CYP2D6 genetic testing should not be used in the clinical setting.
Collapse
Affiliation(s)
- Jean E Abraham
- Department of Oncology, Strangeways Research Laboratory, University of Cambridge, 2 Worts Causeway, Cambridge, CB1 8RN, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhou SF, Liu JP, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev 2009; 41:89-295. [PMID: 19514967 DOI: 10.1080/03602530902843483] [Citation(s) in RCA: 502] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pharmacogenetics is the study of how interindividual variations in the DNA sequence of specific genes affect drug response. This article highlights current pharmacogenetic knowledge on important human drug-metabolizing cytochrome P450s (CYPs) to understand the large interindividual variability in drug clearance and responses in clinical practice. The human CYP superfamily contains 57 functional genes and 58 pseudogenes, with members of the 1, 2, and 3 families playing an important role in the metabolism of therapeutic drugs, other xenobiotics, and some endogenous compounds. Polymorphisms in the CYP family may have had the most impact on the fate of therapeutic drugs. CYP2D6, 2C19, and 2C9 polymorphisms account for the most frequent variations in phase I metabolism of drugs, since almost 80% of drugs in use today are metabolized by these enzymes. Approximately 5-14% of Caucasians, 0-5% Africans, and 0-1% of Asians lack CYP2D6 activity, and these individuals are known as poor metabolizers. CYP2C9 is another clinically significant enzyme that demonstrates multiple genetic variants with a potentially functional impact on the efficacy and adverse effects of drugs that are mainly eliminated by this enzyme. Studies into the CYP2C9 polymorphism have highlighted the importance of the CYP2C9*2 and *3 alleles. Extensive polymorphism also occurs in other CYP genes, such as CYP1A1, 2A6, 2A13, 2C8, 3A4, and 3A5. Since several of these CYPs (e.g., CYP1A1 and 1A2) play a role in the bioactivation of many procarcinogens, polymorphisms of these enzymes may contribute to the variable susceptibility to carcinogenesis. The distribution of the common variant alleles of CYP genes varies among different ethnic populations. Pharmacogenetics has the potential to achieve optimal quality use of medicines, and to improve the efficacy and safety of both prospective and currently available drugs. Further studies are warranted to explore the gene-dose, gene-concentration, and gene-response relationships for these important drug-metabolizing CYPs.
Collapse
Affiliation(s)
- Shu-Feng Zhou
- School of Health Sciences, RMIT University, Bundoora, Victoria, Australia.
| | | | | |
Collapse
|
10
|
Di Patti F, Fanelli D, Pedersen R, Giuliani C, Torricelli F. Modelling the pharmacokinetics of tramadol: On the difference between CYP2D6 extensive and poor metabolizers. J Theor Biol 2008; 254:568-74. [DOI: 10.1016/j.jtbi.2008.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 06/09/2008] [Accepted: 06/11/2008] [Indexed: 11/16/2022]
|
11
|
Insights into drug metabolism by cytochromes P450 from modelling studies of CYP2D6-drug interactions. Br J Pharmacol 2007; 153 Suppl 1:S82-9. [PMID: 18026129 DOI: 10.1038/sj.bjp.0707570] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The cytochromes P450 (CYPs) comprise a vast superfamily of enzymes found in virtually all life forms. In mammals, xenobiotic metabolizing CYPs provide crucial protection from the effects of exposure to a wide variety of chemicals, including environmental toxins and therapeutic drugs. Ideally, the information on the possible metabolism by CYPs required during drug development would be obtained from crystal structures of all the CYPs of interest. For some years only crystal structures of distantly related bacterial CYPs were available and homology modelling techniques were used to bridge the gap and produce structural models of human CYPs, and thereby obtain useful functional information. A significant step forward in the reliability of these models came seven years ago with the first crystal structure of a mammalian CYP, rabbit CYP2C5, followed by the structures of six human enzymes, CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2D6 and CYP3A4, and a second rabbit enzyme, CYP2B4. In this review we describe as a case study the evolution of a CYP2D6 model, leading to the validation of the model as an in silico tool for predicting binding and metabolism. This work has led directly to the successful design of CYP2D6 mutants with novel activity-including creating a testosterone hydroxylase, converting quinidine from inhibitor to substrate, creating a diclofenac hydroxylase and creating a dextromethorphan O-demethylase. Our modelling-derived hypothesis-driven integrated interdisciplinary studies have given key insight into the molecular determinants of CYP2D6 and other important drug metabolizing enzymes.
Collapse
|
12
|
Rowland P, Blaney FE, Smyth MG, Jones JJ, Leydon VR, Oxbrow AK, Lewis CJ, Tennant MG, Modi S, Eggleston DS, Chenery RJ, Bridges AM. Crystal Structure of Human Cytochrome P450 2D6. J Biol Chem 2006; 281:7614-22. [PMID: 16352597 DOI: 10.1074/jbc.m511232200] [Citation(s) in RCA: 329] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450 2D6 is a heme-containing enzyme that is responsible for the metabolism of at least 20% of known drugs. Substrates of 2D6 typically contain a basic nitrogen and a planar aromatic ring. The crystal structure of human 2D6 has been solved and refined to 3.0A resolution. The structure shows the characteristic P450 fold as seen in other members of the family, with the lengths and orientations of the individual secondary structural elements being very similar to those seen in 2C9. There are, however, several important differences, the most notable involving the F helix, the F-G loop, the B'helix, beta sheet 4, and part of beta sheet 1, all of which are situated on the distal face of the protein. The 2D6 structure has a well defined active site cavity above the heme group, containing many important residues that have been implicated in substrate recognition and binding, including Asp-301, Glu-216, Phe-483, and Phe-120. The crystal structure helps to explain how Asp-301, Glu-216, and Phe-483 can act as substrate binding residues and suggests that the role of Phe-120 is to control the orientation of the aromatic ring found in most substrates with respect to the heme. The structure has been compared with published homology models and has been used to explain much of the reported site-directed mutagenesis data and help understand the metabolism of several compounds.
Collapse
Affiliation(s)
- Paul Rowland
- Department of Discovery Research, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Shiran MR, Chowdry J, Rostami-Hodjegan A, Ellis SW, Lennard MS, Iqbal MZ, Lagundoye O, Seivewright N, Tucker GT. A discordance between cytochrome P450 2D6 genotype and phenotype in patients undergoing methadone maintenance treatment. Br J Clin Pharmacol 2003; 56:220-4. [PMID: 12895196 PMCID: PMC1884285 DOI: 10.1046/j.1365-2125.2003.01851.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AIMS To assess CYP2D6 activity and genotype in a group of patients undergoing methadone maintenance treatment (MMT). METHODS Blood samples from 34 MMT patients were genotyped by a polymerase chain reaction-based method, and results were compared with CYP2D6 phenotype (n = 28), as measured by the molar metabolic ratio (MR) of dextromethorphan (DEX)/dextrorphan (DOR) in plasma. RESULTS Whereas 9% of patients (3/34) were poor metabolizers (PM) by genotype, 57% (16/28) were PM by phenotype (P < 0.005). Eight patients, who were genotypically extensive metabolizers (EM), were assigned as PM by their phenotype. The number of CYP2D6*4 alleles and sex were significant determinants of CYP2D6 activity in MMT patients, whereas other covariates (methadone dose, age, weight) did not contribute to variation in CYP2D6 activity. CONCLUSIONS There was a discordance between genotype and in vivo CYP2D6 activity in MMT patients. This finding is consistent with inhibition of CYP2D6 activity by methadone and may have implications for the safety and efficacy of other CYP2D6 substrates taken by MMT patients.
Collapse
Affiliation(s)
- M R Shiran
- Molecular Pharmacology and Pharmacogenetics, Division of Clinical Sciences (South), University of Sheffield, and Community Health Sheffield (CHS) Substance Misuse Services, Sheffield, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Shimizu T, Ochiai H, Asell F, Yokono Y, Kikuchi Y, Nitta M, Hama Y, Yamaguchi S, Hashimoto M, Taki K, Nakata K, Aida Y, Ohashi A, Ozawa N. Bioinformatics Research on Inter-racial Difference in Drug Metabolism II. Analysis on Relationship between Enzyme Activities of CYP2D6 and CYP2C19 and their Relevant Genotypes. Drug Metab Pharmacokinet 2003; 18:71-8. [PMID: 15618720 DOI: 10.2133/dmpk.18.71] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The enzyme activities of CYP2D6 and CYP2C19 show a genetic polymorphism, and the frequency of poor metabolizers (PMs) on these enzymes depends on races. We have analyzed frequencies of mutant alleles and PMs based on the published data in previous study (Shimizu, T. et al.: Bioinformatics research on inter-racial difference in drug metabolism, I. Analysis on frequencies of mutant alleles and poor metabolizers on CYP2D6 and CYP2C19.). The study shows that there were racial differences in the frequencies of each mutant allele and PMs. In the present study, the correlation between genotypes and drug-metabolizing enzyme activities was investigated. The result showed that enzyme activities varied according to the genotypes of subjects even in the same race. On the other hand, if subjects had the same genotypes, almost no racial differences were observed in drug-metabolizing enzyme activities. From these results, it was supposed that the racial differences in activities of these enzymes could be explained by the differences in distribution of genotypes. It would be possible to explain the racial differences in drug-metabolizing enzyme activities based on the differences on individual pharmacogenetic background information, not merely by comparison of frameworks such as races and nations.
Collapse
|
15
|
Shimizu T, Ochiai H, Asell F, Shimizu H, Saitoh R, Hama Y, Katada J, Hashimoto M, Matsui H, Taki K, Kaminuma T, Yamamoto M, Aida Y, Ohashi A, Ozawa N. Bioinformatics Research on Inter-racial Difference in Drug Metabolism I. Analysis on Frequencies of Mutant Alleles and Poor Metabolizers on CYP2D6 and CYP2C19. Drug Metab Pharmacokinet 2003; 18:48-70. [PMID: 15618719 DOI: 10.2133/dmpk.18.48] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The enzyme activities of CYP2D6 and CYP2C19 show a genetic polymorphism, and the frequency of poor metabolizers (PMs) on these enzymes depends on races. In the present study, the frequencies of mutant alleles and PMs in each race were analyzed based on information from published studies, considering the genetic polymorphisms of CYP2D6 and CYP2C19 as the causal factors of racial and inter-individual differences in pharmacokinetics. As a result, it was shown that there were racial differences in the frequencies of each mutant allele and PMs. The frequencies of PMs on CYP2D6 are 1.9% of Asians and 7.7% of Caucasians, and those of PMs on CYP2C19 are 15.8% of Asians and 2.2% of Caucasians. Based on the results, it was suggested that there would be racial differences in the frequencies of PM subjects whose blood concentrations might be higher for drugs metabolized by these enzymes. Additionally, it was suggested that enzyme activities would vary according to the number of functional alleles even in subjects judged to be extensive metabolizers (EMs). In the bridging study, genetic information regarding CYP2D6 and CYP2C19 of the subjects will help extrapolate foreign clinical data to a domestic population.
Collapse
|
16
|
Abstract
1. The cytochrome P450 monooxygenases, CYP2D6, CYP2C19, and CYP2C9, display polymorphism. CYP2D6 and CYP2C19 have been studied extensively, and despite their low abundance in the liver, they catalyze the metabolism of many drugs. 2. CYP2D6 has numerous allelic variants, whereas CYP2C19 has only two. Most variants are translated into inactive, truncated protein or fail to express protein. 3. CYP2C9 is expressed as the wild-type enzyme and has two variants, in each of which one amino acid residue has been replaced. 4. The nucleotide base sequences of the cDNAs of the three polymorphic genes and their variants have been determined, and the proteins derived from these genes have been characterized. 5. An absence of CYP2D6 and/or CYP2C19 in an individual produces a poor metabolizer (PM) of drugs that are substrates of these enzymes. 6. When two drugs that are substrates for a polymorphic CYP enzyme are administered concomitantly, each will compete for that enzyme and competitively inhibit the metabolism of the other substrate. This can result in toxicity. 7. Patients can be readily phenotyped or genotyped to determine their CYP2D6 or CYP2C19 enzymatic status. Poor metabolizers (PMs), extensive metabolizers (EMs), and ultrarapid metabolizers (URMs) can be identified. 8. Numerous substrates and inhibitors of CYP2D6, CYP2C19, and CYP2C9 are identified. 9. An individual's diet and age can influence CYP enzyme activity. 10. CYP2D6 polymorphism has been associated with the risk of onset of various illnesses, including cancer, schizophrenia, Parkinson's disease, Alzheimer's disease, and epilepsy.
Collapse
Affiliation(s)
- R T Coutts
- Department of Psychiatry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
17
|
Wormhoudt LW, Commandeur JN, Vermeulen NP. Genetic polymorphisms of human N-acetyltransferase, cytochrome P450, glutathione-S-transferase, and epoxide hydrolase enzymes: relevance to xenobiotic metabolism and toxicity. Crit Rev Toxicol 1999; 29:59-124. [PMID: 10066160 DOI: 10.1080/10408449991349186] [Citation(s) in RCA: 217] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this review, an overview is presented of the current knowledge of genetic polymorphisms of four of the most important enzyme families involved in the metabolism of xenobiotics, that is, the N-acetyltransferase (NAT), cytochrome P450 (P450), glutathione-S-transferase (GST), and microsomal epoxide hydrolase (mEH) enzymes. The emphasis is on two main topics, the molecular genetics of the polymorphisms and the consequences for xenobiotic metabolism and toxicity. Studies are described in which wild-type and mutant alleles of biotransformation enzymes have been expressed in heterologous systems to study the molecular genetics and the metabolism and pharmacological or toxicological effects of xenobiotics. Furthermore, studies are described that have investigated the effects of genetic polymorphisms of biotransformation enzymes on the metabolism of drugs in humans and on the metabolism of genotoxic compounds in vivo as well. The effects of the polymorphisms are highly dependent on the enzyme systems involved and the compounds being metabolized. Several polymorphisms are described that also clearly influence the metabolism and effects of drugs and toxic compounds, in vivo in humans. Future perspectives in studies on genetic polymorphisms of biotransformation enzymes are also discussed. It is concluded that genetic polymorphisms of biotransformation enzymes are in a number of cases a major factor involved in the interindividual variability in xenobiotic metabolism and toxicity. This may lead to interindividual variability in efficacy of drugs and disease susceptibility.
Collapse
Affiliation(s)
- L W Wormhoudt
- Leiden Amsterdam Center for Drug Research, Vrije Universiteit, Department of Pharmacochemistry, The Netherlands
| | | | | |
Collapse
|
18
|
Lo HS, Chen CH, Hogan EL, Kao KP, Wang V, Yan SH. Genetic polymorphism and Parkinson's disease in Taiwan: study of debrisoquine 4-hydroxylase (CYP2D6). J Neurol Sci 1998; 158:38-42. [PMID: 9667775 DOI: 10.1016/s0022-510x(98)00094-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Debrisoquine 4-hydroxylase (CYP2D6) is one of the cytochrome P450 enzyme families that catalyze the breakdown of a variety of exogenous and endogenous compounds. Previous reports have suggested that genetic polymorphisms of debrisoquine 4-hydroxylase are associated with susceptibility to Parkinson's disease (PD) in Caucasians. To determine if CYP2D6 also confers susceptibility to PD in Chinese patients, we carried out a study of genetic association using three polymorphic markers of the CYP2D6 gene, 188C/T, 1934G/A (mutant B), and 4268G/C. No differences of allele or genotype frequencies of these three polymorphisms were detected upon comparison of primary PD patients (n=53) with normal controls (n=94). The 1934A allele (mutant B), which accounts for the majority of poor metabolizers in Caucasians, is extremely rare in Chinese. Our data do not support the suggestion that the CYP2D6 gene is related to PD susceptibility in Chinese.
Collapse
Affiliation(s)
- H S Lo
- Department of Neuropsychiatry, Taiwan Adventist Hospital, Taipei
| | | | | | | | | | | |
Collapse
|
19
|
Løvlie R, Daly AK, Molven A, Idle JR, Steen VM. Ultrarapid metabolizers of debrisoquine: characterization and PCR-based detection of alleles with duplication of the CYP2D6 gene. FEBS Lett 1996; 392:30-4. [PMID: 8769309 DOI: 10.1016/0014-5793(96)00779-x] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Up to 7% of Caucasians may demonstrate ultrarapid metabolism of debrisoquine due to inheritance of alleles with duplicated functional CYP2D6 genes. Here we describe the genomic organization of the duplicated CYP2D6 genes in the 42 kb XbaI allele. We postulate that this duplication originates from a homologous, unequal cross-over event which involved two 29 kb XbaI wild-type alleles, and had break points within a 2.8 kb direct repeat (CYP-REP) flanking the CYP2D6 gene. Moreover, we have designed two different PCR assays for detection of alleles with duplicated CYP2D6 genes. Both assays correctly identified 29 out of 29 subjects positive for the 42 kb XbaI allele. No false negative or false positive reactions were observed.
Collapse
Affiliation(s)
- R Løvlie
- Center for Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- A K Daly
- Department of Pharmacological Sciences, University of Newcastle upon Tyne Medical School, United Kingdom
| | | | | | | |
Collapse
|