1
|
Ding J, Ye Z, Xu F, Hu X, Yu H, Zhang S, Tu Y, Zhang Q, Sun Q, Hua T, Lu ZL. Effects of top-down influence suppression on behavioral and V1 neuronal contrast sensitivity functions in cats. iScience 2022; 25:103683. [PMID: 35059603 PMCID: PMC8760559 DOI: 10.1016/j.isci.2021.103683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/16/2021] [Accepted: 12/20/2021] [Indexed: 02/09/2023] Open
Abstract
To explore the relative contributions of higher-order and primary visual cortex (V1) to visual perception, we compared cats' behavioral and V1 neuronal contrast sensitivity functions (CSF) and threshold versus external noise contrast (TvC) functions before and after top-down influence of area 7 (A7) was modulated with transcranial direct current stimulation (tDCS). We found that suppressing top-down influence of A7 with cathode-tDCS, but not sham-tDCS, reduced behavioral and neuronal contrast sensitivity in the same range of spatial frequencies and increased behavioral and neuronal contrast thresholds in the same range of external noise levels. The neuronal CSF and TvC functions were highly correlated with their behavioral counterparts both before and after the top-down suppression. Analysis of TvC functions using the Perceptual Template Model (PTM) indicated that top-down influence of A7 increased both behavioral and V1 neuronal contrast sensitivity by reducing internal additive noise and the impact of external noise. Top-down suppression lowers both behavioral and V1 neuronal CSF functions Top-down suppression raises both behavioral and V1 neuronal TvC functions The neuronal CSFs and TvCs are highly correlated with their behavioral counterparts Top-down influence lowers internal additive noise and impact of external noise in V1
Collapse
Affiliation(s)
- Jian Ding
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Zheng Ye
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Fei Xu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xiangmei Hu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Hao Yu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Shen Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Yanni Tu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Qiuyu Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Qingyan Sun
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Tianmiao Hua
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Zhong-Lin Lu
- Divison of Arts and Sciences, NYU Shanghai, Shanghai 200122, China.,Center for Neural Science and Department of Psychology, New York University, New York, NY 10003, USA.,NYU-ECNU Institute of Brain and Cognitive Science, NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
2
|
Sun JJ, Yang JW, Shyu BC. Current source density analysis of laser heat-evoked intra-cortical field potentials in the primary somatosensory cortex of rats. Neuroscience 2006; 140:1321-36. [PMID: 16675140 DOI: 10.1016/j.neuroscience.2006.03.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 02/20/2006] [Accepted: 03/14/2006] [Indexed: 11/20/2022]
Abstract
The role of the primary somatosensory cortex in thermal pain perception has been established. However, the cortical circuitry that mediates the thermo-nociceptive information processing has not been elucidated. The aim of present study was to investigate the intracortical synaptic currents in primary somatosensory cortex evoked by short laser pulses and to determine their transmission pathway. Noxious CO2 laser pulse stimuli or innocuous electrical and mechanical stimuli were delivered to the hind paw of halothane-anesthetized rats. Multi-channel field potentials were recorded simultaneously in primary somatosensory cortex and laminar-specific transmembrane currents were analyzed using a current source density method. A distinct spatial-temporal pattern of intra-cortical sink source currents was evoked by laser pulse stimuli. The amplitude of the early component was graded by laser energy output and influenced by contralateral signals, whereas the late components were not intensity-dependent and exhibited bilateral excitation. Intra-cortical current flows revealed that synaptic activation occurred initially at layers IV and VI separately and then was relayed transynaptically to the more superficial and the deeper layers. Latency, amplitude and intracortical distributions of the activated intra-cortical currents evoked by noxious stimuli differed significantly from those evoked by innocuous stimuli. Conduction velocity data together with the results of tetrodotoxin, capsaicin and morphine treatments indicated that the early and late components were mediated separately by A-delta and C fibers. Our results suggest that large and small diameter thermal nociceptive afferents generated laminar-specific intracortical synaptic currents in primary somatosensory cortex and that these excitatory synaptic currents were conveyed separately by lateral and medial thalamic nuclei.
Collapse
Affiliation(s)
- J J Sun
- Institute of Biomedical Sciences, Academia Sinica, Nan Kang, Taipei 11529, Taiwan, Republic of China
| | | | | |
Collapse
|
3
|
Abstract
The integration of the whole cerebral cortex and thalamus during forebrain activities that underlie different states of consciousness, requires pathways for the dispersion of thalamic activity across many cortical areas. Past theories have relied on the intralaminar nuclei as the sources of diffuse thalamocortical projections that could facilitate spread of activity across the cortex. A case is made for the presence of a matrix of superficially-projecting cells, not confined to the intralaminar nuclei but extending throughout the whole thalamus. These cells are distinguished by immunoreactivity for the calcium-binding protein, D28K calbindin, are found in all thalamic nuclei of primates and have increased numbers in some nuclei. They project to superficial layers of the cerebral cortex over relatively wide areas, unconstrained by architectonic boundaries. They generally receive subcortical inputs that lack the topographic order and physiological precision of the principal sensory pathways. Superimposed upon the matrix in certain nuclei only, is a core of cells distinguished by immunoreactivity for another calcium-binding protein, parvalbumin, These project in highly ordered fashion to middle layers of the cortex in an area-specific manner. They are innervated by subcortical inputs that are topographically precise and have readily identifiable physiological properties. The parvalbumin cells form the basis for sensory and other inputs that are to be used as a basis for perception. The calbindin cells, especially when recruited by corticothalamic connections, can form a basis for the engagement of multiple cortical areas and thalamic nuclei that is essential for the binding of multiple aspects of sensory experience into a single framework of consciousness.
Collapse
Affiliation(s)
- E G Jones
- Department of Anatomy and Neurobiology, University of California, Irvine 92697, USA
| |
Collapse
|
4
|
Angus-Leppan H, Olausson B, Boers P, Lambert GA. Convergence of afferents from superior sagittal sinus and tooth pulp on cells in the thalamus of the cat. Cephalalgia 1995; 15:191-9. [PMID: 7553808 DOI: 10.1046/j.1468-2982.1995.015003191.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have previously shown convergence of craniovascular and tooth pulp afferents in the cervical spinal cord of cats. This study looked for similar convergence in the thalamus. Fifty-four thalamic cells with input from tooth pulp, superior sagittal sinus, or both, were identified. Twenty-nine cells with tooth pulp and superior sagittal sinus input were located in the ventrobasal complex of the intralaminar nuclei. Most of these 29 cells were also excited by cooling the contralateral tooth pulp, and 21 had receptive fields on the contralateral face or forelimb. Twenty cells excited by stimulation of superior sagittal sinus, and not tooth pulp, were found in several nuclei. The 5 cells excited by stimulation of tooth pulp, but not sagittal sinus, were restricted to the ventrobasal complex. The data confirm convergence from sagittal sinus, tooth pulp, and skin in the thalamus of anaesthetized cats.
Collapse
Affiliation(s)
- H Angus-Leppan
- Institute of Neurological Sciences, Prince Henry and Prince of Wales Hospitals, School of Medicine, University of New South Wales, Australia
| | | | | | | |
Collapse
|
5
|
Olausson B, Shyu BC, Rydenhag B, Andersson S. Thalamic nociceptive mechanisms in cats, influenced by central conditioning stimuli. ACTA PHYSIOLOGICA SCANDINAVICA 1992; 146:49-59. [PMID: 1442127 DOI: 10.1111/j.1748-1716.1992.tb09392.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Field potentials and single cell activity evoked by tooth pulp (TP) stimulation were studied in the ventrobasal (VB) complex of the cat. The experiments were performed using a conditioning-test paradigm. Evoked cell activity or field potentials following TP stimulation was used as a test. Conditioning stimulus was given to different regions of the thalamic central lateral nucleus (CL). Conditioning electrical stimulation in medial (ML 2.8-3.6 mm) parts of CL induced a depression of the TP evoked response in 10 cells. Stimulation sites in lateral CL (ML 3.6-4.2 mm) induced facilitation in eight cells and decreased activity in seven cells. Tooth pulp evoked field potentials in thalamus were facilitated by a preceding stimulation in lateral CL. Cells in the lateral parts of CL are suggested to induce an increased activity in cells in the VB complex which mediate nociceptive information. This effect is suggested to be mediated via a CL induced disinhibition at a reticular thalamic (RE) or at a VB complex level. The medial parts of CL seem to give a traditional feedback inhibition on VB cells. Such an effect is also suggested to be mediated via the RE complex. The importance of these findings are discussed with relation to changes in the thalamus that may occur following long lasting nociceptive stimulation.
Collapse
Affiliation(s)
- B Olausson
- Department of Physiology, University of Göteborg, Sweden
| | | | | | | |
Collapse
|
6
|
Shyu BC, Olausson B, Rydenhag B. Field potential analysis of the cortical projection of the central lateral nucleus in the cat. ACTA PHYSIOLOGICA SCANDINAVICA 1989; 137:503-12. [PMID: 2603749 DOI: 10.1111/j.1748-1716.1989.tb08787.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A previous field potential study has indicated a monosynaptic projection of fibres from the central lateral nucleus (CL) to the mid-suprasylvian gyrus (MSSG). The present study, which is based on an analysis of current source density (CSD), aims to investigate further the sites of major localized synaptic activities in different layers of the MSSG after electrical stimulation in the CL. An initial positive surface potential was evoked in the MSSG with a latency of 3-5 ms and followed by a large negative potential with a peak latency of 8-15 ms. The initial positivity was only found in the rostral part of the MSSG, which corresponds to area 5. The positivity reversed in deeper layers. The CSD analysis showed a sink at a depth from 650 to 1050 microns. A corresponding source was found more superficially at 400-600 microns. This indicates that CL fibres have an excitatory synaptic termination on the soma or proximal dendrites of neurons in layers III and IV. The surface negative potential reversed at the border between layers II and III, suggesting a superficial CL projection. The CSD analysis of potentials in superficial layers showed a sink appearing between the pial surface and a depth of 350 microns, and a source lying in layers below. This indicates a depolarization of apical dendrites of cells in layers II and III. The superficial sink appeared in a large part of the MSSG. Application of a solution of 0.5% gamma-aminobutyric acid (GABA) on the surface of the cortex blocked the superficial sink and source and revealed a prominent sink current in layers III and IV in agreement with a deep termination of CL fibres. Application of a solution of 25 mM DL-2-amino-5-phosphono-valeric acid (APV) abolished CL-evoked cortical responses indicating that N-methyl-D-aspartate (NMDA) receptors are involved in the cortical activation. The CSD analysis confirms that CL has a wide superficial projection to the MSSG. It also confirms a deeper monosynaptic projection from CL to area 5.
Collapse
Affiliation(s)
- B C Shyu
- Department of Physiology, University of Gothenburg, Sweden
| | | | | |
Collapse
|