Matejovicova M, Shivalkar B, Vanhaecke J, Szilard M, Flameng W. Protein kinase C expression and subcellular distribution in chronic myocardial ischemia. Comparison of two different canine models.
Mol Cell Biochem 1999;
201:73-82. [PMID:
10630625 DOI:
10.1023/a:1007052232363]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We studied protein kinase C (PKC) isozyme expression and activity distribution in two models of chronically ischemic canine myocardium: (1) single vessel obstruction (SVO), produced by tight stenosis of LAD followed by preconditioning and acute ischemia (40 min); (2) three vessel obstruction (3VO), produced by LAD-stenosis and gradual occlusion of right coronary artery and left circumflex. In both models after 8 weeks of chronic ischemia the dogs were either sacrificed or had PTCA of the LAD with a follow up of another 4 weeks. Control dogs were sham operated. PKC activity was measured in subcellular fractions of tissue samples from anterior and posterior regions in the presence of histone and gamma-[32P]-ATP. PKC isozymes were detected by Western blotting. All regions perfused by the obstructed coronaries were dysfunctional at 8 weeks when compared to baseline, with improvement of anterior wall function after PTCA of LAD. PKC activity was elevated in the membrane fraction of SVO, but unchanged in the 3VO model. PKCs alpha, epsilon, and zeta prevailed in cytosol fraction of the controls (cytosol/membrane ratios were +/- 3.34, 1.38 and 4.56 for alpha, epsilon and zeta, respectively), consistent with PKC activity distribution, while delta was not detected. There was no significant difference between the groups concerning the relative membrane amount of the isozymes. PKCs alpha and epsilon were decreased in the cytosol fraction of both models at 8 weeks (for anterior region, by 56 and 57% in SVO and by 49 and 46% in 3VO, respectively) without there being any differences between anterior and posterior regions, and were low also in the PTCA group. PKC zeta distribution however varied between the two models. The amount of PKC zeta isozyme was downregulated by 45% after 8 weeks of chronic ischemia and returned towards the control values after PTCA in the anterior region of SVO, while it did not change in anterior wall after 8 weeks in 3VO but was significantly decreased (by 47%) in posterior region after PTCA. In conclusion, our results suggest modified PKC signalling in chronically ischemic canine myocardium.
Collapse