De Loof A, Vanden J, Janssen I. Hormones and the cytoskeleton of animals and plants.
INTERNATIONAL REVIEW OF CYTOLOGY 1996;
166:1-58. [PMID:
8881772 DOI:
10.1016/s0074-7696(08)62505-x]
[Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It is often overlooked that a cell can exert its specific functions only after it has acquired a specific morphology: function follows form. The cytoskeleton plays an important role in establishing this form, and a variety of hormones can influence it. The cytoskeletal framework has also been shown to function in a variety of cellular processes, such as cell motility (important for behavior), migration (important for the interrelationship between the endocrine and immune systems, e.g., chemotaxis), intracellular transport of particles, mitosis and meiosis, maintenance of cellular morphology, spatial distribution of cell organelles (e.g., nucleus and Golgi system), cellular responses to membrane events (e.g., endocytosis and exocytosis), intracellular communication including conductance of electrical signals, localization of mRNA, protein synthesis, and--more specifically in plants--ordered cell wall deposition, cytoplasmic streaming, and spindle function followed by phragmoplast function. All classes of hormones seem to make use of the cytoskeleton, either during their synthesis, transport, secretion, degradation, or when influencing their target cells. In this review special attention is paid to cytoskeleton-mediated effects of selected hormones related to growth, transepithelial transport, steroidogenesis, thyroid and parathyroid functioning, motility, oocyte maturation, and cell elongation in plants.
Collapse