1
|
Krabichler Q, Vega-Zuniga T, Carrasco D, Fernandez M, Gutiérrez-Ibáñez C, Marín G, Luksch H. The centrifugal visual system of a palaeognathous bird, the Chilean Tinamou (Nothoprocta perdicaria). J Comp Neurol 2017; 525:2514-2534. [PMID: 28256705 DOI: 10.1002/cne.24195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 11/10/2022]
Abstract
The avian centrifugal visual system, which projects from the brain to the retina, has been intensively studied in several Neognathous birds that have a distinct isthmo-optic nucleus (ION). However, birds of the order Palaeognathae seem to lack a proper ION in histologically stained brain sections. We had previously reported in the palaeognathous Chilean Tinamou (Nothoprocta perdicaria) that intraocular injections of Cholera Toxin B subunit retrogradely label a considerable number of neurons, which form a diffuse isthmo-optic complex (IOC). In order to better understand how this IOC-based centrifugal visual system is organized, we have studied its major components by means of in vivo and in vitro tracing experiments. Our results show that the IOC, though structurally less organized than an ION, possesses a dense core region consisting of multipolar neurons. It receives afferents from neurons in L10a of the optic tectum, which are distributed with a wider interneuronal spacing than in Neognathae. The tecto-IOC terminals are delicate and divergent, unlike the prominent convergent tecto-ION terminals in Neognathae. The centrifugal IOC terminals in the retina are exclusively divergent, resembling the terminals from "ectopic" centrifugal neurons in Neognathae. We conclude that the Tinamou's IOC participates in a comparable general IOC-retina-TeO-IOC circuitry as the neognathous ION. However, the connections between the components are structurally different and their divergent character suggests a lower spatial resolution. Our findings call for further comparative studies in a broad range of species for advancing our understanding of the evolution, plasticity and functional roles of the avian centrifugal visual system.
Collapse
Affiliation(s)
- Quirin Krabichler
- Lehrstuhl für Zoologie, Technische Universität München, Freising-Weihenstephan, Germany
| | - Tomas Vega-Zuniga
- Lehrstuhl für Zoologie, Technische Universität München, Freising-Weihenstephan, Germany
| | - Denisse Carrasco
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Maximo Fernandez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | - Gonzalo Marín
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - Harald Luksch
- Lehrstuhl für Zoologie, Technische Universität München, Freising-Weihenstephan, Germany
| |
Collapse
|
2
|
Dillingham CM, Guggenheim JA, Erichsen JT. The effect of unilateral disruption of the centrifugal visual system on normal eye development in chicks raised under constant light conditions. Brain Struct Funct 2016; 222:1315-1330. [PMID: 27535408 PMCID: PMC5368197 DOI: 10.1007/s00429-016-1279-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/22/2016] [Indexed: 12/02/2022]
Abstract
The centrifugal visual system (CVS) comprises a visually driven isthmic feedback projection to the retina. While its function has remained elusive, we have previously shown that, under otherwise normal conditions, unilateral disconnection of centrifugal neurons in the chick affected eye development, inducing a reduced rate of axial elongation that resulted in a unilateral hyperopia in the eye contralateral to the lesion. Here, we further investigate the role of centrifugal neurons in ocular development in chicks reared in an abnormal visual environment, namely constant light. The baseline ocular phenotype of constant light-reared chicks (n = 8) with intact centrifugal neurons was assessed over a 3-week post-hatch time period and, subsequently, compared to chicks raised in normal diurnal lighting (n = 8). Lesions of the isthmo-optic tract or sham surgeries were performed in another seventeen chicks, all raised under constant light. Ocular phenotyping was performed over a 21-day postoperative period to assess changes in refractive state (streak retinoscopy) and ocular component dimensions (A-scan ultrasonography). A pathway-tracing paradigm was employed to quantify lesion success. Chicks raised in constant light conditions with an intact CVS developed shallower anterior chambers combined with elongated vitreous chambers relative to chicks raised in normal diurnal lighting. Seven days following surgery to disrupt centrifugal neurons, a significant positive correlation between refractive error asymmetry between the eyes and lesion success was evident, characterized by hyperopia in the eye contralateral to the lesion. By 21 days post-surgery, these contralateral eyes had become emmetropic, while ipsilateral eyes had developed relative axial hyperopia. Our results provide further support for the hypothesis that the centrifugal visual system can modulate eye development.
Collapse
Affiliation(s)
| | - Jeremy Andrew Guggenheim
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, Wales, UK
| | - Jonathan Thor Erichsen
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, Wales, UK.
| |
Collapse
|
3
|
Wylie DR, Gutiérrez-Ibáñez C, Iwaniuk AN. Integrating brain, behavior, and phylogeny to understand the evolution of sensory systems in birds. Front Neurosci 2015; 9:281. [PMID: 26321905 PMCID: PMC4531248 DOI: 10.3389/fnins.2015.00281] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/28/2015] [Indexed: 12/29/2022] Open
Abstract
The comparative anatomy of sensory systems has played a major role in developing theories and principles central to evolutionary neuroscience. This includes the central tenet of many comparative studies, the principle of proper mass, which states that the size of a neural structure reflects its processing capacity. The size of structures within the sensory system is not, however, the only salient variable in sensory evolution. Further, the evolution of the brain and behavior are intimately tied to phylogenetic history, requiring studies to integrate neuroanatomy with behavior and phylogeny to gain a more holistic view of brain evolution. Birds have proven to be a useful group for these studies because of widespread interest in their phylogenetic relationships and a wealth of information on the functional organization of most of their sensory pathways. In this review, we examine the principle of proper mass in relation differences in the sensory capabilities among birds. We discuss how neuroanatomy, behavior, and phylogeny can be integrated to understand the evolution of sensory systems in birds providing evidence from visual, auditory, and somatosensory systems. We also consider the concept of a "trade-off," whereby one sensory system (or subpathway within a sensory system), may be expanded in size, at the expense of others, which are reduced in size.
Collapse
Affiliation(s)
- Douglas R. Wylie
- Neurosciences and Mental Health Institute, University of AlbertaEdmonton, AB, Canada
| | | | - Andrew N. Iwaniuk
- Department of Neuroscience, University of LethbridgeLethbridge, AB, Canada
| |
Collapse
|
4
|
Rosa Salva O, Mayer U, Vallortigara G. Roots of a social brain: Developmental models of emerging animacy-detection mechanisms. Neurosci Biobehav Rev 2015; 50:150-68. [DOI: 10.1016/j.neubiorev.2014.12.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 10/24/2022]
|
5
|
In memoriam: Josh Wallman, PhD, 1943-2012: editorial introducing the special issue of Experimental Eye Research in tribute to Josh Wallman. Exp Eye Res 2013; 114:1-5. [PMID: 23603612 DOI: 10.1016/j.exer.2013.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Gutiérrez-Ibáñez C, Iwaniuk AN, Lisney TJ, Faunes M, Marín GJ, Wylie DR. Functional implications of species differences in the size and morphology of the isthmo optic nucleus (ION) in birds. PLoS One 2012; 7:e37816. [PMID: 22666395 PMCID: PMC3362605 DOI: 10.1371/journal.pone.0037816] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/24/2012] [Indexed: 12/04/2022] Open
Abstract
In birds, there is a retinofugal projection from the brain to the retina originating from the isthmo optic nucleus (ION) in the midbrain. Despite a large number of anatomical, physiological and histochemical studies, the function of this retinofugal system remains unclear. Several functions have been proposed including: gaze stabilization, pecking behavior, dark adaptation, shifting attention, and detection of aerial predators. This nucleus varies in size and organization among some species, but the relative size and morphology of the ION has not been systematically studied. Here, we present a comparison of the relative size and morphology of the ION in 81 species of birds, representing 17 different orders. Our results show that several orders of birds, besides those previously reported, have a large, well-organized ION, including: hummingbirds, woodpeckers, coots and allies, and kingfishers. At the other end of the spectrum, parrots, herons, waterfowl, owls and diurnal raptors have relatively small ION volumes. ION also appears to be absent or unrecognizable is several taxa, including one of the basal avian groups, the tinamous, which suggests that the ION may have evolved only in the more modern group of birds, Neognathae. Finally, we demonstrate that evolutionary changes in the relative size and the cytoarchitectonic organization of ION have occurred largely independent of phylogeny. The large relative size of the ION in orders with very different lifestyles and feeding behaviors suggest there is no clear association with pecking behavior or predator detection. Instead, our results suggest that the ION is more complex and enlarged in birds that have eyes that are emmetropic in some parts of the visual field and myopic in others. We therefore posit that the ION is involved in switching attention between two parts of the retina i.e. from an emmetropic to a myopic part of the retina.
Collapse
|
7
|
What the bird's brain tells the bird's eye: the function of descending input to the avian retina. Vis Neurosci 2011; 28:337-50. [PMID: 21524338 DOI: 10.1017/s0952523811000022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
As Cajal discovered in the late 19th century, the bird retina receives a substantial input from the brain. Approximately 10,000 fibers originating in a small midbrain nucleus, the isthmo-optic nucleus (ION), terminate in each retina. The input to the ION is chiefly from the optic tectum which, in the bird, is the primary recipient of retinal input. These neural elements constitute a closed loop, the centrifugal visual system (CVS), beginning and ending in the retina, that delivers positive feedback to active ganglion cells. Several features of the system are puzzling. All fibers from the ION terminate in the ventral retina and an unusual axon-bearing amacrine cell, the target cell, is the postsynaptic partner of these fibers. While the rest of the CVS is orderly and retinotopic, target cell axons project seemingly at random, mostly to distant parts of the retina. We review here the most significant features of the anatomy and physiology of the CVS with a view to understanding its function. We suggest that many of the facts about this system, including some that are otherwise difficult to explain, can be accommodated within the hypothesis that the images of shadows cast on the ground or on objects in the environment, initiate a rapid and parallel search of the sky for a possible aerial predator. If a predator is located, shadow and predator would be temporarily linked together and tracked by the CVS.
Collapse
|
8
|
Non-visually evoked activity of isthmo-optic neurons in awake, head-unrestrained quail. Exp Brain Res 2009; 194:339-46. [PMID: 19183972 DOI: 10.1007/s00221-009-1703-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 01/04/2009] [Indexed: 10/21/2022]
Abstract
Changes in the internal state of the brain may modulate retinal function. In birds, most neurons in the isthmo-optic (IO) nucleus project their axons topographically into the contralateral retina, and activity in IO neurons enhances visual responses of retinal ganglion cells in the target retinal region. To elucidate the significance of this pathway, we recorded spikes of IO neurons in four awake Japanese quail using an implanted electrode assembly while recording unrestrained head movements. The IO neurons fired passively in response to visual stimuli in receptive fields and non-visually without visual stimuli or eye-head movements. Non-visually evoked activity was observed in the middle of eye-head fixation, as well as at about 200 ms before the onset of head saccades. Intensity of activity before onset of head saccades depended on the direction of motion of subsequent head saccades. Local retinal output may be enhanced by centrifugal signals before gaze shifts.
Collapse
|
9
|
Abstract
Our movements can hinder our ability to sense the world. Movements can induce sensory input (for example, when you hit something) that is indistinguishable from the input that is caused by external agents (for example, when something hits you). It is critical for nervous systems to be able to differentiate between these two scenarios. A ubiquitous strategy is to route copies of movement commands to sensory structures. These signals, which are referred to as corollary discharge (CD), influence sensory processing in myriad ways. Here we review the CD circuits that have been uncovered by neurophysiological studies and suggest a functional taxonomic classification of CD across the animal kingdom. This broad understanding of CD circuits lays the groundwork for more challenging studies that combine neurophysiology and psychophysics to probe the role of CD in perception.
Collapse
|
10
|
Repérant J, Ward R, Miceli D, Rio JP, Médina M, Kenigfest NB, Vesselkin NP. The centrifugal visual system of vertebrates: a comparative analysis of its functional anatomical organization. ACTA ACUST UNITED AC 2006; 52:1-57. [PMID: 16469387 DOI: 10.1016/j.brainresrev.2005.11.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 11/24/2005] [Accepted: 11/30/2005] [Indexed: 10/25/2022]
Abstract
The present review is a detailed survey of our present knowledge of the centrifugal visual system (CVS) of vertebrates. Over the last 20 years, the use of experimental hodological and immunocytochemical techniques has led to a considerable augmentation of this knowledge. Contrary to long-held belief, the CVS is not a unique property of birds but a constant component of the central nervous system which appears to exist in all vertebrate groups. However, it does not form a single homogeneous entity but shows a high degree of variation from one group to the next. Thus, depending on the group in question, the somata of retinopetal neurons can be located in the septo-preoptic terminal nerve complex, the ventral or dorsal thalamus, the pretectum, the optic tectum, the mesencephalic tegmentum, the dorsal isthmus, the raphé, or other rhombencephalic areas. The centrifugal visual fibers are unmyelinated or myelinated, and their number varies by a factor of 1000 (10 or fewer in man, 10,000 or more in the chicken). They generally form divergent terminals in the retina and rarely convergent ones. Their retinal targets also vary, being primarily amacrine cells with various morphological and neurochemical properties, occasionally interplexiform cells and displaced retinal ganglion cells, and more rarely orthotopic ganglion cells and bipolar cells. The neurochemical signature of the centrifugal visual neurons also varies both between and within groups: thus, several neuroactive substances used by these neurons have been identified; GABA, glutamate, aspartate, acetylcholine, serotonin, dopamine, histamine, nitric oxide, GnRH, FMRF-amide-like peptides, Substance P, NPY and met-enkephalin. In some cases, the retinopetal neurons form part of a feedback loop, relaying information from a primary visual center back to the retina, while in other, cases they do not. The evolutionary significance of this variation remains to be elucidated, and, while many attempts have been made to explain the functional role of the CVS, opinions vary as to the manner in which retinal activity is modified by this system.
Collapse
Affiliation(s)
- J Repérant
- CNRS UMR 5166, MNHN USM 0501, Département Régulation, Développement et Diversité Moléculaire du Muséum National d'Histoire Naturelle, C. P. 32, 7 rue Cuvier, 75231 Paris cedex 05, France.
| | | | | | | | | | | | | |
Collapse
|
11
|
Letelier JC, Mpodozis J, Marin G, Morales D, Henny P, Madrid C, Velasco M. Reversible mechanical fixation of eye position in awake head-restrained pigeons (Columba livia). J Neurosci Methods 1999; 91:67-71. [PMID: 10522825 DOI: 10.1016/s0165-0270(99)00073-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Here we describe a method to fix gaze positions and to significantly reduce saccadic oscillations in pigeons. The procedure consists of a mechanical immobilization of the eye through the use of an electromagnet that exerts a radial force upon a small metal rectangle glued to the dorsal part of the eye. The method can be used in avian visual neurophysiology in order to hold the eye immobilized for periods of time, long enough to map the properties of visual receptive fields and investigate the possible functions of saccadic oscillations.
Collapse
Affiliation(s)
- J C Letelier
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago.
| | | | | | | | | | | | | |
Collapse
|
12
|
Miceli D, Repérant J, Bavikati R, Rio JP, Volle M. Brain-stem afferents upon retinal projecting isthmo-optic and ectopic neurons of the pigeon centrifugal visual system demonstrated by retrograde transneuronal transport of rhodamine beta-isothiocyanate. Vis Neurosci 1997; 14:213-24. [PMID: 9147474 DOI: 10.1017/s0952523800011354] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Brain-stem afferents to the n. isthmo-opticus (NIO) and ectopic neurons (EN) of the centrifugal visual system (CVS) were determined in the pigeon using the retrograde transneuronal transport of the fluorescent dye Rhodamine beta-isothiocyanate (RITC) after its intraocular injection. In other experiments, either RITC was injected into various periocular tissues (controls) or the retrograde tracer Fluoro-gold (FG) was injected stereotaxically in the NIO. Following intraocular injections, the RITC retrograde labeling of cell bodies was observed contralaterally in the NIO and EN and transneuronally in layers 9/10 of the optic tectum, area ventralis-Tsai, zona peri-NIII, mesencephalic and pontine reticular formation (PRF), n. linearis caudalis-raphe, and bilaterally within a region referred to as zona peri-n.NVI (Zp-n.NVI) immediately underlying the abducens nerve nucleus. None of the above structures were labeled after RITC periocular injections. The FG labeling revealed that the tectal efferent neurons were mainly medium-sized, multipolar cells whose dendrites extended superficially to retino-recipient tectal layers 6 and 5. Quantitative measurements of the distribution of layers 9/10 RITC-labeled neurons indicated the highest densities to be localized within the ventral tectum corresponding to the representation of the dorsal retina and inferior visual field. We suggest that visual and nonvisual brain-stem afferents upon NIO and EN may play a role in the proposed mechanism of the avian CVS in attention, ground-feeding behavior, and modulation of retinal sensitivity.
Collapse
Affiliation(s)
- D Miceli
- Laboratoire de Neuropsychologie Expérimentale et Comparée, Université du Québec, Trois-Rivières, Canada
| | | | | | | | | |
Collapse
|
13
|
Uchiyama H, Yamamoto N, Ito H. Tectal neurons that participate in centrifugal control of the quail retina: a morphological study by means of retrograde labeling with biocytin. Vis Neurosci 1996; 13:1119-27. [PMID: 8961541 DOI: 10.1017/s0952523800007768] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
An avian retinopetal nucleus, the isthmo-optic nucleus (ION), is known to receive predominant inputs from the ipsilateral optic tectum. We injected biocytin into the ION in the Japanese quail, and retrogradely labeled tectal neurons projecting to the isthmo-optic (IO) neurons, or the tecto-IO neurons, with an extraordinary Golgi-like quality. Somata of the tecto-IO neurons were located in layer 9 of the tectum. The tecto-IO neurons did not have apical dendrites extending into superficial retino-recipient layers (layers 2-7), but had descending dendrites ramified in layers 9-12. They also possessed short ascending dendrites ramifying in the upper half of layer 9. This dendritic morphology suggests that main input to the tecto-IO neurons may not be of retinal origin. The tecto-IO neurons were spatially arranged in a regular pattern. Distances between neighboring tecto-IO neurons were 50-100 microns. The dendrites of each tecto-IO neuron were not widely dispersed in the horizontal plane, and were confined in a vertically oriented column of 100-200 microns diameter. They possessed axon collaterals extending horizontally in layers 12 and 13. The estimated total number of the tecto-IO neurons was approximately 7000-10,000, which is almost identical to the total cell number of the IO neurons. To label a small number of the tecto-IO terminals, biocytin was injected into a confined area of the optic tectum. The tecto-IO fibers densely arborized in a restricted space of the ION, which is comparable to the dimension of dendritic arborization of individual IO neurons. It is suggested that single tecto-IO neurons may make contact with single IO neurons. IO neurons are known to make synaptic contact with single target cells (association cells of Cajal) in the retina (Uchiyama & Ito, 1993; Uchiyama et al., 1995). The arborization pattern of the tecto-IO neurons' dendrites indicates that the tecto-IO neurons receive very local information in sensory and sensorimotor coordinate space. The morphology of the tecto-IO terminals suggests that the spatially confined information that drives the tecto-IO neurons is sent in parallel to single IO neurons, and then further to single retinal association cells of Cajal. Cellular-level restricted projection patterns of the tecto-isthmo-retinal system may reflect its function for centrifugal control of retinal function.
Collapse
Affiliation(s)
- H Uchiyama
- Department of Information and Computer Science, Faculty of Engineering, Kagoshima University, Japan
| | | | | |
Collapse
|
14
|
Miceli D, Repérant J, Rio JP, Medina M. GABA immunoreactivity in the nucleus isthmo-opticus of the centrifugal visual system in the pigeon: a light and electron microscopic study. Vis Neurosci 1995; 12:425-41. [PMID: 7544606 DOI: 10.1017/s0952523800008336] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The present study examined GABA immunoreactivity within the retinopetal nucleus isthmo-opticus (NIO) of the pigeon centrifugal visual system (CVS) using light- (immunohistofluorescence, peroxidase anti-peroxidase: PAP) and electron- (postembedding GABA immunogold) microscopic techniques. In some double-labeling experiments, the retrograde transport of the fluorescent dye rhodamine beta-isothiocyanate (RITC) after its intraocular injection was combined with GABA immunohistofluorescence. GABA-immunoreactive (-ir) somata were demonstrated within the neuropilar zone of the NIO adjacent to the centrifugal cell laminae whereas the centrifugal neurons were always immunonegative. A quantitative ultrastructural analysis was performed which distinguished five categories of axon terminal profiles (P1-5) on the basis of various cytological criteria: type of synaptic contact (symmetrical or asymmetrical); shape, size, and density of synaptic vesicles as well as the immunolabeling (positive or negative), size of profile and appearance of hyaloplasm. Numerous GABA-ir afferents to centrifugal neurons via axon terminal types P2a, P2c, and P3 were observed which comprised 47.1% of the total input. Moreover, the data suggest that some of the P2a terminals, which make up 26.4% of the input, stem from the intrinsic GABA-ir interneurons, whereas the latter receive P1, P3, but also P2 terminal input, indicating that interneurons may contact other interneurons via type P2a axon terminals. The results also suggest that the GABA-ir P3 or the immunonegative P1b and P5 axon terminals are of extrinsic origin arising from cells in the optic tectum whereas the P2c and P4 axon terminals are associated with extra-tectal input to the NIO. The GABAergic innervation of centrifugal neurons within the NIO may be the basis for the demonstrated facilitatory effect of the centrifugal output upon ganglion cell responses. This is relevant to hypotheses regarding CVS involvement in attentional mechanisms through selective enhancement of retinal sensitivity depending on the location of meaningful or novel stimuli.
Collapse
Affiliation(s)
- D Miceli
- Laboratoire de Neuropsychologie Expérimentale et Comparée, Université du Québec, Trois-Rivières, Canada
| | | | | | | |
Collapse
|
15
|
Abstract
The isthmo-optic system is less developed in birds feeding-on-the-wing, than in pecking avians. This was suggested previously. By intraocular horseradish peroxidase applications, we studied the central origin of this retino-petal system in thrush, haw finch, swift and swallow. Our data support the assumption on a correlation between feeding habits and the development of the isthmo-optic nucleus in adult avians as this brainstem region is more highly developed in thrush and finch than in swift and swallow. This is particularly relevant since the latter species is taxonomically related to the two pecking birds whereas it is unrelated to the swift that also feeds-on-the-wing.
Collapse
Affiliation(s)
- B Feyerabend
- Department of Neuroanatomy, School of Medicine, University of Göttingen, Germany
| | | | | |
Collapse
|
16
|
Uchiyama H, Barlow RB. Centrifugal inputs enhance responses of retinal ganglion cells in the Japanese quail without changing their spatial coding properties. Vision Res 1994; 34:2189-94. [PMID: 7941415 DOI: 10.1016/0042-6989(94)90101-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Centrifugal fibers originating in the midbrain innervate the avian retina. Stimulation of the centrifugal fibers enhances the responses of ganglion cells in the retinas of both chick and pigeon. The enhanced responses have been attributed to disinhibition, a reduction of the inhibitory surround component of the receptive fields of retinal ganglion cells. We found that stimulation of the centrifugal fibers in Japanese quail enhances the responses of retinal ganglion cells to drifting sine-wave gratings over a wide range of spatial frequencies. Our results do not support the idea that centrifugal inputs selectively influence receptive field surrounds. We also found that centrifugal inputs changed the temporal response properties of retinal ganglion cells by enhancing their responses to sine-wave gratings drifting across the retina at higher temporal frequencies (> 5 Hz). The result shows that centrifugal inputs from the midbrain can enhance responses of retinal ganglion cells without affecting the center-surround organization of their receptive fields. The centrifugal modulation of retinal responses may have a role in shifting visual attention.
Collapse
Affiliation(s)
- H Uchiyama
- Institute for Sensory Research, Syracuse University, NY 13244-5290
| | | |
Collapse
|
17
|
Nickla DL, Gottlieb MD, Marin G, Rojas X, Britto LR, Wallman J. The retinal targets of centrifugal neurons and the retinal neurons projecting to the accessory optic system. Vis Neurosci 1994; 11:401-9. [PMID: 7516180 DOI: 10.1017/s0952523800001747] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In birds, neurons of the isthmo-optic nucleus (ION), as well as "ectopic" neurons, send axons to the retina, where they synapse on cells in the inner nuclear layer (INL). Previous work has shown that centrifugal axons can be divided into two anatomically distinct types depending on their model of termination: either "convergent" or "divergent" (Ramon y Cajal, 1889; Maturana & Frenk, 1965). We show that cytochrome-oxidase histochemistry specifically labels "convergent" centrifugal axons and target neurons which appear to be amacrine cells, as well as three "types" of ganglion cells: two types found in the INL (displaced ganglion cells) and one in the ganglion cell layer. Labeled target amacrine cells have distinct darkly labeled "nests" of boutons enveloping the somas, are associated with labeled centrifugal fibers, and are confined to central retina. Lesions of the isthmo-optic tract abolish the cytochrome-oxidase labeling in the centrifugal axons and in the target amacrine cells but not in the ganglion cells. Cytochrome-oxidase-labeled ganglion cells in the INL are large; one type is oval and similar to the classical displaced ganglion cells of Dogiel, which have been reported to receive centrifugal input; the other type is rounder. Rhodamine beads injected into the accessory optic system results in retrograde label in both types of cells, showing that two distinct types of displaced ganglion cells project to the accessory optic system in chickens. The ganglion cells in the ganglion cell layer that label for cytochrome oxidase also project to the accessory optic system. These have proximal dendrites that ramify in the outer inner plexiform layer.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D L Nickla
- Department of Biology, City College of the City University of New York, New York 10031
| | | | | | | | | | | |
Collapse
|