1
|
Schweigel-Röntgen M, Kolisek M. SLC41 transporters--molecular identification and functional role. CURRENT TOPICS IN MEMBRANES 2014; 73:383-410. [PMID: 24745990 DOI: 10.1016/b978-0-12-800223-0.00011-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The solute carrier family 41 (SLC41) encompasses three members A1, A2, and A3. Based on their distant homology to the bacterial Mg²⁺ channel MgtE, all have been linked to Mg²⁺ transport. There is only very limited knowledge on the molecular biology and exact functions of SLC41A2 and SLC41A3. SLC41A1 is ubiquitously expressed and data on its functional and molecular properties, regulation, complex-forming ability, and spectrum of binding partners are available. SLC41A1 was recently identified as being the Na⁺/Mg²⁺ exchanger (NME)-a predominant Mg²⁺ efflux system. Mg²⁺-dependent and hormonal regulation of NME activity is now known to depend on the intracellular N terminus of SLC41A1 that is involved in Mg²⁺ sensing and contains phosphorylation sites for protein kinase (PK) A and PKC. Data showing a link between SLC41A1 and human disorders such as Parkinson's disease, nephronophthisis (induced by the null mutation c.698G>T in renal SLC41A1), and preeclampsia make the protein a candidate therapeutic target.
Collapse
Affiliation(s)
- Monika Schweigel-Röntgen
- Institute for Muscle Biology & Growth, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany.
| | - Martin Kolisek
- Institute of Veterinary Physiology, Free University Berlin, Berlin, Germany
| |
Collapse
|
2
|
Romani AMP. Cellular magnesium homeostasis. Arch Biochem Biophys 2011; 512:1-23. [PMID: 21640700 PMCID: PMC3133480 DOI: 10.1016/j.abb.2011.05.010] [Citation(s) in RCA: 359] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/16/2011] [Accepted: 05/17/2011] [Indexed: 12/12/2022]
Abstract
Magnesium, the second most abundant cellular cation after potassium, is essential to regulate numerous cellular functions and enzymes, including ion channels, metabolic cycles, and signaling pathways, as attested by more than 1000 entries in the literature. Despite significant recent progress, however, our understanding of how cells regulate Mg(2+) homeostasis and transport still remains incomplete. For example, the occurrence of major fluxes of Mg(2+) in either direction across the plasma membrane of mammalian cells following metabolic or hormonal stimuli has been extensively documented. Yet, the mechanisms ultimately responsible for magnesium extrusion across the cell membrane have not been cloned. Even less is known about the regulation in cellular organelles. The present review is aimed at providing the reader with a comprehensive and up-to-date understanding of the mechanisms enacted by eukaryotic cells to regulate cellular Mg(2+) homeostasis and how these mechanisms are altered under specific pathological conditions.
Collapse
Affiliation(s)
- Andrea M P Romani
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4970, USA.
| |
Collapse
|
3
|
Bucking C, Wood CM. Gastrointestinal transport of Ca2+ and Mg2+ during the digestion of a single meal in the freshwater rainbow trout. J Comp Physiol B 2007; 177:349-60. [PMID: 17211667 DOI: 10.1007/s00360-006-0134-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 11/16/2006] [Accepted: 11/20/2006] [Indexed: 11/29/2022]
Abstract
A diet containing an inert marker (ballotini beads, quantified by X-radiography) was used to quantify the transport of two essential minerals, Ca(2+) and Mg(2+) from the diet during the digestion and absorption of a single meal of commercial trout food (3% ration). Initially, net uptake of Ca(2+) was observed in the stomach followed by subsequent Ca(2+) fluxes along the intestine which were variable, but for the most part secretory. This indicated a net secretion of Ca(2+) along the intestinal tract resulting in a net assimilation of dietary Ca(2+) of 28%. Similar handling of Ca(2+) and Mg(2+) was observed along the gastrointestinal tract (GI), although net assimilation differed substantially between the cations, with Mg(2+) assimilation being close to 60%, mostly a result of greater uptake by the stomach. The stomach displayed the highest net uptake rates for both cations (1.5 and 1.3 mmol kg(-1) fish body mass for Ca(2+) and Mg(2+), respectively), occurring within 2 h following ingestion of the meal. Substantial secretions of both Ca(2+) and Mg(2+) were observed in the anterior intestine, which were attributed to bile and other intestinal secretions, while fluxes in the mid and posterior intestine were small and variable. The overall patterns of Ca(2+) and Mg(2+) handling in the GI tract were similar to those observed for Na(+) and K(+) (but not Cl(-)) in a previous study. Overall, these results emphasize the importance of dietary electrolytes in ionoregulatory homeostasis.
Collapse
Affiliation(s)
- Carol Bucking
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, Canada L8S 4K1.
| | | |
Collapse
|
4
|
Romani A. Regulation of magnesium homeostasis and transport in mammalian cells. Arch Biochem Biophys 2006; 458:90-102. [PMID: 16949548 DOI: 10.1016/j.abb.2006.07.012] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Accepted: 07/21/2006] [Indexed: 02/06/2023]
Abstract
Magnesium is the second most abundant cation within the cell after potassium and plays an important role in numerous biological functions. Several pieces of experimental evidence indicate that mammalian cells tightly regulate Mg(2+) content by precise control mechanisms operating at the level of Mg(2+) entry and efflux across the cell membrane, as well as at the level of intracellular Mg(2+) buffering and organelle compartmentation under resting conditions and following hormonal stimuli. This review will attempt to elucidate the mechanisms involved in hormonal-mediated Mg(2+) extrusion and accumulation, as well as the physiological implications of changes in cellular Mg(2+) content following hormonal stimuli.
Collapse
Affiliation(s)
- Andrea Romani
- Department of Physiology and Biophysics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4970, USA.
| |
Collapse
|
5
|
Schweigel M, Park HS, Etschmann B, Martens H. Characterization of the Na+-dependent Mg2+ transport in sheep ruminal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2006; 290:G56-65. [PMID: 16109844 DOI: 10.1152/ajpgi.00014.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study examines the routes by which Mg2+ leaves cultured ovine ruminal epithelial cells (REC). Mg2+-loaded (6 mM) REC were incubated in completely Mg2+-free solutions with varying Na+ concentrations, and the Mg2+ extrusion rate was calculated from the increase of the Mg2+ concentration in the incubation medium determined with the aid of the fluorescent probe mag-fura 2 (Na+ salt). In other experiments, REC were also studied for the intracellular free Mg2+ concentration ([Mg2+]i; using mag-fura 2), the intracellular Na+ concentration (using Na+-binding benzofuran isophthalate), the intracellular cAMP concentration ([cAMP]i; using an enzyme-linked immunoassay), and Na+/Mg2+ exchanger existence [using a monoclonal antibody (mAb) raised against the porcine red blood cell Na+/Mg2+ exchanger]. Mg2+-loaded REC show a Mg2+ efflux that was strictly dependent on extracellular Na+. The Mg2+ extrusion rate increased from 0.018+/-0.009 in a Na+-free medium to 0.73+/-0.3 mM.l cells-1.min-1 in a 145 mM Na+ medium and relates to extracellular Na+ concentration ([Na+]e) according to a typical saturation kinetic (Km value for [Na+]e=24 mM; maximal velocity=11 mM.l cells-1.min-1). Mg2+ efflux was reduced by imipramine (48%) and increased after application of dibutyryl-cAMP (55%) or PGE2 (17%). These effects are completely abolished in Na+-free media. Furthermore, an elevation of [cAMP]i led to an [Mg2+]i decrease that amounted to 375+/-105 microM. The anti-Na+/Mg2+ exchanger mAb inhibits Mg2+ extrusion; moreover, it detects a specific 70-kDa immunoreactive band in protein lysates of ovine REC. The data clearly demonstrate that a Na+/Mg2+ exchanger is existent in the cell membrane of REC. The transport protein is the main pathway (97%) for Mg2+ extrusion and can be assumed to play a considerable role in the process of Mg2+ absorption as well as the maintenance of the cellular Mg2+ homeodynamics.
Collapse
Affiliation(s)
- Monika Schweigel
- Department of Veterinary Physiology, Free University of Berlin, Germany.
| | | | | | | |
Collapse
|
6
|
Yamaoka K, Kameyama M. Regulation of L-type Ca2+ channels in the heart: overview of recent advances. Mol Cell Biochem 2004; 253:3-13. [PMID: 14619950 DOI: 10.1023/a:1026036931170] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Regulation of L-type Ca2+ channels is complex, because many factors, such as phosphorylation, divalent cations, and proteins, specified or unspecified, have been shown to affect the channel activities. An additional complication is that these factors interact with one another to achieve final outcomes. Recent molecular technologies have helped to shed light on the mechanisms governing the activity of L-type Ca2+ channels. In this review article, three major topics concerning regulation of L-type Ca2+ channels in the heart are discussed, i.e. c-AMP dependent channel phosphorylation, role of magnesium (Mg2+), and the phenomenon of channel run-down.
Collapse
Affiliation(s)
- Kaoru Yamaoka
- Department of Physiology, School of Medicine, Hiroshima University, Minami-Ku, Hiroshima, Japan.
| | | |
Collapse
|
7
|
Yago MD, Mañas M, Ember Z, Singh J. Nitric oxide and the pancreas: morphological base and role in the control of the exocrine pancreatic secretion. Mol Cell Biochem 2001; 219:107-20. [PMID: 11354241 DOI: 10.1023/a:1010834611480] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The distribution of nitric oxide synthase in both neuronal and non-neuronal pancreatic tissues and the role of nitric oxide in the control of exocrine pancreatic secretion are reviewed in this article. Earlier reports based on in vivo studies suggested that nitric oxide can affect the secretory activity of the exocrine pancreas through changes in pancreatic blood flow. More recently, the employment of either nitric oxide synthase inhibitors or nitric oxide donors in in vitro preparations has provided evidence that nitric oxide can exert a direct action on this gland independently on its vascular effects. Most research in this area seems to indicate that modulation of exocrine pancreatic function by nitric oxide is exerted via activation of guanylate cyclase and generation of cGMP, although other pathways cannot be excluded. Experiments performed over the last year in our laboratory reveal a novel and interesting mechanism based on the ability of nitric oxide to control the release of endogenous neurotransmitter in the pancreas and, subsequently, the nerve-mediated enzyme secretion.
Collapse
Affiliation(s)
- M D Yago
- Department of Biological Sciences, University of Central Lancashire, Preston, UK
| | | | | | | |
Collapse
|
8
|
Tashiro M, Konishi M. Na+ gradient-dependent Mg2+ transport in smooth muscle cells of guinea pig tenia cecum. Biophys J 1997; 73:3371-84. [PMID: 9414247 PMCID: PMC1181238 DOI: 10.1016/s0006-3495(97)78361-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Thin strips of guinea pig tenia cecum were loaded with the Mg2+ indicator furaptra, and the indicator fluorescence signals measured in Ca2+-free condition were converted to cytoplasmic-free Mg2+ concentration ([Mg2+]i). Lowering the extracellular Na+ concentration ([Na+]o) caused a reversible increase in [Mg2+]i, consistent with the inhibition of Na+ gradient-dependent extrusion of cellular Mg2+ (Na+-Mg2+ exchange). Curve-fitting analysis indicated that the relation between [Na+]o and the rate of rise in [Mg2+], had a Hill coefficient of approximately 3, a [Na+]o at the half-maximal rate of rise of approximately 30 mM, and a maximal rate of 0.16 +/- 0.01 microM/s (mean +/- SE, n = 6). Depolarization with 56 mM K+ shifted the curve slightly toward higher [Na+]o without significantly changing the maximal rate, suggesting that the Na+-Mg2+ exchange was inhibited by depolarization. The maximal rate would correspond to a flux of 0.15-0.4 pmol/cm2/s, if cytoplasmic Mg2+ buffering power (defined as the ratio of the changes in total Mg2+ and free Mg2+ concentrations) is assumed to be 2-5. Ouabain (1-5 microM) increased the intracellular Na+ concentration, as assessed with fluorescence of SBFI (sodium-binding benzofuran isophthalate, a Na+ indicator), and elevated [Mg2+]i. In ouabain-treated preparations, removal of extracellular Na+ rapidly increased [Mg2+]i, with an initial rate of rise roughly proportional to the degree of the Mg2+ load, and, probably, to the Na+ load caused by ouabain. The enhanced rate of rise in [Mg2+]i (up to approximately 1 microM/s) could be attributed to the Mg2+ influx as a result of the reversed Na+-Mg2+ exchange. Our results support the presence of a reversible and possibly electrogenic Na+-Mg2+ exchange in the smooth muscle cells of tenia cecum.
Collapse
Affiliation(s)
- M Tashiro
- Department of Physiology, The Jikei University School of Medicine, Tokyo, Japan.
| | | |
Collapse
|
9
|
Wolf FI, Di Francesco A, Covacci V, Cittadini A. Regulation of magnesium efflux from rat spleen lymphocytes. Arch Biochem Biophys 1997; 344:397-403. [PMID: 9264554 DOI: 10.1006/abbi.1997.0199] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Rat spleen lymphocytes (RSL) incubated at 37 degrees C in Mg-free medium (O-trans conditions) exibited Mg2+ efflux with apparent velocity of 0.2 nmol/mg protein/min. After 30 min, this process accounted for the mobilization of about 15% of cell total Mg2+. Half of the Mg2+ efflux depended on extracellular Na+ and was stimulated by cAMP. IFN-alpha significantly enhanced Mg2+ efflux under O-trans conditions as well as in the presence of physiological extracellular Mg2+. Pretreatment of RSL with indomethacin completely abolished IFN-alpha-induced Mg2+ efflux, suggesting a crucial role for cyclooxygenase-dependent arachidonate metabolism. On the other hand, pretreatment of RSL with the PKA inhibitor (Rp)8-Br-cAMPS prevented IFN-alpha stimulation of Mg2+ efflux, indicating the involvement of cAMP. Consistently, both IFN-alpha and exogenous PGE1 increased cAMP from 50 to 125 pmol/mg protein. Altogether these results show that IFN-alpha stimulates Mg2+ efflux by activating arachidonate metabolism and synthesis of prostaglandins. By influencing adenylcyclase activity, PGEs can eventually promote cAMP-dependent Mg2+ efflux, possibly through the activity of a Na-Mg antiport. In RSL, therefore, magnesium movements can be under the control of IFN-alpha and, perhaps, of other cytokines, suggesting the involvement of Mg2+ in cell response to receptor-mediated stimuli.
Collapse
Affiliation(s)
- F I Wolf
- Institute of General Pathology and Giovanni XXIII Cancer Research Centre, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | | |
Collapse
|
10
|
Abstract
Mg efflux from ferret red blood cells is stimulated when cells are Mg loaded, but the properties of efflux depend on the loading method. When cell Mg content is altered using A23187, which is subsequently washed away, Mg efflux is minimal until intracellular ionized [Mg] ([Mg2+]i) is greater than 0.9 mM, it then increases substantially with [Mg2+]i. Efflux from loaded cells falls as external [Na] ([Na]o) is reduced, and net Mg influx (against an electrochemical gradient) is seen when [Na]o is sufficiently low. Both influx and efflux are amiloride sensitive. Mg influx from media containing a normal or low [Na] is not affected by reducing [Mg2+]i to very low levels. When cells are Mg loaded by incubating them in media containing 5 mM Na and Mg, Mg efflux is again minimal until [Mg2+]i is greater than 0.9 mM and then it increases with [Mg2+]i, but at a rate approximately 4 times faster than in cells loaded using A23187. This efflux is little affected by 1 mM amiloride. Thus Mg-loading using A23187 reveals the [Mg2+]i dependence of a transporter which is amiloride sensitive, reversible and can operate against an electrochemical gradient, consistent with Na-Mg antiport. Loading by incubation in low-[Na] media activates a high-capacity Mg transporter which obscures the antiporter.
Collapse
Affiliation(s)
- P W Flatman
- Department of Physiology, University Medical School, Teviot Place, Edinburgh EH8 9AG, UK
| | | |
Collapse
|