1
|
Motor Control: A Conceptual Framework for Rehabilitation. Motor Control 2022; 26:497-517. [PMID: 35894963 DOI: 10.1123/mc.2022-0026] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/09/2022] [Accepted: 05/02/2022] [Indexed: 11/18/2022]
Abstract
There is a lack of conceptual and theoretical clarity among clinicians and researchers regarding the control of motor actions based on the use of the term "motor control." It is important to differentiate control processes from observations of motor output to improve communication and to make progress in understanding motor disorders and their remediation. This article clarifies terminology related to theoretical concepts underlying the control of motor actions, emphasizing how the term "motor control" is applied in neurorehabilitation. Two major opposing theoretical frameworks are described (i.e., direct and indirect), and their strengths and pitfalls are discussed. Then, based on the proposition that sensorimotor rehabilitation should be predicated on one comprehensive theory instead of an eclectic mix of theories and models, several solutions are offered about how to address controversies in motor learning, optimality, and adaptability of movement.
Collapse
|
2
|
Kajtaz E, Montgomery LR, McMurtry S, Howland DR, Nichols TR. Non-uniform upregulation of the autogenic stretch reflex among hindlimb extensors following lateral spinal lesion in the cat. Exp Brain Res 2021; 239:2679-2691. [PMID: 34218298 PMCID: PMC9805805 DOI: 10.1007/s00221-020-06016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/09/2020] [Indexed: 01/04/2023]
Abstract
Successful propagation throughout the step cycle is contingent on adequate regulation of whole-limb stiffness by proprioceptive feedback. Following spinal cord injury (SCI), there are changes in the strength and organization of proprioceptive feedback that can result in altered joint stiffness. In this study, we measured changes in autogenic feedback of five hindlimb extensor muscles following chronic low thoracic lateral hemisection (LSH) in decerebrate cats. We present three features of the autogenic stretch reflex obtained using a mechanographic method. Stiffness was a measure of the resistance to stretch during the length change. The dynamic index documented the extent of adaptation or increase of the force response during the hold phase, and the impulse measured the integral of the response from initiation of a stretch to the return to the initial length. The changes took the form of variable and transient increases in the stiffness of vastus (VASTI) group, soleus (SOL), and flexor hallucis longus (FHL), and either increased (VASTI) or decreased adaptation (GAS and PLANT). The stiffness of the gastrocnemius group (GAS) was also variable over time but remained elevated at the final time point. An unexpected finding was that these effects were observed bilaterally. Potential reasons for this finding and possible sources of increased excitability to this muscle group are discussed.
Collapse
Affiliation(s)
- E Kajtaz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30318, USA
| | - L R Montgomery
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, The University of Louisville, Louisville, KY, USA
- Research Service, Robley Rex VA Medical Center, Louisville, KY, USA
| | - S McMurtry
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30318, USA
| | - D R Howland
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, The University of Louisville, Louisville, KY, USA
- Research Service, Robley Rex VA Medical Center, Louisville, KY, USA
| | - T Richard Nichols
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30318, USA.
| |
Collapse
|
3
|
Deficits in corticospinal control of stretch reflex thresholds in stroke: Implications for motor impairment. Clin Neurophysiol 2020; 131:2067-2078. [DOI: 10.1016/j.clinph.2020.05.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/24/2020] [Accepted: 05/18/2020] [Indexed: 11/22/2022]
|
4
|
Tomita Y, Feldman AG, Levin MF. Referent control and motor equivalence of reaching from standing. J Neurophysiol 2016; 117:303-315. [PMID: 27784802 DOI: 10.1152/jn.00292.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/18/2016] [Indexed: 11/22/2022] Open
Abstract
Motor actions may result from central changes in the referent body configuration, defined as the body posture at which muscles begin to be activated or deactivated. The actual body configuration deviates from the referent configuration, particularly because of body inertia and environmental forces. Within these constraints, the system tends to minimize the difference between these configurations. For pointing movement, this strategy can be expressed as the tendency to minimize the difference between the referent trajectory (RT) and actual trajectory (QT) of the effector (hand). This process may underlie motor equivalent behavior that maintains the pointing trajectory regardless of the number of body segments involved. We tested the hypothesis that the minimization process is used to produce pointing in standing subjects. With eyes closed, 10 subjects reached from a standing position to a remembered target located beyond arm length. In randomly chosen trials, hip flexion was unexpectedly prevented, forcing subjects to take a step during pointing to prevent falling. The task was repeated when subjects were instructed to intentionally take a step during pointing. In most cases, reaching accuracy and trajectory curvature were preserved due to adaptive condition-specific changes in interjoint coordination. Results suggest that referent control and the minimization process associated with it may underlie motor equivalence in pointing. NEW & NOTEWORTHY Motor actions may result from minimization of the deflection of the actual body configuration from the centrally specified referent body configuration, in the limits of neuromuscular and environmental constraints. The minimization process may maintain reaching trajectory and accuracy regardless of the number of body segments involved (motor equivalence), as confirmed in this study of reaching from standing in young healthy individuals. Results suggest that the referent control process may underlie motor equivalence in reaching.
Collapse
Affiliation(s)
- Yosuke Tomita
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada.,Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal, Jewish Rehabilitation Hospital, Laval, Quebec, Canada
| | - Anatol G Feldman
- Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada; and.,Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal, Jewish Rehabilitation Hospital, Laval, Quebec, Canada
| | - Mindy F Levin
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada; .,Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal, Jewish Rehabilitation Hospital, Laval, Quebec, Canada
| |
Collapse
|
5
|
Feldman AG. Active sensing without efference copy: referent control of perception. J Neurophysiol 2016; 116:960-76. [PMID: 27306668 PMCID: PMC5009211 DOI: 10.1152/jn.00016.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 06/06/2016] [Indexed: 11/22/2022] Open
Abstract
Although action and perception are different behaviors, they are likely to be interrelated, as implied by the notions of perception-action coupling and active sensing. Traditionally, it has been assumed that the nervous system directly preprograms motor commands required for actions and uses a copy of them called efference copy (EC) to also influence our senses. This review offers a critical analysis of the EC concept by identifying its limitations. An alternative to the EC concept is based on the experimentally confirmed notion that sensory signals from receptors are perceived relative to referent signals specified by the brain. These referents also underlie the control of motor actions by predetermining where, in the spatial domain, muscles can work without preprogramming how they should work in terms of motor commands or EC. This approach helps solve several problems of action and explain several sensory experiences, including position sense and the sense that the world remains stationary despite changes in its retinal image during eye or body motion (visual space constancy). The phantom limb phenomenon and other kinesthetic illusions are also explained within this framework.
Collapse
Affiliation(s)
- Anatol G Feldman
- Department of Neuroscience and Institute of Biomedical Engineering, University of Montreal, Montreal, QC, Canada; and Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, QC, Canada
| |
Collapse
|
6
|
Turpin NA, Levin MF, Feldman AG. Implicit learning and generalization of stretch response modulation in humans. J Neurophysiol 2016; 115:3186-94. [PMID: 27052586 DOI: 10.1152/jn.01143.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/30/2016] [Indexed: 11/22/2022] Open
Abstract
Adaptation of neural responses to repeated muscle stretching likely represents implicit learning to minimize muscle resistance to perturbations. To test this hypothesis, the forearm was placed on a horizontal manipulandum. Elbow flexors or extensors compensated an external load and were stretched by 20° or 70° rotations. Participants were instructed not to intervene by intentionally modifying the muscle resistance elicited by stretching. In addition to phasic stretch reflexes (SRs), muscle stretching was associated with inhibitory periods (IPs) in the ongoing muscle activity starting at minimal latencies of ∼35 ms. The SR amplitude decreased dramatically across 5-12 trials and was not restored after a resting period of 3-5 min, despite the increase in stretch amplitude from 20° to 70°, but IPs remained present. When SRs were suppressed, stretching of originally nonstretched, antagonist muscles initiated after the rest period showed immediate SR suppression while IPs remained present in the first and subsequent trials. Adaptation to muscle stretching thus includes features characteristic of implicit learning such as memory consolidation and generalization. Adaptation may be achieved by central shifts in the threshold positions at which muscles begin to be activated. Shifts are thought to be prepared in advance and triggered with stretch onset. Threshold position resetting provides a comprehensive explanation of the results in the broader context of the control of posture, movement, and motor learning in the healthy and damaged nervous system.
Collapse
Affiliation(s)
- Nicolas A Turpin
- Department of Neurosciences, University of Montreal, Montreal, Quebec, Canada; Institute of Biomedical Engineering, University of Montreal, Montreal, Quebec, Canada; Center for Interdisciplinary Research in Rehabilitation (CRIR) of Greater Montreal, Montreal, Quebec, Canada
| | - Mindy F Levin
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada; and Center for Interdisciplinary Research in Rehabilitation (CRIR) of Greater Montreal, Montreal, Quebec, Canada
| | - Anatol G Feldman
- Department of Neurosciences, University of Montreal, Montreal, Quebec, Canada; Institute of Biomedical Engineering, University of Montreal, Montreal, Quebec, Canada; Center for Interdisciplinary Research in Rehabilitation (CRIR) of Greater Montreal, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Nichols TR, Bunderson NE, Lyle MA. Neural Regulation of Limb Mechanics: Insights from the Organization of Proprioceptive Circuits. NEUROMECHANICAL MODELING OF POSTURE AND LOCOMOTION 2016. [DOI: 10.1007/978-1-4939-3267-2_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Levin MF. Deficits in spatial threshold control of muscle activation as a window for rehabilitation after brain injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 826:229-49. [PMID: 25330894 DOI: 10.1007/978-1-4939-1338-1_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mindy F Levin
- School of Physical and Occupational Therapy, McGill University, 3654 Promenade SirWilliam Osler, Montreal, QC, H3G 1Y5, Canada,
| |
Collapse
|
9
|
The representation of egocentric space in the posterior parietal cortex. Behav Brain Sci 2013; 15 Spec No 4:691-700. [PMID: 23842408 DOI: 10.1017/s0140525x00072605] [Citation(s) in RCA: 244] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The posterior parietal cortex (PPC) is the most likely site where egocentric spatial relationships are represented in the brain. PPC cells receive visual, auditory, somaesthetic, and vestibular sensory inputs; oculomotor, head, limb, and body motor signals; and strong motivational projections from the limbic system. Their discharge increases not only when an animal moves towards a sensory target, but also when it directs its attention to it. PPC lesions have the opposite effect: sensory inattention and neglect. The PPC does not seem to contain a "map" of the location of objects in space but a distributed neural network for transforming one set of sensory vectors into other sensory reference frames or into various motor coordinate systems. Which set of transformation rules is used probably depends on attention, which selectively enhances the synapses needed for making a particular sensory comparison or aiming a particular movement.
Collapse
|
10
|
Bilateral coupling facilitates recovery of rhythmical movements from perturbation in healthy and post-stroke subjects. Exp Brain Res 2013; 227:263-74. [DOI: 10.1007/s00221-013-3509-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 04/02/2013] [Indexed: 10/26/2022]
|
11
|
Sangani SG, Raptis HA, Feldman AG. Subthreshold corticospinal control of anticipatory actions in humans. Behav Brain Res 2011; 224:145-54. [DOI: 10.1016/j.bbr.2011.05.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 05/28/2011] [Accepted: 05/31/2011] [Indexed: 11/26/2022]
|
12
|
|
13
|
Abstract
Abstract
This target article draws together two groups of experimental studies on the control of human movement through peripheral feedback and centrally generated signals of motor commands. First, during natural movement, feedback from muscle, joint, and cutaneous afferents changes; in human subjects these changes have reflex and kinesthetic consequences. Recent psychophysical and microneurographic evidence suggests that joint and even cutaneous afferents may have a proprioceptive role. Second, the role of centrally generated motor commands in the control of normal movements and movements following acute and chronic deafferentation is reviewed. There is increasing evidence that subjects can perceive their motor commands under various conditions, but that this is inadequate for normal movement; deficits in motor performance arise when the reliance on proprioceptive feedback is abolished either experimentally or because of pathology. During natural movement, the CNS appears to have access to functionally useful input from a range of peripheral receptors as well as from internally generated command signals. The unanswered questions that remain suggest a number of avenues for further research.
Collapse
|
14
|
Equilibrium-point hypothesis, minimum effort control strategy and the triphasic muscle activation pattern. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00073209] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
|
16
|
Successive approximation in targeted movement: An alternative hypothesis. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00072848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Abstract
AbstractEngineers use neural networks to control systems too complex for conventional engineering solutions. To examine the behavior of individual hidden units would defeat the purpose of this approach because it would be largely uninterpretable. Yet neurophysiologists spend their careers doing just that! Hidden units contain bits and scraps of signals that yield only arcane hints about network function and no information about how its individual units process signals. Most literature on single-unit recordings attests to this grim fact. On the other hand, knowing a system's function and describing it with elegant mathematics tell one very little about what to expect of interneuronal behavior. Examples of simple networks based on neurophysiology are taken from the oculomotor literature to suggest how single-unit interpretability might decrease with increasing task complexity. It is argued that trying to explain how any real neural network works on a cell-by-cell, reductionist basis is futile and we may have to be content with trying to understand the brain at higher levels of organization.
Collapse
|
18
|
Does the nervous system use equilibrium-point control to guide single and multiple joint movements? Behav Brain Sci 2011; 15:603-13. [PMID: 23302290 DOI: 10.1017/s0140525x00072538] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
|
20
|
Feldman AG, Krasovsky T, Baniña MC, Lamontagne A, Levin MF. Changes in the referent body location and configuration may underlie human gait, as confirmed by findings of multi-muscle activity minimizations and phase resetting. Exp Brain Res 2011; 210:91-115. [DOI: 10.1007/s00221-011-2608-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 02/14/2011] [Indexed: 11/29/2022]
|
21
|
Feldman AG. Space and time in the context of equilibrium‐point theory. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2010; 2:287-304. [DOI: 10.1002/wcs.108] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anatol G. Feldman
- Department of Physiology, University of Montreal, Montreal, Quebec, H3C 3T4, Canada
| |
Collapse
|
22
|
Raptis H, Burtet L, Forget R, Feldman AG. Control of wrist position and muscle relaxation by shifting spatial frames of reference for motoneuronal recruitment: possible involvement of corticospinal pathways. J Physiol 2010; 588:1551-70. [PMID: 20231141 PMCID: PMC2876809 DOI: 10.1113/jphysiol.2009.186858] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Accepted: 03/09/2010] [Indexed: 11/08/2022] Open
Abstract
It has previously been established that muscles become active in response to deviations from a threshold (referent) position of the body or its segments, and that intentional motor actions result from central shifts in the referent position. We tested the hypothesis that corticospinal pathways are involved in threshold position control during intentional changes in the wrist position in humans. Subjects moved the wrist from an initial extended to a final flexed position (and vice versa). Passive wrist muscle forces were compensated with a torque motor such that wrist muscle activity was equalized at the two positions. It appeared that motoneuronal excitability tested by brief muscle stretches was also similar at these positions. Responses to mechanical perturbations before and after movement showed that the wrist threshold position was reset when voluntary changes in the joint angle were made. Although the excitability of motoneurons was similar at the two positions, the same transcranial magnetic stimulus (TMS) elicited a wrist extensor jerk in the extension position and a flexor jerk in the flexion position. Extensor motor-evoked potentials (MEPs) elicited by TMS at the wrist extension position were substantially bigger compared to those at the flexion position and vice versa for flexor MEPs. MEPs were substantially reduced when subjects fully relaxed wrist muscles and the wrist was held passively in each position. Results suggest that the corticospinal pathway, possibly with other descending pathways, participates in threshold position control, a process that pre-determines the spatial frame of reference in which the neuromuscular periphery is constrained to work. This control strategy would underlie not only intentional changes in the joint position, but also muscle relaxation. The notion that the motor cortex may control motor actions by shifting spatial frames of reference opens a new avenue in the analysis and understanding of brain function.
Collapse
Affiliation(s)
- Helli Raptis
- Department of Physiology, University of Montreal, Montreal, QC, H3S 2J4, Canada.
| | | | | | | |
Collapse
|
23
|
What does body configuration in microgravity tell us about the contribution of intra- and extrapersonal frames of reference for motor control? Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00040905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe authors report that the reorganization of body configuration during weightlessness is based on an intrapersonal frame of reference such as the configuration of the support surface and the position of the body's center of gravity. These results stress the importance of “knowledge” of the state of internal geometric structures, which cannot be directly signalled by specific receptors responsible for direct dialogue with the physical external world.
Collapse
|
24
|
Reciprocal and coactivation commands are not sufficient to describe muscle activation patterns. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00040802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractRecent results have shown that the relative activation of muscles is different for isometric contractions and for movements. These results exclude an explanation of muscle activation patterns by a combination ofreciprocal and coactivation commands. These results also indicate that joint stiffness is not uniquely determined and that it may be different for isometric contractions and movements.
Collapse
|
25
|
Frames of reference interact and are task-dependent. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00040887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractThe problem for the CNS in any particular movement task is to coordinate the various frames of reference appropriate to the task. Control variables are determined by this coordination. The coordination problem varies greatly from task to task, and so no single set of control variables is likely to account for a broad range of movement tasks.
Collapse
|
26
|
Abstract
AbstractUnderstanding of the λ model has greatly increased in recent years as evidenced by most of the commentaries. Some commentators underscored the potential of the model to integrate aspects of different sensorimotor systems in the production of movement. Other commentators focused on not-yet-fully-developed parts of the model. A few persisted in misunderstanding some of its basic concepts, and on these grounds they reject it. In responding to commentaries we continue to elaborate on some fundamental points of the model, especially control variables, the idea of movement production by shifting the positional frame of reference and the hypothesis of biomechanical correspondence in motor control. We also continue to develop our ideas on the intrinsic generation of the frame of reference associated with external space and utilized for the control of arm movement and locomotion. The dynamic principles underlying the model are discussed in light of the dynamical systems approach.
Collapse
|
27
|
Grip force adjustments during rapid hand movements suggest that detailed movement kinematics are predicted. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00040796] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe λ model suggests that detailed kinematics arise from changes in control variables and need not be explicitly planned. However, we have shown that when moving a grasped object, grip force is precisely modulated in phase with acceleration-dependent inertial load. This suggests that the motor system can predict detailed kinematics. This prediction may be based on a forward model of the dynamics of the loaded limb.
Collapse
|
28
|
Let us accept a “controlled trade-off” model of motor control. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00040978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe trade-off between force and length of muscle as adjusted by neural signals is a critical fact in the dynamics of motor control. Whether we call it “length-tension effect,” “feedback-like,” “invariant condition,” or “spring-like” is unimportant. We must not let semantics or details of representation obscure the basic physics of effects introduced by this trade-off in muscle.
Collapse
|
29
|
Equilibrium-point control? Yes! Deterministic mechanisms of control? No! Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00040899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe equilibrium-point hypothesis (the λ-model) is superior to all other models of single-joint control and provides deep insights into the mechanisms of control of multi-joint movements. Attempts at associating control variables with neurophysiological variables look confusing rather than promising. Probabilistic mechanisms may play an important role in movement generation in redundant systems.
Collapse
|
30
|
The unobservability of central commands: Why testing hypotheses is so difficult. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00040863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe experiments Feldman and Levin suggest do not definitively test their proposed solution to the problem of selecting muscle activations. Their test of the movement directions that elicit EMG activity can be interpreted without regard to the form of the central commands, and their fast elbow flexion test is based on a forward computation that obscures the insensitivity of the predicted trajectory to the details of the putative commands.
Collapse
|
31
|
Biological variability and control of movements via δλ. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00041078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThree issues related to Feldman and Levin's treatment of biological variability are discussed. We question the usefulness of the indirect component of δλ. We suggest that trade-offs between speed and accuracy in aimed movements support identification of δλ, rather than λ, as a control variable. We take issue with the authors' proposal for resolving redundancy in multi-joint movements, given recent data.
Collapse
|
32
|
Abstract
AbstractWe emphasize the relevance to cognitive psychology of Feldman and Levin's theoretical position. Traditional views of motor control have failed to clearly separate “production control” at the level of motor command, based on task-independent CV (control variables), from intentional “product control” based on task-dependent parameters. Because F&L's approach concentrates on the first process (trajectory formation), it can distinguish the product control stage.
Collapse
|
33
|
Abstract
AbstractThe following questions are discussed: (1) Who determines the nature of “control variables”? (2) Is the “positional monopoly” healthy? (3) Does a descending command alter reflex threshold alone without eoncomitantly altering stiffness? (4) How does the CNS deal with history-dependent effects? (5) Should we abandon the idea that the CNS controls classical Newtonian variables such as muscle length?
Collapse
|
34
|
Abstract
AbstractGeneralizing the notion that muscles are positional frames of reference, a high-dimensional muscle space is defined for multi-muscle systems with an embedded low-dimensional motor manifold of functional articulators. A central representation of such a manifold is proposed as computational body schema. The example of the jaw-tongue system is presented, discussing the relation of functional articulators with kinematic invariances and control problems.
Collapse
|
35
|
Abstract
AbstractThe spring-like behaviour of a joint following a sudden change of torque is partly a result of the elastic properties of tendons. A large fall in a muscle with a long tendon may be accompanied by tendon recoil causing joint movements as large as 20°.
Collapse
|
36
|
Command invariants and the frame of reference for human movement. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00040942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractWe describe a solution to the redundancy problem related to that proposed in Feldman & Levin's target article. We suggest that the system may use a fixed mapping between commands organized at the level of degrees of freedom and commands to individual muscles. This proposal eliminates the need to maintain an explicit representation of musculoskeletalgeometry in planning movements.
Collapse
|
37
|
Frameworks on shifting sands. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00040875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractFeldman and Levin present a model for movement control in which the system is said to seek equilibrium points, active movement being produced by shifting frames of reference in space. It is argued that whatever merit this model might have is limited to an understanding of “the how” and not “the why” we move. In this way the authors seem to be forced into a dualistic position leaving the upper level of the proposed control hierarchy “floating.”
Collapse
|
38
|
Conservative or nonconservative control schemes. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00040747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe conservative strategy proposed by the authors suggests a solution of the degrees-of-freedom problem of the controller. However, several simple motor control tasks cannot be explained by this strategy. A nonconservative strategy, in which more parameters of the control signal vary, can account for these simple motor tasks. However, the simplicity that distinguishes the proposed model from many others is lost.
Collapse
|
39
|
Abstract
AbstractA hypothesis about sensorimotor integration (the λ model) is described and applied to movement control and kinesthesia. The central idea is that the nervous system organizes positional frames of reference for the sensorimotor apparatus and produces active movements by shifting the frames in terms of spatial coordinates. Kinematic and electromyographic patterns are not programmed, but emerge from the dynamic interaction among the system s components, including external forces within the designated frame of reference. Motoneuronal threshold properties and proprioceptive inputs to motoneurons may be cardinal components of the physiological mechanism that produces positional frames of reference. The hypothesis that intentional movements are produced by shifting the frame of reference is extended to multi-muscle and multi-degrees-of-freedom systems with a solution of the redundancy problem that allows the control of a joint alone or in combination with other joints to produce any desired limb configuration and movement trajectory. The model also implies that for each motor behavior, the nervous system uses a strategy that minimizes the number of changeable control variables and keeps the parameters of these changes invariant. Examples are provided of simulated kinematic and electromyographic signals from single- and multi-joint arm movements produced by suggested patterns of control variables. Empirical support is provided and additional tests of the model are suggested. The model is contrasted with others based on the ideas of programming of motoneuronal activity, muscle forces, stiffness, or movement kinematics.
Collapse
|
40
|
Abstract
AbstractExamination of infant spontaneous and goal-directed arm movements supports Feldman and Levin's hypothesis of a functional hierarchy. Early infant movements are dominated by biomechanical and dynamic factors without external frames of reference. Development involves not only learning to generate these frames of reference, but also protecting the higher-level goal of the movement from internal and external perturbations.
Collapse
|
41
|
Spatial frames for motor control would be commensurate with spatial frames for vision and proprioception, but what about control of energy flows? Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00040966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractThe model identifies a spatial coordinate frame within which the sensorimotor apparatus produces movement. Its spatial nature simplifies its coupling with spatial reference frames used concurrently by vision and proprioception. While the positional reference frame addresses the performance of spatial tasks, it seems to have little to say about movements involving energy expenditure as the principle component of the task.
Collapse
|
42
|
Interneurons as backseat drivers and the elusive control variable. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00040954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractIt is proposed here that the spinal network of proprioceptive feedback from length and force receptors constitutes the mechanism underlying the coordination of activation thresholds for muscles acting about the same and neighboring joints. For the most part, these circuits come between motoneurons and supraspinal signals, invalidating the idea that the activation thresholds constitute control variables for the motor system.
Collapse
|
43
|
Two joints are more than twice one joint. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00041017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractAn alternative multi-joint extension to the lambda model is proposed. According to this extension, the activity of a muscle depends not only on the difference between lambda and length of that muscle, but also on the difference between lambda and length of other muscles. This 2-D extension can describe more neurophysiological experiments than the extension proposed in the target article.
Collapse
|
44
|
Abstract
AbstractImportant similarities exist between the dynamical concepts implicit in Feldman & Levin's extended λ model and those basic to a dynamical systems approach. We argue that careful application of the key concepts of control and order parameters, equilibria, and stability, can relate known facts of neuromuscular processes to the observables of functional, task-specific behavior.
Collapse
|
45
|
Abstract
AbstractModels of central control variables (CVs) that are expressed in positional reference frames and rely on proprioception as the dominant specifier of muscle activation patterns have not yet been shown to be adequate for the description of fast, voluntary movement, even of single joints. An alternative model with illustrative data is proposed.
Collapse
|
46
|
Abstract
AbstractKinematic properties of reaching movements reflect constraints imposed on the joint angles. Contemporary models present solutions to the redundancy problem by a pseudoinverse procedure (Whitney 1969) or without any inversion (Berkenblit et al. 1986). Feldman & Levin suggest a procedure based on a regular inversion. These procedures are considered as an outcome of a more general approach.
Collapse
|
47
|
Abstract
AbstractThe concept of a conservative control strategy minimizing the number of degrees of freedom used is criticised with reference to 3-D simple reaching and grasping experiments. The vector error in a redundant system would not be the prime controlled variable, but rather the posture for reaching, as exemplified by nearly straight displacements in joint space as opposed to curved ones in task space.
Collapse
|
48
|
Is λ an appropriate control variable for locomotion? Behav Brain Sci 2010. [DOI: 10.1017/s0140525x0004084x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe lambda model predicts that the command received by each motor nucleus during locomotion is specific for the joint at which its muscle acts and is independent of external conditions. However, investigation of the commands received by motor nuclei during fictive locomotion and of the sensitivity of these commands to feedback from the limb during locomotion indicates that neither condition is satisfied.
Collapse
|
49
|
How far should we extend the equilibrium point (lambda) hypothesis? Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00041066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractA key feature of the lambda model is the hypothesis of a local spring-like muscle-reflex system defined by a central control variable that has units of position. This is intriguing, especially for a study of postural stability in large-scale systems, but it has limited direct application to skilled everyday movements. If movement is considered as a goal-directed, neuro-optimization problem, however, theavailabilityof lambda-like peripheral models (vs. conventional musculoskeletal models) deserves exploration.
Collapse
|
50
|
Reach-to-grasp movement as a minimization process. Exp Brain Res 2009; 201:75-92. [DOI: 10.1007/s00221-009-2012-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Accepted: 09/07/2009] [Indexed: 11/27/2022]
|