1
|
DERKSEN JAN, RUTTEN TWAN, VAN AMSTEL TON, DE WIN ANNA, DORIS FIONA, STEER MARTIN. Regulation of pollen tube growth. ACTA ACUST UNITED AC 2013. [DOI: 10.1111/j.1438-8677.1995.tb00773.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
2
|
Hafidh S, Breznenová K, Růžička P, Feciková J, Čapková V, Honys D. Comprehensive analysis of tobacco pollen transcriptome unveils common pathways in polar cell expansion and underlying heterochronic shift during spermatogenesis. BMC PLANT BIOLOGY 2012; 12:24. [PMID: 22340370 PMCID: PMC3305590 DOI: 10.1186/1471-2229-12-24] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 02/16/2012] [Indexed: 05/03/2023]
Abstract
BACKGROUND Many flowering plants produce bicellular pollen. The two cells of the pollen grain are destined for separate fates in the male gametophyte, which provides a unique opportunity to study genetic interactions that govern guided single-cell polar expansion of the growing pollen tube and the coordinated control of germ cell division and sperm cell fate specification. We applied the Agilent 44 K tobacco gene chip to conduct the first transcriptomic analysis of the tobacco male gametophyte. In addition, we performed a comparative study of the Arabidopsis root-hair trichoblast transcriptome to evaluate genetic factors and common pathways involved in polarized cell-tip expansion. RESULTS Progression of pollen grains from freshly dehisced anthers to pollen tubes 4 h after germination is accompanied with > 5,161 (14.9%) gametophyte-specific expressed probes active in at least one of the developmental stages. In contrast, > 18,821 (54.4%) probes were preferentially expressed in the sporophyte. Our comparative approach identified a subset of 104 pollen tube-expressed genes that overlap with root-hair trichoblasts. Reverse genetic analysis of selected candidates demonstrated that Cu/Zn superoxide dismutase 1 (CSD1), a WD-40 containing protein (BP130384), and Replication factor C1 (NtRFC1) are among the central regulators of pollen-tube tip growth. Extension of our analysis beyond the second haploid mitosis enabled identification of an opposing-dynamic accumulation of core regulators of cell proliferation and cell fate determinants in accordance with the progression of the germ cell cycle. CONCLUSIONS The current study provides a foundation to isolate conserved regulators of cell tip expansion and those that are unique for pollen tube growth to the female gametophyte. A transcriptomic data set is presented as a benchmark for future functional studies using developing pollen as a model. Our results demonstrated previously unknown functions of certain genes in pollen-tube tip growth. In addition, we highlighted the molecular dynamics of core cell-cycle regulators in the male gametophyte and postulated the first genetic model to account for the differential timing of spermatogenesis among angiosperms and its coordination with female gametogenesis.
Collapse
Affiliation(s)
- Said Hafidh
- Laboratory of Pollen Biology, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Praha 6, Czech Republic
| | - Katarína Breznenová
- Laboratory of Pollen Biology, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Praha 6, Czech Republic
| | - Petr Růžička
- Laboratory of Pollen Biology, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Praha 6, Czech Republic
| | - Jana Feciková
- Laboratory of Pollen Biology, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Praha 6, Czech Republic
| | - Věra Čapková
- Laboratory of Pollen Biology, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Praha 6, Czech Republic
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Praha 6, Czech Republic
- Department of Plant Experimental Biology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44 Praha 2, Czech Republic
| |
Collapse
|
3
|
Sheoran IS, Pedersen EJ, Ross ARS, Sawhney VK. Dynamics of protein expression during pollen germination in canola (Brassica napus). PLANTA 2009; 230:779-93. [PMID: 19629521 DOI: 10.1007/s00425-009-0983-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 07/06/2009] [Indexed: 05/15/2023]
Abstract
The proteome of mature (MP) and in vitro germinating pollen (GP) of canola (Brassica napus) were analyzed using the DIGE technology with the objective of identifying proteins and their function in pollen germination. Of the 2,238 protein spots detected in gel images, 344 were differentially expressed in MP and GP samples of which 165 were subjected to MALDI-TOF/TOF and 130 were successfully identified using the NCBInr and Brassica EST databases. The major proteins up-regulated in GP, relative to MP, have roles in carbohydrate metabolism, protein metabolism, and cell wall remodeling. Others with roles in cytoskeleton dynamics, nucleotide and amino acid metabolism, signal transduction, and stress response also showed higher expression in GP. Proteins concerned with transcriptional regulation and ion transport were similar in MP and GP, and some catalases and LEA proteins were down-regulated in GP. A number of proteins including, oleosin, cruciferin, and enolase, were released into the pollen germination medium indicating their potential role in pollen-stigma interaction. Glycosylated proteins were also identified in MP and GP, but their protein profiles were not different. This study has documented the dynamics of protein expression during pollen germination and early tube growth in B. napus and provides insights into the fundamental mechanisms involved in these processes, and in cell growth, cell-cell communication, and cell signaling.
Collapse
Affiliation(s)
- Inder S Sheoran
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | | | | | | |
Collapse
|
4
|
Chen T, Wu X, Chen Y, Li X, Huang M, Zheng M, Baluska F, Samaj J, Lin J. Combined proteomic and cytological analysis of Ca2+-calmodulin regulation in Picea meyeri pollen tube growth. PLANT PHYSIOLOGY 2009; 149:1111-26. [PMID: 19011005 PMCID: PMC2633844 DOI: 10.1104/pp.108.127514] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Accepted: 11/11/2008] [Indexed: 05/22/2023]
Abstract
Ca2+-calmodulin (Ca2+-CaM) is a critical molecule that mediates cellular functions by interacting with various metabolic and signaling pathways. However, the protein expression patterns and accompanying serial cytological responses in Ca2+-CaM signaling deficiency remain enigmatic. Here, we provide a global analysis of the cytological responses and significant alterations in protein expression profiles after trifluoperazine treatment in Picea meyeri, which abrogates Ca2+-CaM signaling. Ninety-three differentially displayed proteins were identified by comparative proteomics at different development stages and were assigned to different functional categories closely related to tip growth machinery. The inhibition of Ca2+-CaM signaling rapidly induced an increase in extracellular Ca2+ influx, resulting in dramatically increased cytosolic Ca2+ concentrations and ultrastructural abnormalities in organelles as the primary responses. Secondary and tertiary alterations included actin filament depolymerization, disrupted patterns of endocytosis and exocytosis, and cell wall remodeling, ultimately resulting in perturbed pollen tube extension. In parallel with these cytological events, time-course experiments revealed that most differentially expressed proteins showed time-dependent quantitative changes (i.e. some signaling proteins and proteins involved in organelle functions and energy production changed first, followed by alterations in proteins related to cytoskeletal organization, secretory pathways, and polysaccharide synthesis). Taken together, Ca2+-CaM dysfunction induced serial cytological responses and temporal changes in protein expression profiles, indicating the pivotal role of Ca2+-CaM in the regulation of tip growth machinery.
Collapse
Affiliation(s)
- Tong Chen
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Hao H, Li Y, Hu Y, Lin J. Inhibition of RNA and protein synthesis in pollen tube development of Pinus bungeana by actinomycin D and cycloheximide. THE NEW PHYTOLOGIST 2005; 165:721-9. [PMID: 15720683 DOI: 10.1111/j.1469-8137.2004.01290.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
* The effects of actinomycin D and cycloheximide on RNA and protein synthesis were investigated during pollen tube development of Pinus bungeana. * RNA and protein contents, protein expression patterns, cell wall components and ultrastructural changes of pollen tubes were studied using spectrophotometry, SDS-PAGE electrophoresis, Fourier transformed infrared (FTIR) microspectroscopy and transmission electron microscopy (TEM). * Pollen grains germinated in the presence of actinomycin D, but tube elongation and RNA synthesis were inhibited. By contrast, cycloheximide inhibited pollen germination and protein synthesis, induced abnormal tube morphology, and retarded the tube growth rate. SDS-PAGE analysis showed that protein expression patterns changed distinctly, with some proteins being specific for each phase. FTIR microspectroscopy established significant changes in the chemical composition of pollen tube walls. TEM analysis revealed the inhibitors caused disintegration of organelles involved in the secretory system. * These results suggested RNA necessary for pollen germination and early tube growth were present already in the pollen grains before germination, while the initiation of germination and the maintenance of pollen tube elongation depended on continuous protein synthesis.
Collapse
Affiliation(s)
- Huaiqing Hao
- Key Laboratory of Photosynthesis and Molecular Environment Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | |
Collapse
|
6
|
Hulzink RJM, de Groot PFM, Croes AF, Quaedvlieg W, Twell D, Wullems GJ, Van Herpen MMA. The 5'-untranslated region of the ntp303 gene strongly enhances translation during pollen tube growth, but not during pollen maturation. PLANT PHYSIOLOGY 2002; 129:342-53. [PMID: 12011364 PMCID: PMC155897 DOI: 10.1104/pp.001701] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2002] [Accepted: 01/30/2002] [Indexed: 05/20/2023]
Abstract
Transcripts of the ntp303 gene accumulate abundantly throughout pollen development, whereas the protein only accumulates to detectable levels after pollen germination. In an attempt to explain the divergence in the accumulation profiles of the mRNA and the protein, we investigated the role of the untranslated regions (UTRs) in enhancing ntp303 translation during the transition from developing to germinating pollen. Luciferase reporter gene fusion constructs containing the ntp303 5'-UTR gave rise to luciferase activity that was up to 60-fold higher during pollen tube growth than that of constructs containing different 5'-UTRs. No apparent differences in the luciferase activity of these constructs were observed during pollen development. The ntp303 5'-UTR-mediated increase in luciferase activity was not significantly influenced by coding region or 3'-UTR sequences. Furthermore, enhanced luciferase activity directed by the ntp303 5'-UTR occurred predominantly at the post-transcriptional level. A series of 5'-UTR deletion constructs was created to identify putative regulatory sequences required for the high level of translation during pollen tube growth. Two predicted stem loop structures (H-I and H-II) caused a complete inhibition of the enhanced translation after their total or partial deletion. A (GAA)(8) repeat within the H-I stem loop structure was demonstrated to be important for the modulation of translation efficiency. The H-II stem loop structure was found to be essential for the determination of mRNA stability.
Collapse
Affiliation(s)
- Raymond J M Hulzink
- Department of Experimental Botany, Plant Genetics, Catholic University Nijmegen, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
7
|
Li YQ, Moscatelli A, Cai G, Cresti M. Functional interactions among cytoskeleton, membranes, and cell wall in the pollen tube of flowering plants. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 176:133-99. [PMID: 9394919 DOI: 10.1016/s0074-7696(08)61610-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The pollen tube is a cellular system that plays a fundamental role during the process of fertilization in higher plants. Because it is so important, the pollen tube has been subjected to intensive studies with the aim of understanding its biology. The pollen tube represents a fascinating model for studying interactions between the internal cytoskeletal machinery, the membrane system, and the cell wall. These compartments, often studied as independent units, show several molecular interactions and can influence the structure and organization of each other. The way the cell wall is constructed, the dynamics of the endomembrane system, and functions of the cytoskeleton suggest that these compartments are a molecular "continuum," which represents a link between the extracellular environment and the pollen tube cytoplasm. Several experimental approaches have been used to understand how these interactions may translate the pollen-pistil interactions into differential processes of pollen tube growth.
Collapse
Affiliation(s)
- Y Q Li
- Dipartimento Biologia Ambientale, Università di Siena, Italy
| | | | | | | |
Collapse
|
8
|
Wolkers WF, Hoekstra FA. Heat Stability of Proteins in Desiccation-Tolerant Cattail (Typha latifolia L.) Pollen. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0300-9629(96)00274-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
9
|
Taylor LP, Hepler PK. POLLEN GERMINATION AND TUBE GROWTH. ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY 1997; 48:461-491. [PMID: 15012271 DOI: 10.1146/annurev.arplant.48.1.461] [Citation(s) in RCA: 390] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many aspects of Angiosperm pollen germination and tube growth are discussed including mechanisms of dehydration and rehydration, in vitro germination, pollen coat compounds, the dynamic involvement of cytoskeletal elements (actin, microtubules), calcium ion fluxes, extracellular matrix elements (stylar arabinogalactan proteins), and control mechanisms of gene expression in dehydrating and germinating pollen. We focus on the recent developments in pollen biology that help us understand how the male gamete survives and accomplishes its successful delivery to the ovule of the sperm to effect sexual reproduction.
Collapse
Affiliation(s)
- Loverine P. Taylor
- Department of Genetics and Cell Biology, Washington State University, Pullman, Washington 99164-4234, Biology Department, University of Massachusetts, Amherst, Massachusetts 01003
| | | |
Collapse
|
10
|
|