1
|
Bryant DA, Gisriel CJ. The structural basis for light harvesting in organisms producing phycobiliproteins. THE PLANT CELL 2024; 36:4036-4064. [PMID: 38652697 PMCID: PMC11449063 DOI: 10.1093/plcell/koae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
Cyanobacteria, red algae, and cryptophytes produce 2 classes of proteins for light harvesting: water-soluble phycobiliproteins (PBP) and membrane-intrinsic proteins that bind chlorophylls (Chls) and carotenoids. In cyanobacteria, red algae, and glaucophytes, phycobilisomes (PBS) are complexes of brightly colored PBP and linker (assembly) proteins. To date, 6 structural classes of PBS have been described: hemiellipsoidal, block-shaped, hemidiscoidal, bundle-shaped, paddle-shaped, and far-red-light bicylindrical. Two additional antenna complexes containing single types of PBP have also been described. Since 2017, structures have been reported for examples of all of these complexes except bundle-shaped PBS by cryogenic electron microscopy. PBS range in size from about 4.6 to 18 mDa and can include ∼900 polypeptides and bind >2000 chromophores. Cyanobacteria additionally produce membrane-associated proteins of the PsbC/CP43 superfamily of Chl a/b/d-binding proteins, including the iron-stress protein IsiA and other paralogous Chl-binding proteins (CBP) that can form antenna complexes with Photosystem I (PSI) and/or Photosystem II (PSII). Red and cryptophyte algae also produce CBP associated with PSI but which belong to the Chl a/b-binding protein superfamily and which are unrelated to the CBP of cyanobacteria. This review describes recent progress in structure determination for PBS and the Chl proteins of cyanobacteria, red algae, and cryptophytan algae.
Collapse
Affiliation(s)
- Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
2
|
Attachment of Ferredoxin: NADP+ Oxidoreductase to Phycobilisomes Is Required for Photoheterotrophic Growth of the Cyanobacterium Synechococcus sp. PCC 7002. Microorganisms 2022; 10:microorganisms10071313. [PMID: 35889032 PMCID: PMC9319322 DOI: 10.3390/microorganisms10071313] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Two types of cyanobacterial phycobilisomes (PBS) are present: the hemidiscoidal PBS (CpcG-PBS) and the membrane-bound PBS (CpcL-PBS). Both types of PBS have ferredoxin:NADP+ oxidoreductase (FNR) attached to the termini of their rods through a CpcD domain. To date, the physiological significance of the attachment remains unknown. We constructed a mutant (dF338) which contains an FNR lacking the N-terminal CpcD domain in Synechococcus sp. PCC 7002. Isolated CpcG-PBS from dF338 did not contain FNR and the cell extracts of the mutant had a 35 kDa protein cross-reacting to anti-FNR antibodies. dF338 grows normally under photoautotrophic conditions, but little growth was observed under photoheterotrophic conditions. A cpcL (cpcG2) mutant grows extremely slowly under photoheterotrophic conditions while a cpcG (cpcG1) mutant, in which PBS rods could not attach to the cores of the CpcG-PBS, can grow photoheterotrophically, strongly suggesting that the attachment of FNR to CpcL-PBS is critical to photoheterotrophic growth. We show that electron transfer to the plastoquinone pool in dF338 and the cpcL mutant was impaired. We also provide evidence that trimeric photosystem I (PSI) and intact CpcL-PBS with a full-length FNR is critical to plastoquinone reduction. The presence of a NADPH-dehydrogenase (NDH)-CpcL-PBS-PSI trimer supercomplex and its roles are discussed.
Collapse
|
3
|
Zheng L, Zheng Z, Li X, Wang G, Zhang K, Wei P, Zhao J, Gao N. Structural insight into the mechanism of energy transfer in cyanobacterial phycobilisomes. Nat Commun 2021; 12:5497. [PMID: 34535665 PMCID: PMC8448738 DOI: 10.1038/s41467-021-25813-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023] Open
Abstract
Phycobilisomes (PBS) are the major light-harvesting machineries for photosynthesis in cyanobacteria and red algae and they have a hierarchical structure of a core and peripheral rods, with both consisting of phycobiliproteins and linker proteins. Here we report the cryo-EM structures of PBS from two cyanobacterial species, Anabaena 7120 and Synechococcus 7002. Both PBS are hemidiscoidal in shape and share a common triangular core structure. While the Anabaena PBS has two additional hexamers in the core linked by the 4th linker domain of ApcE (LCM). The PBS structures predict that, compared with the PBS from red algae, the cyanobacterial PBS could have more direct routes for energy transfer to ApcD. Structure-based systematic mutagenesis analysis of the chromophore environment of ApcD and ApcF subunits reveals that aromatic residues are critical to excitation energy transfer (EET). The structures also suggest that the linker protein could actively participate in the process of EET in both rods and the cores. These results provide insights into the organization of chromophores and the mechanisms of EET within cyanobacterial PBS.
Collapse
Affiliation(s)
- Lvqin Zheng
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, 100871 Beijing, China
| | - Zhenggao Zheng
- grid.11135.370000 0001 2256 9319State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, 100871 Beijing, China ,grid.410645.20000 0001 0455 0905College of Life Science, Qingdao University, 266071 Qingdao, China
| | - Xiying Li
- grid.11135.370000 0001 2256 9319State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, 100871 Beijing, China
| | - Guopeng Wang
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, 100871 Beijing, China
| | - Kun Zhang
- grid.11135.370000 0001 2256 9319State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, 100871 Beijing, China
| | - Peijun Wei
- grid.11135.370000 0001 2256 9319State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, 100871 Beijing, China
| | - Jindong Zhao
- grid.11135.370000 0001 2256 9319State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, 100871 Beijing, China ,grid.429211.d0000 0004 1792 6029Key Laboratory of Phycology of CAS, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, Hubei China
| | - Ning Gao
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, 100871 Beijing, China
| |
Collapse
|
4
|
Soulier N, Laremore TN, Bryant DA. Characterization of cyanobacterial allophycocyanins absorbing far-red light. PHOTOSYNTHESIS RESEARCH 2020; 145:189-207. [PMID: 32710194 DOI: 10.1007/s11120-020-00775-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Phycobiliproteins (PBPs) are pigment proteins that comprise phycobilisomes (PBS), major light-harvesting antenna complexes of cyanobacteria and red algae. PBS core substructures are made up of allophycocyanins (APs), a subfamily of PBPs. Five paralogous AP subunits are encoded by the Far-Red Light Photoacclimation (FaRLiP) gene cluster, which is transcriptionally activated in cells grown in far-red light (FRL; λ = 700 to 800 nm). FaRLiP gene expression enables some terrestrial cyanobacteria to remodel their PBS and photosystems and perform oxygenic photosynthesis in far-red light (FRL). Paralogous AP genes encoding a putative, FRL-absorbing AP (FRL-AP) are also found in an operon associated with improved low-light growth (LL; < 50 μmol photons m-2 s-1) in some thermophilic Synechococcus spp., a phenomenon termed low-light photoacclimation (LoLiP). In this study, apc genes from FaRLiP and LoLiP gene clusters were heterologously expressed individually and in combinations in Escherichia coli. The resulting novel FRL-APs were characterized and identified as major contributors to the FRL absorbance observed in whole cells after FaRLiP and potentially LoLiP. Post-translational modifications of native FRL-APs from FaRLiP cyanobacterium, Leptolyngbya sp. strain JSC-1, were analyzed by mass spectrometry. The PBP complexes made in two FaRLiP organisms were compared, revealing strain-specific diversity in the FaRLiP responses of cyanobacteria. Through analyses of native and recombinant proteins, we improved our understanding of how different cyanobacterial strains utilize specialized APs to acclimate to FRL and LL. We discuss some insights into structural changes that may allow these APs to absorb longer light wavelengths than their visible-light-absorbing paralogs.
Collapse
Affiliation(s)
- Nathan Soulier
- S-002 Frear Laboratory, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Tatiana N Laremore
- Proteomics and Mass Spectrometry Core Facility, Huck Institute for the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Donald A Bryant
- S-002 Frear Laboratory, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
5
|
Watanabe M, Ikeuchi M. Phycobilisome: architecture of a light-harvesting supercomplex. PHOTOSYNTHESIS RESEARCH 2013; 116:265-76. [PMID: 24081814 DOI: 10.1007/s11120-013-9905-3] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 07/26/2013] [Indexed: 05/09/2023]
Abstract
The phycobilisome (PBS) is an extra-membrane supramolecular complex composed of many chromophore (bilin)-binding proteins (phycobiliproteins) and linker proteins, which generally are colorless. PBS collects light energy of a wide range of wavelengths, funnels it to the central core, and then transfers it to photosystems. Although phycobiliproteins are evolutionarily related to each other, the binding of different bilin pigments ensures the ability to collect energy over a wide range of wavelengths. Spatial arrangement and functional tuning of the different phycobiliproteins, which are mediated primarily by linker proteins, yield PBS that is efficient and versatile light-harvesting systems. In this review, we discuss the functional and spatial tuning of phycobiliproteins with a focus on linker proteins.
Collapse
Affiliation(s)
- Mai Watanabe
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro, Tokyo, 153-8902, Japan
| | | |
Collapse
|
6
|
Liauw P, Mashiba T, Kopczak M, Wiegand K, Muraki N, Kubota H, Kawano Y, Ikeuchi M, Hase T, Rögner M, Kurisu G. Cloning, expression, crystallization and preliminary X-ray studies of the ferredoxin-NAD(P)+ reductase from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1048-51. [PMID: 22949191 DOI: 10.1107/s1744309112031910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/12/2012] [Indexed: 11/10/2022]
Abstract
Ferredoxin-NADP(+) reductase (FNR) is a flavoenzyme that catalyses the reduction of NADP(+) in the final step of the photosynthetic electron-transport chain. FNR from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 (TeFNR) contains an additional 9 kDa domain at its N-terminus relative to chloroplastic FNRs and is more thermostable than those from mesophilic cyanobacteria. With the aim of understanding the structural basis of the thermostability of TeFNR and assigning a structural role to the small additional domain, the gene encoding TeFNR with and without an additional domain was engineered for heterologous expression and the recombinant proteins were purified and crystallized. Crystals of TeFNR without the additional domain belonged to space group P2(1), with unit-cell parameters a = 55.05, b = 71.66, c = 89.73 Å, α = 90, β = 98.21, γ = 90°.
Collapse
Affiliation(s)
- Pasqual Liauw
- Lehrstuhl für Biochemie der Pflanzen, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
CpcM posttranslationally methylates asparagine-71/72 of phycobiliprotein beta subunits in Synechococcus sp. strain PCC 7002 and Synechocystis sp. strain PCC 6803. J Bacteriol 2008; 190:4808-17. [PMID: 18469097 DOI: 10.1128/jb.00436-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria produce phycobilisomes, which are macromolecular light-harvesting complexes mostly assembled from phycobiliproteins. Phycobiliprotein beta subunits contain a highly conserved gamma-N-methylasparagine residue, which results from the posttranslational modification of Asn71/72. Through comparative genomic analyses, we identified a gene, denoted cpcM, that (i) encodes a protein with sequence similarity to other S-adenosylmethionine-dependent methyltransferases, (ii) is found in all sequenced cyanobacterial genomes, and (iii) often occurs near genes encoding phycobiliproteins in cyanobacterial genomes. The cpcM genes of Synechococcus sp. strain PCC 7002 and Synechocystis sp. strain PCC 6803 were insertionally inactivated. Mass spectrometric analyses of phycobiliproteins isolated from the mutants confirmed that the CpcB, ApcB, and ApcF were 14 Da lighter than their wild-type counterparts. Trypsin digestion and mass analyses of phycobiliproteins isolated from the mutants showed that tryptic peptides from phycocyanin that included Asn72 were also 14 Da lighter than the equivalent peptides from wild-type strains. Thus, CpcM is the methyltransferase that modifies the amide nitrogen of Asn71/72 of CpcB, ApcB, and ApcF. When cells were grown at low light intensity, the cpcM mutants were phenotypically similar to the wild-type strains. However, the mutants were sensitive to high-light stress, and the cpcM mutant of Synechocystis sp. strain PCC 6803 was unable to grow at moderately high light intensities. Fluorescence emission measurements showed that the ability to perform state transitions was impaired in the cpcM mutants and suggested that energy transfer from phycobiliproteins to the photosystems was also less efficient. The possible functions of asparagine N methylation of phycobiliproteins are discussed.
Collapse
|
8
|
Shen G, Schluchter WM, Bryant DA. Biogenesis of phycobiliproteins: I. cpcS-I and cpcU mutants of the cyanobacterium Synechococcus sp. PCC 7002 define a heterodimeric phyococyanobilin lyase specific for beta-phycocyanin and allophycocyanin subunits. J Biol Chem 2008; 283:7503-12. [PMID: 18199754 DOI: 10.1074/jbc.m708164200] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phycobilin lyases covalently attach phycobilin chromophores to apo-phycobiliproteins (PBPs). Genome analyses of the unicellular, marine cyanobacterium Synechococcus sp. PCC 7002 identified three genes, denoted cpcS-I, cpcU, and cpcV, that were possible candidates to encode phycocyanobilin (PCB) lyases. Single and double mutant strains for cpcS-I and cpcU exhibited slower growth rates, reduced PBP levels, and impaired assembly of phycobilisomes, but a cpcV mutant had no discernable phenotype. A cpcS-I cpcU cpcT triple mutant was nearly devoid of PBP. SDS-PAGE and mass spectrometry demonstrated that the cpcS-I and cpcU mutants produced an altered form of the phycocyanin (PC) beta subunit, which had a mass approximately 588 Da smaller than the wild-type protein. Some free PCB (mass = 588 Da) was tentatively detected in the phycobilisome fraction purified from the mutants. The modified PC from the cpcS-I, cpcU, and cpcS-I cpcU mutant strains was purified, and biochemical analyses showed that Cys-153 of CpcB carried a PCB chromophore but Cys-82 did not. These results show that both CpcS-I and CpcU are required for covalent attachment of PCB to Cys-82 of the PC beta subunit in this cyanobacterium. Suggesting that CpcS-I and CpcU are also required for attachment of PCB to allophycocyanin subunits in vivo, allophycocyanin levels were significantly reduced in all but the CpcV-less strain. These conclusions have been validated by in vitro experiments described in the accompanying report (Saunée, N. A., Williams, S. R., Bryant, D. A., and Schluchter, W. M. (2008) J. Biol. Chem. 283, 7513-7522). We conclude that the maturation of PBP in vivo depends on three PCB lyases: CpcE-CpcF, CpcS-I-CpcU, and CpcT.
Collapse
Affiliation(s)
- Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
9
|
Saunée NA, Williams SR, Bryant DA, Schluchter WM. Biogenesis of phycobiliproteins: II. CpcS-I and CpcU comprise the heterodimeric bilin lyase that attaches phycocyanobilin to CYS-82 OF beta-phycocyanin and CYS-81 of allophycocyanin subunits in Synechococcus sp. PCC 7002. J Biol Chem 2008; 283:7513-22. [PMID: 18199753 DOI: 10.1074/jbc.m708165200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Synechococcus sp. PCC 7002 genome encodes three genes, denoted cpcS-I, cpcU, cpcV, with sequence similarity to cpeS. CpcS-I copurified with His(6)-tagged (HT) CpcU as a heterodimer, CpcSU. When CpcSU was assayed for bilin lyase activity in vitro with phycocyanobilin (PCB) and apophycocyanin, the reaction product had an absorbance maximum of 622 nm and was highly fluorescent (lambda(max) = 643 nm). In control reactions with PCB and apophycocyanin, the products had absorption maxima at 635 nm and very low fluorescence yields, indicating they contained the more oxidized mesobiliverdin (Arciero, D. M., Bryant, D. A., and Glazer, A. N. (1988) J. Biol. Chem. 263, 18343-18349). Tryptic peptide mapping showed that the CpcSU-dependent reaction product had one major PCB-containing peptide that contained the PCB binding site Cys-82. The CpcSU lyase was also tested with recombinant apoHT-allophycocyanin (aporHT-AP) and PCB in vitro. AporHT-AP formed an ApcA/ApcB heterodimer with an apparent mass of approximately 27 kDa. When aporHT-AP was incubated with PCB and CpcSU, the product had an absorbance maximum of 614 nm and a fluorescence emission maximum at 636 nm, the expected maxima for monomeric holo-AP. When no enzyme or CpcS-I or CpcU was added alone, the products had absorbance maxima between 645 and 647 nm and were not fluorescent. When these reaction products were analyzed by gel electrophoresis and zinc-enhanced fluorescence emission, only the reaction products from CpcSU had PCB attached to both AP subunits. Therefore, CpcSU is the bilin lyase-responsible for attachment of PCB to Cys-82 of CpcB and Cys-81 of ApcA and ApcB.
Collapse
Affiliation(s)
- Nicolle A Saunée
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana 70148, USA
| | | | | | | |
Collapse
|
10
|
Pizarro SA, Sauer K. Spectroscopic Study of the Light-harvesting Protein C-Phycocyanin Associated with Colorless Linker Peptides†¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0730556ssotlh2.0.co2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Shen G, Saunée NA, Williams SR, Gallo EF, Schluchter WM, Bryant DA. Identification and characterization of a new class of bilin lyase: the cpcT gene encodes a bilin lyase responsible for attachment of phycocyanobilin to Cys-153 on the beta-subunit of phycocyanin in Synechococcus sp. PCC 7002. J Biol Chem 2006; 281:17768-78. [PMID: 16644722 DOI: 10.1074/jbc.m602563200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Synechococcus sp. PCC 7002 and all other cyanobacteria that synthesize phycocyanin have a gene, cpcT, that is paralogous to cpeT, a gene of unknown function affecting phycoerythrin synthesis in Fremyella diplosiphon. A cpcT null mutant contains 40% less phycocyanin than wild type and produces smaller phycobilisomes with red-shifted absorbance and fluorescence emission maxima. Phycocyanin from the cpcT mutant has an absorbance maximum at 634 nm compared with 626 nm for the wild type. The phycocyanin beta-subunit from the cpcT mutant has slightly smaller apparent molecular weight on SDS-PAGE. Purified phycocyanins from the cpcT mutant and wild type were cleaved with formic acid, and the products were analyzed by SDS-PAGE. No phycocyanobilin chromophore was bound to the peptide containing Cys-153 derived from the phycocyanin beta-subunit of the cpcT mutant. Recombinant CpcT was used to perform in vitro bilin addition assays with apophycocyanin (CpcA/CpcB) and phycocyanobilin. Depending on the source of phycocyanobilin, reaction products with CpcT had absorbance maxima between 597 and 603 nm as compared with 638 nm for the control reactions, in which mesobiliverdin becomes covalently bound. After trypsin digestion and reverse phase high performance liquid chromatography, the CpcT reaction product produced one major phycocyanobilin-containing peptide. This peptide had a retention time identical to that of the tryptic peptide that includes phycocyanobilin-bound, cysteine 153 of wild-type phycocyanin. The results from characterization of the cpcT mutant as well as the in vitro biochemical assays demonstrate that CpcT is a new phycocyanobilin lyase that specifically attaches phycocyanobilin to Cys-153 of the phycocyanin beta-subunit.
Collapse
Affiliation(s)
- Gaozhong Shen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
12
|
Gutiérrez-Cirlos EB, Pérez-Gómez B, Krogmann DW, Gómez-Lojero C. The phycocyanin-associated rod linker proteins of the phycobilisome of Gloeobacter violaceus PCC 7421 contain unusually located rod-capping domains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:130-4. [PMID: 16617515 DOI: 10.1016/j.bbabio.2006.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Gloeobacter violaceus PCC 7421 is a unique cyanobacterium that has no thylakoids and whose genome has been sequenced [Y. Nakamura, T. Kaneko, S. Sato, M. Mimuro, H. Miyashita, T. Tsuchiya, S. Sasamoto, A. Watanabe, K. Kawashima, Y. Kishida, C. Kiyokawa, M. Kohara, M. Matsumoto, A. Matsuno, N. Nakazaki, S. Shimpo, C. Takeuchi, M. Yamada, S. Tabata, Complete Genome Structure of Gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids. DNA Research 10 (2003) 137-145]. Phycobilisomes of G. violaceus were isolated and analyzed by SDS-PAGE followed by N-terminal sequencing. Three rod-linker subunits (CpeC, CpeD and CpeE) were identified as predicted from the genome sequence. The cpcC1 and cpcC2 genes at order locus named (OLN) glr0950 and gll 3219 encoding phycocyanin-associated linker proteins from G. violaceus are 56 and 55 amino acids longer at the N-terminus than the open reading frame proposed in the genome. The two amino acid extensions showed a 66% identity to one another. Also, the N-terminal extensions of these sequences were similar to domains in both the rod-capping-linker protein CpcD2 and to the C-terminus domain of the phycoerythrin-associated linker protein CpeC. These domains are not only unusual in their N-terminal location, but are unusual in that they are more closely related in sequence similarity to the C-terminus domain of the phycoerythrin-associated linker, CpeC of G. violaceus, than to the C-terminus domain of phycocyanin-associated linker CpcC in other cyanobacteria. These linker proteins with unique special domains are indicators of the unusual structure of the phycobilisomes of G. violaceus.
Collapse
Affiliation(s)
- Emma Berta Gutiérrez-Cirlos
- Unidad de Biomedicina FES-Iztacala UNAM Av. De los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Edo de México 54090, México
| | | | | | | |
Collapse
|
13
|
Kobayashi M, Okada K, Ikeuchi M. A suppressor mutation in the alpha-phycocyanin gene in the light/glucose-sensitive phenotype of the psbK-disruptant of the cyanobacterium Synechocystis sp. PCC 6803. PLANT & CELL PHYSIOLOGY 2005; 46:1561-7. [PMID: 16033807 DOI: 10.1093/pcp/pci169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
psbK encodes a small transmembrane component of PSII. Here we report that the psbK-disruptant of Synechocystis sp. PCC 6803 cannot survive under photomixotrophic conditions of light and glucose after transient growth, while the wild type is able to grow. A spontaneous yellow-green mutant that recovered the sustained growth under the same conditions was isolated from the psbK-disruptant. Instead of recovery, the mutant largely lost photoautotrophic growth. By phenotype complementation, the mutation was identified in cpcA as a sequence replacement with a close downstream segment, generating an inverted repeat of 23 bp. The mutant phenotype was characterized by (i) the complete loss of alpha- and beta-phycocyanin; (ii) increased accumulation of PSII; and (iii) greatly reduced transcripts harboring cpcA in abundance and in size. The inverted repeat generated in cpcA probably led to the early termination of transcription. A possible mechanism for such a mutation is discussed.
Collapse
Affiliation(s)
- Mari Kobayashi
- Department of Life Sciences (Biology), The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo, 153-8902 Japan
| | | | | |
Collapse
|
14
|
Liu LN, Chen XL, Zhang YZ, Zhou BC. Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: An overview. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1708:133-42. [PMID: 15922288 DOI: 10.1016/j.bbabio.2005.04.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 04/13/2005] [Accepted: 04/14/2005] [Indexed: 10/25/2022]
Abstract
Cyanobacteria and red algae have intricate light-harvesting systems comprised of phycobilisomes that are attached to the outer side of the thylakoid membrane. The phycobilisomes absorb light in the wavelength range of 500-650 nm and transfer energy to the chlorophyll for photosynthesis. Phycobilisomes, which biochemically consist of phycobiliproteins and linker polypeptides, are particularly wonderful subjects for the detailed analysis of structure and function due to their spectral properties and their various components affected by growth conditions. The linker polypeptides are believed to mediate both the assembly of phycobiliproteins into the highly ordered arrays in the phycobilisomes and the interactions between the phycobilisomes and the thylakoid membrane. Functionally, they have been reported to improve energy migration by regulating the spectral characteristics of colored phycobiliproteins. In this review, the progress regarding linker polypeptides research, including separation approaches, structures and interactions with phycobiliproteins, as well as their functions in the phycobilisomes, is presented. In addition, some problems with previous work on linkers are also discussed.
Collapse
Affiliation(s)
- Lu-Ning Liu
- State Key Lab of Microbial Technology, Shandong University, Jinan 250100, PR China
| | | | | | | |
Collapse
|
15
|
Adir N. Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant. PHOTOSYNTHESIS RESEARCH 2005; 85:15-32. [PMID: 15977057 DOI: 10.1007/s11120-004-2143-y] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2004] [Accepted: 08/13/2004] [Indexed: 05/03/2023]
Abstract
The molecular architectures of photosynthetic complexes are rapidly becoming available through the power of X-ray crystallography. These complexes are comprised of antenna complexes, which absorb and transfer energy into photochemical reaction centers. Most reaction centers, found in both oxygenic and non-oxygenic species, are connected to transmembrane chlorophyll containing antennas, and the crystal structures of these antennas contain information on the structure of the entire complex as well as clear indications on their modes of functional association. In cyanobacteria and red alga, most of the Photosystem II associated light harvesting is performed by an enormous (3-7 MDa) membrane attached complex called the phycobilisome (PBS). While the crystal structures of many isolated components of different PBSs have been determined, the structure of the entire complex as well as its manner of association with Photosystem II can only be suggested. In this review, the structural information obtained on the isolated components will be described. The structural information obtained from the components provides the basis for the modeled reconstruction of this giant complex.
Collapse
Affiliation(s)
- Noam Adir
- Department of Chemistry and Institute of Catalysis Science and Technology, Institute of Technology, Technion, Haifa, 32000, Israel.
| |
Collapse
|
16
|
Palenik B, Brahamsha B, Larimer FW, Land M, Hauser L, Chain P, Lamerdin J, Regala W, Allen EE, McCarren J, Paulsen I, Dufresne A, Partensky F, Webb EA, Waterbury J. The genome of a motile marine Synechococcus. Nature 2003; 424:1037-42. [PMID: 12917641 DOI: 10.1038/nature01943] [Citation(s) in RCA: 386] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2003] [Accepted: 07/28/2003] [Indexed: 11/08/2022]
Abstract
Marine unicellular cyanobacteria are responsible for an estimated 20-40% of chlorophyll biomass and carbon fixation in the oceans. Here we have sequenced and analysed the 2.4-megabase genome of Synechococcus sp. strain WH8102, revealing some of the ways that these organisms have adapted to their largely oligotrophic environment. WH8102 uses organic nitrogen and phosphorus sources and more sodium-dependent transporters than a model freshwater cyanobacterium. Furthermore, it seems to have adopted strategies for conserving limited iron stores by using nickel and cobalt in some enzymes, has reduced its regulatory machinery (consistent with the fact that the open ocean constitutes a far more constant and buffered environment than fresh water), and has evolved a unique type of swimming motility. The genome of WH8102 seems to have been greatly influenced by horizontal gene transfer, partially through phages. The genetic material contributed by horizontal gene transfer includes genes involved in the modification of the cell surface and in swimming motility. On the basis of its genome, WH8102 is more of a generalist than two related marine cyanobacteria.
Collapse
Affiliation(s)
- B Palenik
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Antenna Systems and Energy Transfer in Cyanophyta and Rhodophyta. LIGHT-HARVESTING ANTENNAS IN PHOTOSYNTHESIS 2003. [DOI: 10.1007/978-94-017-2087-8_9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
18
|
Pizarro SA, Sauer K. Spectroscopic study of the light-harvesting protein C-phycocyanin associated with colorless linker peptides. Photochem Photobiol 2001; 73:556-63. [PMID: 11367580 DOI: 10.1562/0031-8655(2001)073<0556:ssotlh>2.0.co;2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
C-Phycocyanin (PC) trimers associated with linker polypeptides were isolated from the phycobilisome (PBS) rods of Synechococcus sp. PCC 7002. LXY refers to a linker polypeptide (L) having an apparent mass of Y kDa, located at position X in the phycobilisome where X can be R (rod), C (core) or RC (rod-core junction). Measurements of the absorption, fluorescence and excitation anisotropy of PC trimer, PC.LR32.3 and PC.LRC28.5 complexes document the spectroscopic modulation of each linker polypeptide on the PC chromophores. The difference spectra between the PC trimer and the PC-linker complexes show that although the effect induced by the linker polypeptides is qualitatively similar in behavior, the extent of the modulation is greater in PC.LRC28.5. Measurements taken at 77 K show that a red-wavelength component of the PC trimer absorption-fluorescence spectra is the target of the linker's influence and that this component is altered to a greater extent by LRC28.5. In addition the 77 K absorbance of the PC trimer resolves band features that are consistent with an excitonic coupling interaction between neighboring alpha 84 and beta 84 chromophores. These band features are also evident in the absorbance of PC.LR32.3 but are absent in PC.LRC28.5 indicating that LRC28.5 may be perturbing the coupling interaction established in the PC trimer alpha 84-beta 84 chromophore pairs. Structurally, the linker polypeptide should disrupt the C3 symmetry in the central cavity of the associated phycobiliprotein and this asymmetric interaction should serve to guide the transfer of excitation energy along PBS rods toward the core elements.
Collapse
Affiliation(s)
- S A Pizarro
- Physical Biosciences Division, Lawrence Berkeley National Laboratory and Department of Chemistry, University of California, Berkeley, CA, USA
| | | |
Collapse
|
19
|
Abstract
Cyanobacterial phycobilisomes harvest light and cause energy migration usually toward photosystem II reaction centers. Energy transfer from phycobilisomes directly to photosystem I may occur under certain light conditions. The phycobilisomes are highly organized complexes of various biliproteins and linker polypeptides. Phycobilisomes are composed of rods and a core. The biliproteins have their bilins (chromophores) arranged to produce rapid and directional energy migration through the phycobilisomes and to chlorophyll a in the thylakoid membrane. The modulation of the energy levels of the four chemically different bilins by a variety of influences produces more efficient light harvesting and energy migration. Acclimation of cyanobacterial phycobilisomes to growth light by complementary chromatic adaptation is a complex process that changes the ratio of phycocyanin to phycoerythrin in rods of certain phycobilisomes to improve light harvesting in changing habitats. The linkers govern the assembly of the biliproteins into phycobilisomes, and, even if colorless, in certain cases they have been shown to improve the energy migration process. The Lcm polypeptide has several functions, including the linker function of determining the organization of the phycobilisome cores. Details of how linkers perform their tasks are still topics of interest. The transfer of excitation energy from bilin to bilin is considered, particularly for monomers and trimers of C-phycocyanin, phycoerythrocyanin, and allophycocyanin. Phycobilisomes are one of the ways cyanobacteria thrive in varying and sometimes extreme habitats. Various biliprotein properties perhaps not related to photosynthesis are considered: the photoreversibility of phycoviolobilin, biophysical studies, and biliproteins in evolution. Copyright 1998 Academic Press.
Collapse
Affiliation(s)
- R MacColl
- Wadsworth Center, New York State Department of Health, Albany, New York, 12201-0509, USA
| |
Collapse
|
20
|
Ducret A, Sidler W, Wehrli E, Frank G, Zuber H. Isolation, characterization and electron microscopy analysis of a hemidiscoidal phycobilisome type from the cyanobacterium Anabaena sp. PCC 7120. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 236:1010-24. [PMID: 8665889 DOI: 10.1111/j.1432-1033.1996.01010.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this work we present the characterization of a hemidiscoidal phycobilisome type of the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. The phycobilisome of this organism contains allophycocyanin, phycocyanin and phycoerythrocyanin, similar to the closely related thermophilic cyanobacterium Mastigocladus laminosus. Intact phycobilisomes exhibit an absorption maximum at 619 nm and two fluorescence maxima at 664 nm and 680 nm, corroborating the presence of a complete energy pathyway along the antenna. Upon dissociation, the phycobiliproteins were released from the phycobilisome. One phycoerythrocyanin, one phycocyanin and three allophycocyanin complexes were isolated by ion-exchange chromatography and characterized by absorption and fluorescence spectroscopy and by SDS/PAGE. The amino-terminal sequences of the polypeptides belonging to the phycoerythrocyanin and phycocyanin families were identical with the derived sequences of their corresponding genes. Partial amino-terminal sequences of the polypeptides belonging to the allophycocyanin family are presented here. Our results show that the phycobiliproteins and linker polypeptides from Anabaena sp. PCC 7120 are similar to the phycobilisome components characterized in other cyanobacteria. The phycobilisome of Anabaena sp. PCC 7120 was extensively analyzed by electron microscopy. It differs from the common hemidiscoidal tricylindrical, six-rod phycobilisome type by a core domain consisting of five core cylinders surrounded by up to eight rods radiating in a hemidiscoidal manner. One rod is linked to each basal core cylinder, whereas the remaining core cylinders bind two rods each. On the basis of the data presented in this work, a revised model for the hemidiscoidal pentacylindrical phycobilisome of Anabaena sp. PCC 7120, M. laminosus and Anabaena variabilis is proposed. This model accounts more accurately for the 'grape' pattern typically exhibited by these phycobilisomes in electron micrographs.
Collapse
Affiliation(s)
- A Ducret
- Institute for Molecular Biology and Biophysics, Federal Institute of Technology, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
21
|
Plank T, Toole C, Anderson LK. Subunit interactions and protein stability in the cyanobacterial light-harvesting proteins. J Bacteriol 1995; 177:6798-803. [PMID: 7592470 PMCID: PMC177545 DOI: 10.1128/jb.177.23.6798-6803.1995] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Strain 4R is a phycocyanin-minus mutant of the unicellular cyanobacterium Synechocystis sp. strain 6803. Although it lacks the light-harvesting protein phycocyanin, 4R has normal levels of phycocyanin (cpc) transcripts. Sequence analysis of the cpcB gene encoding the phycocyanin beta subunit shows an insertion mutation in 4R that causes early termination of translation. Other work has shown that the phycocyanin alpha subunit and the linker proteins encoded on the cpc transcripts are all functional in 4R, yet the defective phycocyanin beta subunit results in the complete absence of the alpha subunit and the linkers. Phycocyanin-minus mutants were constructed in a wild-type background by interruption of cpcB and cpcA with an antibiotic resistance gene and were compared with the 4R strain. Immunoblot analysis of the mutants demonstrated that interruption of one subunit was accompanied by a complete absence of the unassembled partner subunit. Phycocyanin assembly begins with the formation of the alpha beta heterodimer (the monomer) and continues through higher-order trimeric and hexameric aggregates that associate with linker proteins to form the phycobilisome rods. The results in this paper indicate that monomer formation is a critical stage in the biliprotein assembly pathway and that unassembled subunits are subject to stringent controls that prevent their appearance in vivo.
Collapse
Affiliation(s)
- T Plank
- Department of Biological Science, University of Tulsa, Oklahoma 74104, USA
| | | | | |
Collapse
|
22
|
Baxevanis AD, Arents G, Moudrianakis EN, Landsman D. A variety of DNA-binding and multimeric proteins contain the histone fold motif. Nucleic Acids Res 1995; 23:2685-91. [PMID: 7651829 PMCID: PMC307093 DOI: 10.1093/nar/23.14.2685] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The histone fold motif has previously been identified as a structural feature common to all four core histones and is involved in both histone-histone and histone-DNA interactions. Through the use of a novel motif searching method, a group of proteins containing the histone fold motif has been established. The proteins in this group are involved in a wide variety of functions related mostly to DNA metabolism. Most of these proteins engage in protein-protein or protein-DNA interactions, as do their core histone counterparts. Among these, CCAAT-specific transcription factor CBF and its yeast homologue HAP are two examples of multimeric complexes with different component subunits that contain the histone fold motif. The histone fold proteins are distantly related, with a relatively small degree of absolute sequence similarity. It is proposed that these proteins may share a similar three-dimensional conformation despite the lack of significant sequence similarity.
Collapse
Affiliation(s)
- A D Baxevanis
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
23
|
Bhalerao RP, Collier JL, Gustafsson P, Grossman AR. THE STRUCTURE OF PHYCOBILISOMES IN MUTANTS OF Synechococcus sp. STRAIN PCC 7942 DEVOID OF SPECIFIC LINKER POLYPEPTIDES. Photochem Photobiol 1995. [DOI: 10.1111/j.1751-1097.1995.tb03975.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Gindt YM, Zhou J, Bryant DA, Sauer K. Spectroscopic studies of phycobilisome subcore preparations lacking key core chromophores: assignment of excited state energies to the Lcm, beta 18 and alpha AP-B chromophores. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1186:153-62. [PMID: 8043589 DOI: 10.1016/0005-2728(94)90174-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Chromophore absorption and emission characteristics of the alpha AP-B, beta 18 and Lcm (large core-membrane linker) chromopeptides within the phycobilisome core are investigated using genetically engineered strains of Synechococcus sp. PCC 7002. Steady-state and time-resolved emission were used to examine energy transfer in subcore preparations from the wild-type organism and two mutants. Low-temperature (77 K) emission spectra were also measured for intact phycobilisomes from the wild-type and five mutant strains. Mutants retaining either the alpha AP-B subunit or the unaltered Lcm chromophore resulted in only small changes in the low-temperature emission spectra, while retention of only the beta 18 subunit resulted in blue-shifted emission spectra. The Lcm chromophore has a room-temperature absorption maximum at 675 nm. In phycobilisomes at 77 K the alpha AP-B and Lcm chromophores emit at 682-683 nm, and they are the best candidates for long-wavelength emitters also at room temperature. Overlap of these emission spectra with the absorption of chlorophyll a in the associated thylakoid membrane plays a significant role in excitation transfer from the antenna complexes in cyanobacteria.
Collapse
Affiliation(s)
- Y M Gindt
- Lawrence Berkeley Laboratory, University of California, Berkeley 94720
| | | | | | | |
Collapse
|
25
|
Gottschalk L, Lottspeich F, Scheer H. RECONSTITUTION OF ALLOPHYCOCYANIN FROM Mastigocladus laminosus WITH ISOLATED LINKER POLYPEPTIDE. Photochem Photobiol 1993. [DOI: 10.1111/j.1751-1097.1993.tb04966.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Glauser M, Sidler W, Zuber H. ISOLATION, CHARACTERIZATION AND RECONSTITUTION OF PHYCOBILIPROTEIN ROD-CORE LINKER POLYPEPTIDE COMPLEXES FROM THE PHYCOBILISOME OF Mastigocladus laminosus. Photochem Photobiol 1993. [DOI: 10.1111/j.1751-1097.1993.tb02298.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Bhalerao RP, Lind LK, Persson CE, Gustafsson P. Cloning of the phycobilisome rod linker genes from the cyanobacterium Synechococcus sp. PCC 6301 and their inactivation in Synechococcus sp. PCC 7942. MOLECULAR & GENERAL GENETICS : MGG 1993; 237:89-96. [PMID: 8455571 DOI: 10.1007/bf00282788] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The phycobilisome rod linker genes in the two closely related cyanobacteria Synechococcus sp. PCC 6301 and Synechococcus sp. PCC 7942 were studied. Southern blot analysis showed that the genetic organization of the phycobilisome rod operon is very similar in the two strains. The phycocyanin gene pair is duplicated and separated by a region of about 2.5 kb. The intervening region between the duplicated phycocyanin gene pair was cloned from Synechococcus sp. PCC 6301 and sequenced. Analysis of this DNA sequence revealed the presence of three open reading frames corresponding to 273, 289 and 81 amino acids, respectively. Insertion of a kanamycin resistance cassette into these open reading frames indicated that they corresponded to the genes encoding the 30, 33 and 9 kDa rod linkers, respectively, as judged by the loss of specific linkers from the phycobilisomes of the insertional mutants. Amino acid compositions of the 30 and 33 kDa linkers derived from the DNA sequence were found to deviate from those of purified 33 and 30 kDa linkers in the amounts of glutamic acid/glutamine residues. On the basis of similarity of the amino acid sequence of the rod linkers between Synechococcus sp. PCC 6301 and Calothrix sp. PCC 7601 we name the genes encoding the 30, 33 and 9 kDa linkers cpcH, cpcI and cpcD, respectively. The three linker genes were found to be co-transcribed on an mRNA of 3700 nucleotides. However, we also detected a smaller species of mRNA, of 3400 nucleotides, which would encode only the cpcH and cpcI genes.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R P Bhalerao
- Department of Plant Physiology, Umeå University, Sweden
| | | | | | | |
Collapse
|
28
|
Zhou J, Gasparich G, Stirewalt V, de Lorimier R, Bryant D. The cpcE and cpcF genes of Synechococcus sp. PCC 7002. Construction and phenotypic characterization of interposon mutants. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41978-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
29
|
Swanson R, Zhou J, Leary J, Williams T, de Lorimier R, Bryant D, Glazer A. Characterization of phycocyanin produced by cpcE and cpcF mutants and identification of an intergenic suppressor of the defect in bilin attachment. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41979-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
30
|
Glauser M, Stirewalt VL, Bryant DA, Sidler W, Zuber H. Structure of the genes encoding the rod-core linker polypeptides of Mastigocladus laminosus phycobilisomes and functional aspects of the phycobiliprotein/linker-polypeptide interactions. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 205:927-37. [PMID: 1577010 DOI: 10.1111/j.1432-1033.1992.tb16859.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The 3' portion of the cpc operon in Mastigocladus laminosus encloses the genes 5'-cpcF-cpcG1-cpcG2-cpcG3 3'. The three cpcG genes encode different phycocyanin-associated rod-core linker polypeptides of the phycobilisomes with predicted 279, 247 and 254 amino acids in length. The gene products CpcG show a high similarity at their N-terminal domains (190 amino acids) and an overall identity of 47-53% to one another. Each of the three CpcG polypeptides is highly related to one of the four CpcG gene products of Anabaena sp. PCC 7120 (66-81% identity). It is suggested that these pairs of rod-core linker polypeptides mediate the same specific type of phycocyanin----allophycocyanin interaction in the similar phycobilisomes of M. laminosus and Anabaena sp. PCC 7120. The similarity of the CpcG1, CpcG2 and CpcG3 polypeptides to the single CpcG rod-core linker polypeptide of Synechococcus sp. PCC 7002 (36-41% identity) is lower. The rod-core linker polypeptides are more distantly related to the rod linker polypeptides associated with phycocyanin or phycoerythrin. However, six conserved domains were identified within the N-terminal 190 amino acids of these linker proteins, which bear similar amino acid sequences, including highly conserved basic amino acids. A similar amino acid sequence but with conserved acidic amino acids can be found in the beta subunits of phycocyanin, phycoerythrin and phycoerythrocyanin, which is protruding into the central cavity of the phycobiliprotein hexamers. It is suggested that these domains are sites of phycobiliprotein-hexamer/rod and rod-core linker interactions.
Collapse
Affiliation(s)
- M Glauser
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
31
|
Glauser M, Bryant DA, Frank G, Wehrli E, Rusconi SS, Sidler W, Zuber H. Phycobilisome structure in the cyanobacteria Mastigocladus laminosus and Anabaena sp. PCC 7120. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 205:907-15. [PMID: 1577008 DOI: 10.1111/j.1432-1033.1992.tb16857.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Phycobilisomes of the cyanobacteria Mastigocladus laminosus and Anabaena sp. PCC7120 differ from typical tricylindrical, hemidiscoidal phycobilisomes in three respects. Firstly, size comparisons of the core-membrane linker phycobiliproteins (LCM) in different cyanobacteria by SDS/PAGE reveal an apparent molecular mass of 120 kDa for the LCM of M. laminosus and Anabaena sp. PCC7120. This observation suggests that the polypeptides of these species have four linker-repeat domains. Secondly, phycobilisomes of M. laminosus are shown to contain at least three, but most probably four, different rod-core linker polypeptides (LRC). These LRC, which attach the peripheral rods to the core and thereby make phycocyanin/allophycocyanin contacts, have been identified and characterized by N-terminal amino acid sequence analysis. Additionally, electron microscopy of phycobilisomes isolated from M. laminosus and Anabaena sp. PCC7120 reveals similar structures which differ from those of Calothrix sp. PCC7601 with their typical six, peripheral rods. Based upon protein-analytical results and a reinterpretation of the data of [Isono, T. & Katoh, T. (1987) Arch. Biochem. Biophys. 256, 317-324], we discuss structural implications of recent findings on the established hemidiscoidal model for the phycobilisomes of M. laminosus and Anabaena sp. PCC7120. Up to eight peripheral rods are suggested to radiate from a modified core substructure which contains two additional peripheral allophycocyanin hexamer equivalents that serve as the core-proximal discs for two peripheral rods.
Collapse
Affiliation(s)
- M Glauser
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
32
|
Bryant DA, Stirewalt VL, Glauser M, Frank G, Sidler W, Zuber H. A small multigene family encodes the rod-core linker polypeptides of Anabaena sp. PCC7120 phycobilisomes. Gene X 1991; 107:91-9. [PMID: 1743523 DOI: 10.1016/0378-1119(91)90301-q] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The cpc operon of Anabaena sp. PCC7120 is shown to encode ten genes: 5'-cpcB-cpcA-cpcC-cpcD-cpcE-cpcF- cpcG1-cpcG2-cpcG3-cpcG4-3'. The 3' portion of this operon includes four tandemly repeated genes encoding phycocyanin (PC)-associated, rod-core linker polypeptides of the phycobilisomes (PBS). The products of these four genes are most similar at their N termini, and overall are 50-61% identical and 68-76% similar to one another. The four CpcG proteins of Anabaena sp. PCC7120 are 41-47% identical and 62-65% similar to the single CpcG rod-core linker protein in Synechococcus sp. PCC7002. The N-terminal domains of the polypeptides are also more distantly related to the conserved domains of other types of rod-linker polypeptides associated with PC, phycoerythrin, and allophycocyanin (AP). Three of these rod-core linker proteins (CpcG1, CpcG2, and CpcG4) were demonstrated to occur in isolated PBS by N-terminal amino acid sequence analyses. These results indicate that previously proposed models for the PBS of Anabaena sp. are incorrect. It is suggested that the PBS of Anabaena sp. have eight peripheral rods, each of which interacts with the AP of the core via a specific rod-core linker (CpcG) polypeptide.
Collapse
Affiliation(s)
- D A Bryant
- Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16802
| | | | | | | | | | | |
Collapse
|
33
|
Structure and energy transfer of the phycobilisome in a linker protein replacement mutant of cyanobacterium Synechococcus 7942. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1991. [DOI: 10.1016/s0005-2728(05)80119-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Wilbanks S, de Lorimier R, Glazer A. Phycoerythrins of marine unicellular cyanobacteria. III. Sequence of a class II phycoerythrin. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)92853-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
35
|
Bryant DA, de Lorimier R, Guglielmi G, Stevens SE. Structural and compositional analyses of the phycobilisomes of Synechococcus sp. PCC 7002. Analyses of the wild-type strain and a phycocyanin-less mutant constructed by interposon mutagenesis. Arch Microbiol 1990; 153:550-60. [PMID: 2164365 DOI: 10.1007/bf00245264] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The phycobilisomes and phycobiliproteins of Synechococcus sp. PCC 7002 wild-type strain PR6000 have been isolated and characterized. The hemidiscoidal phycobilisomes of strain PR6000 are composed of eleven different polypeptides: phycocyanin alpha and beta subunits; allophycocyanin alpha and beta subunits; alpha subunit of allophycocyanin B; the allophycocyanin beta-subunit-like polypeptide of Mr 18,000; the linker phycobiliprotein of Mr 99,000; and non-chromophore-carrying linker polypeptides of Mr 33,000, 29,000, 9000, and 8000. Several of these polypeptides were purified to homogeneity and their amino acid compositions and amino-terminal amino acid sequences were determined. Analyses of the phycobiliproteins of Synechococcus sp. PCC 7002 were greatly facilitated by comparative studies performed with a mutant strain, PR6008, constructed to be devoid of the phycocyanin alpha and beta subunits by recombinant DNA techniques and transformation of strain PR6000. The absence of phycocyanin did not greatly affect the allophycocyanin content of the mutant strain but caused the doubling time to increase 2-7-fold depending upon the light intensity at which the cells were grown. Although intact phycobilisome cores could not be isolated from this mutant, it is probable that functionally intact cores do exist in vivo.
Collapse
Affiliation(s)
- D A Bryant
- Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16802
| | | | | | | |
Collapse
|