1
|
Pedroza-Dávila U, Uribe-Alvarez C, Morales-García L, Espinoza-Simón E, Méndez-Romero O, Muhlia-Almazán A, Chiquete-Félix N, Uribe-Carvajal S. Metabolism, ATP production and biofilm generation by Staphylococcus epidermidis in either respiratory or fermentative conditions. AMB Express 2020; 10:31. [PMID: 32048056 PMCID: PMC7013028 DOI: 10.1186/s13568-020-00966-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus epidermidis is a Gram-positive saprophytic bacterium found in the microaerobic/anaerobic layers of the skin that becomes a health hazard when it is carried across the skin through punctures or wounds. Pathogenicity is enhanced by the ability of S. epidermidis to associate into biofilms, where it avoids attacks by the host and antibiotics. To test the effect of oxygen on metabolism and biofilm generation, cells were cultured at different oxygen concentrations ([O2]). As [O2] decreased, S. epidermidis metabolism went from respiratory to fermentative. Remarkably, the rate of growth decreased at low [O2] while a high concentration of ATP ([ATP]) was kept. Under hypoxic conditions bacteria associated into biofilms. Aerobic activity sensitized the cell to hydrogen peroxide-mediated damage. In the presence of metabolic inhibitors, biofilm formation decreased. It is suggested that at low [O2] S. epidermidis limits its growth and develops the ability to form biofilms.
Collapse
|
2
|
Abstract
Staphylococcus aureus is the leading cause of skin and soft tissue infections, bacteremia, osteomyelitis, and endocarditis in the developed world. The ability of S. aureus to cause substantial disease in distinct host environments is supported by a flexible metabolism that allows this pathogen to overcome challenges unique to each host organ. One feature of staphylococcal metabolic flexibility is a branched aerobic respiratory chain composed of multiple terminal oxidases. Whereas previous biochemical and spectroscopic studies reported the presence of three different respiratory oxygen reductases (o type, bd type, and aa3 type), the genome contains genes encoding only two respiratory oxygen reductases, cydAB and qoxABCD. Previous investigation showed that cydAB and qoxABCD are required to colonize specific host organs, the murine heart and liver, respectively. This work seeks to clarify the relationship between the genetic studies showing the unique roles of the cydAB and qoxABCD in virulence and the respiratory reductases reported in the literature. We establish that QoxABCD is an aa3-type menaquinol oxidase but that this enzyme is promiscuous in that it can assemble as a bo3-type menaquinol oxidase. However, the bo3 form of QoxABCD restricts the carbon sources that can support the growth of S. aureus. In addition, QoxABCD function is supported by a previously uncharacterized protein, which we have named CtaM, that is conserved in aerobically respiring Firmicutes. In total, these studies establish the heme A biosynthesis pathway in S. aureus, determine that QoxABCD is a type aa3 menaquinol oxidase, and reveal CtaM as a new protein required for type aa3 menaquinol oxidase function in multiple bacterial genera. Staphylococcus aureus relies upon the function of two terminal oxidases, CydAB and QoxABCD, to aerobically respire and colonize distinct host tissues. Previous biochemical studies support the conclusion that a third terminal oxidase is also present. We establish the components of the S. aureus electron transport chain by determining the heme cofactors that interact with QoxABCD. This insight explains previous observations by revealing that QoxABCD can utilize different heme cofactors and confirms that the electron transport chain of S. aureus is comprised of two terminal menaquinol oxidases. In addition, a newly identified protein, CtaM, is found to be required for the function of QoxABCD. These results provide a more complete assessment of the molecular mechanisms that support staphylococcal respiration.
Collapse
|
3
|
Day M. Yeast petites and small colony variants: for everything there is a season. ADVANCES IN APPLIED MICROBIOLOGY 2016; 85:1-41. [PMID: 23942147 DOI: 10.1016/b978-0-12-407672-3.00001-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The yeast petite mutant was first found in the yeast Saccharomyces cerevisiae. The colony is small because of a block in the aerobic respiratory chain pathway, which generates ATP. The petite yeasts are thus unable to grow on nonfermentable carbon sources (such as glycerol or ethanol), and form small anaerobic-sized colonies when grown in the presence of fermentable carbon sources (such as glucose). The petite phenotype results from mutations in the mitochondrial genome, loss of mitochondria, or mutations in the host cell genome. The latter mutations affect nuclear-encoded genes involved in oxidative phosphorylation and these mutants are termed neutral petites. They all produce wild-type progeny when crossed with a wild-type strain. The staphylococcal small colony variant (SCV) is a slow-growing mutant that typically exhibits the loss of many phenotypic characteristics and pathogenic traits. SCVs are mostly small, nonpigmented, and nonhaemolytic. Their small size is often due to an inability to synthesize electron transport chain components and so cannot generate ATP by oxidative phosphorylation. Evidence suggests that they are responsible for persistent and/or recurrent infections. This chapter compares the physiological and genetic basis of the petite mutants and SCVs. The review focuses principally on two representatives, the eukaryote S. cerevisiae and the prokaryote Staphylococcus aureus. There is, clearly, commonality in the physiological response. Interestingly, the similarity, based on their physiological states, has not been commented on previously. The finding of an overlapping physiological response that occurs across a taxonomic divide is novel.
Collapse
Affiliation(s)
- Martin Day
- School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
4
|
Uribe-Alvarez C, Chiquete-Félix N, Contreras-Zentella M, Guerrero-Castillo S, Peña A, Uribe-Carvajal S. Staphylococcus epidermidis: metabolic adaptation and biofilm formation in response to different oxygen concentrations. Pathog Dis 2015; 74:ftv111. [PMID: 26610708 DOI: 10.1093/femspd/ftv111] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2015] [Indexed: 11/14/2022] Open
Abstract
Staphylococcus epidermidis has become a major health hazard. It is necessary to study its metabolism and hopefully uncover therapeutic targets. Cultivating S. epidermidis at increasing oxygen concentration [O2] enhanced growth, while inhibiting biofilm formation. Respiratory oxidoreductases were differentially expressed, probably to prevent reactive oxygen species formation. Under aerobiosis, S. epidermidis expressed high oxidoreductase activities, including glycerol-3-phosphate dehydrogenase, pyruvate dehydrogenase, ethanol dehydrogenase and succinate dehydrogenase, as well as cytochromes bo and aa3; while little tendency to form biofilms was observed. Under microaerobiosis, pyruvate dehydrogenase and ethanol dehydrogenase decreased while glycerol-3-phosphate dehydrogenase and succinate dehydrogenase nearly disappeared; cytochrome bo was present; anaerobic nitrate reductase activity was observed; biofilm formation increased slightly. Under anaerobiosis, biofilms grew; low ethanol dehydrogenase, pyruvate dehydrogenase and cytochrome bo were still present; nitrate dehydrogenase was the main terminal electron acceptor. KCN inhibited the aerobic respiratory chain and increased biofilm formation. In contrast, methylamine inhibited both nitrate reductase and biofilm formation. The correlation between the expression and/or activity or redox enzymes and biofilm-formation activities suggests that these are possible therapeutic targets to erradicate S. epidermidis.
Collapse
Affiliation(s)
- Cristina Uribe-Alvarez
- Department of Molecular Genetics, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México DF, México
| | - Natalia Chiquete-Félix
- Department of Molecular Genetics, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México DF, México
| | - Martha Contreras-Zentella
- Department of Cellular and Developmental Biology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México DF, México
| | - Sergio Guerrero-Castillo
- Nijmegen Center for Mitochondrial Disorders, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Antonio Peña
- Department of Molecular Genetics, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México DF, México
| | - Salvador Uribe-Carvajal
- Department of Molecular Genetics, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México DF, México
| |
Collapse
|
5
|
The Staphylococcus aureus NuoL-like protein MpsA contributes to the generation of membrane potential. J Bacteriol 2014; 197:794-806. [PMID: 25448817 DOI: 10.1128/jb.02127-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In aerobic microorganisms, the entry point of respiratory electron transfer is represented by the NADH:quinone oxidoreductase. The enzyme couples the oxidation of NADH with the reduction of quinone. In the type 1 NADH:quinone oxidoreductase (Ndh1), this reaction is accompanied by the translocation of cations, such as H(+) or Na(+). In Escherichia coli, cation translocation is accomplished by the subunit NuoL, thus generating membrane potential (Δψ). Some microorganisms achieve NADH oxidation by the alternative, nonelectrogenic type 2 NADH:quinone oxidoreductase (Ndh2), which is not cation translocating. Since these enzymes had not been described in Staphylococcus aureus, the goal of this study was to identify proteins operating in the NADH:quinone segment of its respiratory chain. We demonstrated that Ndh2 represents a NADH:quinone oxidoreductase in S. aureus. Additionally, we identified a hypothetical protein in S. aureus showing sequence similarity to the proton-translocating subunit NuoL of complex I in E. coli: the NuoL-like protein MpsA. Mutants with deletion of the nuoL-like gene mpsA and its corresponding operon, mpsABC (mps for membrane potential-generating system), exhibited a small-colony-variant-like phenotype and were severely affected in Δψ and oxygen consumption rates. The MpsABC proteins did not confer NADH oxidation activity. Using an Na(+)/H(+) antiporter-deficient E. coli strain, we could show that MpsABC constitute a cation-translocating system capable of Na(+) transport. Our study demonstrates that MpsABC represent an important functional system of the respiratory chain of S. aureus that acts as an electrogenic unit responsible for the generation of Δψ.
Collapse
|
6
|
Schurig-Briccio LA, Yano T, Rubin H, Gennis RB. Characterization of the type 2 NADH:menaquinone oxidoreductases from Staphylococcus aureus and the bactericidal action of phenothiazines. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:954-63. [PMID: 24709059 DOI: 10.1016/j.bbabio.2014.03.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 02/01/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is currently one of the principal multiple drug resistant bacterial pathogens causing serious infections, many of which are life-threatening. Consequently, new therapeutic targets are required to combat such infections. In the current work, we explore the type 2 Nicotinamide adenine dinucleotide reduced form (NADH) dehydrogenases (NDH-2s) as possible drug targets and look at the effects of phenothiazines, known to inhibit NDH-2 from Mycobacterium tuberculosis. NDH-2s are monotopic membrane proteins that catalyze the transfer of electrons from NADH via flavin adenine dinucleotide (FAD) to the quinone pool. They are required for maintaining the NADH/Nicotinamide adenine dinucleotide (NAD(+)) redox balance and contribute indirectly to the generation of proton motive force. NDH-2s are not present in mammals, but are the only form of respiratory NADH dehydrogenase in several pathogens, including S. aureus. In this work, the two putative ndh genes present in the S. aureus genome were identified, cloned and expressed, and the proteins were purified and characterized. Phenothiazines were shown to inhibit both of the S. aureus NDH-2s with half maximal inhibitory concentration (IC50) values as low as 8μM. However, evaluating the effects of phenothiazines on whole cells of S. aureus was complicated by the fact that they are also acting as uncouplers of oxidative phosphorylation. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Lici A Schurig-Briccio
- Department of Biochemistry, University of Illinois, 600 S. Mathews Street, Urbana, IL 61801, USA
| | - Takahiro Yano
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Harvey Rubin
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois, 600 S. Mathews Street, Urbana, IL 61801, USA.
| |
Collapse
|
7
|
Both terminal oxidases contribute to fitness and virulence during organ-specific Staphylococcus aureus colonization. mBio 2013; 4:e00976-13. [PMID: 24302255 PMCID: PMC3870253 DOI: 10.1128/mbio.00976-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In their recent article, Hammer et al. (N. D. Hammer, M. L. Reniere, J. E. Cassat, Y. Zhang, A. O. Hirsch, M. Indriati Hood, and E. P. Skaar, mBio 4:e00241-13, 2013) described the dual functions of the two terminal oxidases encoded by cydBA and qoxABCD in Staphylococcus aureus. The aerobic growth of cydB or qoxB single mutant bacteria was barely affected. However, a cydB qoxB double mutant was completely unable to respire and exhibited the small-colony variant phenotype that is typical of menaquinone and heme biosynthesis mutants. The authors found that the two terminal oxidases play a role in pathogenesis. In a systemic mouse infection model, it turned out that in the cydB mutant the bacterial burden was significantly decreased in the heart, kidneys, and liver, while in the qoxB mutant it was decreased only in the liver. These results illustrate that both terminal oxidases contribute to fitness and virulence, representing promising candidates for the development of antimicrobials.
Collapse
|
8
|
Tynecka Z, Szcześniak Z, Malm A, Los R. Energy conservation in aerobically grown Staphylococcus aureus. Res Microbiol 1999; 150:555-66. [PMID: 10577488 DOI: 10.1016/s0923-2508(99)00102-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present studies provide new data on the involvement of menaquinol oxidases in substrate oxidation and energy conservation in aerobically grown, resting cells of Staphylococcus aureus 17810R, starved of endogenous energy reserves and supplemented with glutamate or L-lactate. These cells were energetically competent, since they oxidized both substrates, generated an electrochemical proton gradient (deltamuH+) and synthesized ATP via oxidative phosphorylation. Studies with KCN showed that: (i) L-lactate oxidation occurred via two terminal menaquinol oxidases - the ba3-type sensitive to low KCN and the bo-type insensitive to cyanide, (ii) glutamate oxidation proceeded via the bo-type oxidase, and (iii) ATP synthesis with glutamate or L-lactate was coupled only to the bo-type oxidase. Also in glucose-grown cells oxidizing L-lactate, ATP synthesis was coupled to the highly repressed bo-type oxidase. It is suggested that in the respiratory chain of strain 17810R two energy coupling sites may be present: in the complex of NADH-menaquinone oxidoreductase and in the complex of the bo-type menaquinol oxidase. The rate of ATP synthesis was similar with both substrates, but the rate of their oxidation differed significantly: the P/O ratios were 1.5 and 0.03 with glutamate and L-lactate, respectively. CCCP accelerated glutamate oxidation by 50% but was without effect on L-lactate oxidation. In cell lysates, the rates of NADH and L-lactate oxidation were equal. It is concluded that in whole cells of S. aureus 17810R oxidation of NADH derived from glutamate breakdown is tightly coupled to phosphorylation, while L-lactate oxidation seems to be rather loosely coupled.
Collapse
Affiliation(s)
- Z Tynecka
- Department of Pharmaceutical Microbiology, Medical Academy, Lublin, Poland
| | | | | | | |
Collapse
|
9
|
Petrov VV, Artzatbanov VYu, Ratner EN, Severin AI, Kulaev IS. Isolation, structural and functional characterization of Staphylococcus aureus protoplasts obtained using lysoamidase. Arch Microbiol 1991; 155:549-53. [PMID: 1953296 DOI: 10.1007/bf00245348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The action of the lysoamidase bacteriolytic complex on Staphylococcus aureus VKM B-209P cells has been studied to obtain protoplasts. The cells in the midlogarithmic phase were the most sensitive to lysoamidase action. It led to local destruction of cell wall due to hydrolysis of the peptidoglycan. Protoplast formation occurred in two steps in the presence of 1 M sucrose. First, osmotically fragile spheroplasts were formed. Then, the protoplasts were released from the destructed cell wall. The protoplast yield was about 80%. The protoplasts preserved the intact ultrastructure and were able to synthesize peptidoglycan fibrillae. Mainly the spheroplasts that maintained the cell-wall residues reversed into bacterial forms. The protoplasts had respiratory activity similar to cells. Respiration of cells and protoplasts was stimulated by various substrates. High rates of oxygen consumption were observed with alpha-glycerophosphate and ethanol as substrates.
Collapse
Affiliation(s)
- V V Petrov
- Institute of Biochemistry and Physiology of Microorganisms, USSR Academy of Sciences, Moscow Region
| | | | | | | | | |
Collapse
|