1
|
Soule T, Ferreira D, Lothamer J, Garcia-Pichel F. The Independent and Shared Transcriptomic Response to UVA, UVB and Oxidative Stress in the Cyanobacterium Nostoc punctiforme ATCC 29133. Photochem Photobiol 2021; 97:1063-1071. [PMID: 33955032 DOI: 10.1111/php.13444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/01/2021] [Indexed: 11/27/2022]
Abstract
Research on the UVA, UVB and oxidative (as reactive oxygen species, ROS) stress response in cyanobacteria has typically focused on each individual stress condition, with limited studies addressing the intersection. Here, we evaluated the transcriptomic responses of the model cyanobacterium Nostoc punctiforme after exposure to each of these conditions. Overall, response to UVA was characterized by more gene down-regulation than the UVB or ROS response, although UVB affected over fourfold more genes than UVA or ROS. Regarding expression patterns, responses to UVA and ROS were more similar and differentiated from those to UVB. For example, genes involved in ROS metabolism were up-regulated under both UVA and ROS. However, when it came to RNA and protein metabolism, there were more up-regulated genes under UVB and ROS compared to UVA. This suggests that the response to UVB and ROS is more active than the response to UVA, which stimulated more genes in secondary metabolism. Histidine kinases and response regulators were often differentially expressed, demonstrating that regulatory systems were at the base of the patterns. This study provides background for future studies targeting different genes, proteins and systems sensitive to these conditions. It also highlights the significance of considering multiple stress conditions.
Collapse
Affiliation(s)
- Tanya Soule
- Department of Biology, Purdue University Fort Wayne, Fort Wayne, IN, USA
| | - Daniela Ferreira
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Justin Lothamer
- Department of Biology, Purdue University Fort Wayne, Fort Wayne, IN, USA
| | | |
Collapse
|
2
|
Chen Z, Tian Y, Zhu C, Liu B, Zhang Y, Lu Z, Zhou Q, Wu Z. Sensitive detection of oxidative DNA damage in cyanobacterial cells using supercoiling-sensitive quantitative PCR. CHEMOSPHERE 2018; 211:164-172. [PMID: 30071428 DOI: 10.1016/j.chemosphere.2018.06.154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/25/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Supercoiling-sensitive quantitative PCR (ss-qPCR) is a sensitive technique to detect DNA damage in cultured animal cells and cultured/clinical human cells in vitro. In this study, we investigated whether the ss-qPCR method can be applied as a sensitive means to detect oxidative DNA damage in unicellular organisms. We used the model cyanobacterium Synechococcus elongatus PCC 7942 as a test organism and H2O2 as an exogenetic oxidative toxicant. Results showed that a significant increase in the plasmid DNA damage of S. elongatus PCC 7942 was induced by H2O2 in a dose- and time-dependent manner. The sensitivity of ss-qPCR in detecting DNA damage of the cyanobacterium was higher than the cell inhibition method (up to 255 times) as calculated from the slopes of fitted curves in the tested sub-toxic concentration range of 1-5 mM H2O2. Ss-qPCR also detected repairable low-intensity DNA damage in the cyanobacterium when DNA repair inhibitors were used. The detection limit of modified ss-qPCR was one tenth of that of previous methods. We also observed that ss-qPCR can be used to detect genomic DNA conformation change of cyanobacterium exposed to H2O2. Thus, this method will provide a powerful technical support for investigating the mechanisms of cyanobacterial DNA damage by environmental factors, especially intracellular reactive oxygen species enhancement-related factors.
Collapse
Affiliation(s)
- Zhilan Chen
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Hunan Province, Hunan University of Science and Technology, Taoyuan Road, Yuhu District, Xiangtan 411201, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, China; Hunan Province Key Laboratory of Coal Resources Clean-utilization and Mine Environment Protection, Hunan University of Science and Technology, Taoyuan Road, Yuhu District, Xiangtan 411201, China
| | - Yun Tian
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072, China
| | - Chenhong Zhu
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Hunan Province, Hunan University of Science and Technology, Taoyuan Road, Yuhu District, Xiangtan 411201, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, China
| | - Biyun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072, China
| | - Yongyuan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072, China
| | - Zhiying Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072, China
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072, China.
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072, China
| |
Collapse
|
3
|
Janssen J, Soule T. Gene expression of a two-component regulatory system associated with sunscreen biosynthesis in the cyanobacteriumNostoc punctiformeATCC 29133. FEMS Microbiol Lett 2015; 363:fnv235. [DOI: 10.1093/femsle/fnv235] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2015] [Indexed: 12/25/2022] Open
|
4
|
Differential Display of Antioxidants in Mitigating Adverse Effects of UV-B Radiation in Nostoc muscorum and Phormidium foveolarum Photoacclimated to Different Irradiances. Appl Biochem Biotechnol 2015; 175:2703-28. [DOI: 10.1007/s12010-014-1446-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 12/14/2014] [Indexed: 10/24/2022]
|
5
|
Soule T, Gao Q, Stout V, Garcia-Pichel F. The Global Response ofNostoc punctiformeATCC 29133 to UVA Stress, Assessed in a Temporal DNA Microarray Study. Photochem Photobiol 2012; 89:415-23. [DOI: 10.1111/php.12014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 10/27/2012] [Indexed: 12/18/2022]
Affiliation(s)
| | - Qunjie Gao
- School of Life Sciences; Arizona State University; Tempe; AZ
| | - Valerie Stout
- School of Life Sciences; Arizona State University; Tempe; AZ
| | | |
Collapse
|
6
|
Sajitha Rajan S, Murugan K. Purification and kinetic characterization of the liverwort Pallavicinia lyelli (Hook.) S. Gray. cytosolic ascorbate peroxidase. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:758-63. [PMID: 20619666 DOI: 10.1016/j.plaphy.2010.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 05/16/2010] [Accepted: 06/10/2010] [Indexed: 05/02/2023]
Abstract
Ascorbate peroxidase (APX) of the liverwort Pallavicinia lyelli was extracted and purified through ammonium sulfate precipitation, Butyl-Toyopearl, DEAE-Cellulofine and Sephadex G-75 chromatography. The purification factor for APX was 285 with 7.9% yield. The enzyme was characterized for thermal stability, pH and kinetic parameters. The molecular mass of APX was approximately 28 kDa estimated by SDS-PAGE. The purity was checked by native PAGE, showing a single prominent band. The optimum pH was 6.0. The enzyme had a temperature optimum at 40 degrees C and was relatively stable at 60 degrees C, with 54% loss of activity. When the enzyme was diluted with the ascorbate-deleted medium, the half inactivation time was approximately 15 min. The absorption spectra of the purified enzyme and the inhibition by cyanide and azide showed that it is a hemoprotein. Spectral analysis and inhibitor studies were consistent with the presence of a heme moiety. When compared with ascorbate peroxidase activity derived from ruptured intact chloroplasts, the purified enzyme was found to have a higher stability, a broader pH optimum for activity and the capacity to utilize alternate electron donors. p-Chloromercuribenzoate (pCMB), hydroxyurea and salicylic acid (SA) significantly inhibited APX activity. Ascorbate (AsA) and pyrogallol were found to be efficient substrates for Pallavicinia APX, considering the Vmax/Km ratio. We detected the activity of monodehydroascorbate reductase (MDHAR) involved in the regeneration of ascorbate, but failed to detect the dehydroascorbate reductase (DHAR) activity. The data obtained in this study may help to understand desiccation tolerance mechanism in the liverwort.
Collapse
Affiliation(s)
- S Sajitha Rajan
- Plant Biochemistry and Molecular Biology Lab, Dept. of Botany, University College, Thiruvananthapuram, Kerala 695 034, India
| | | |
Collapse
|
7
|
Mishra Y, Bhargava P, Thapar R, Srivastava AK, Rai LC. A comparative study of antioxidative defense system in the copper and temperature acclimated strains of Anabaena doliolum. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9844-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Rajendran UM, Kathirvel E, Anand N. Desiccation-induced Changes in Antioxidant Enzymes, Fatty Acids, and Amino Acids in the Cyanobacterium Tolypothrix scytonemoides. World J Microbiol Biotechnol 2006. [DOI: 10.1007/s11274-006-9221-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Kobayashi M, Ishizuka T, Katayama M, Kanehisa M, Bhattacharyya-Pakrasi M, Pakrasi HB, Ikeuchi M. Response to oxidative stress involves a novel peroxiredoxin gene in the unicellular cyanobacterium Synechocystis sp. PCC 6803. PLANT & CELL PHYSIOLOGY 2004; 45:290-9. [PMID: 15047877 DOI: 10.1093/pcp/pch034] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Exposure to methyl viologen in the presence of light facilitates the production of superoxide that gives severe damage on photosynthetic apparatus as well as many cellular processes in cyanobacteria and plants. The effects of methyl viologen on global gene expression of a unicellular cyanobacterium Synechocystis sp. strain PCC 6803 were determined by DNA microarray. The ORFs sll1621, slr1738, slr0074, slr0075, and slr0589 were significantly induced by treatment of methyl viologen for 15 min commonly under conditions of normal and high light. One of these genes, slr1738, which encodes a ferric uptake repressor (Fur)-type transcriptional regulator, is located divergently next to another induced gene, sll1621, in the genome. We deleted slr1738, and compared the global gene expression patterns of this mutant to that of wild type under non-stressed conditions. It was found that sll1621 was derepressed to the greatest extent, while many other genes including slr0589 but not slr0074 or slr0075 were derepressed to lesser extent in the mutant. Genetic disruption of sll1621, which encodes a putative type 2 peroxiredoxin, indicates that it is essential for aerobic phototrophic growth in both liquid and solid media in high light and on solid medium even in low light. Slr1738 was prepared as a His-tagged recombinant protein and shown to specifically bind to the intergenic region between sll1621 and slr1738. The binding was enhanced by dithiothreitol and abolished by hydrogen peroxide. We concluded that the Fur homolog, Slr1738, plays a regulatory role in the induction of a potent antioxidant gene, sll1621, in response to oxidative stress.
Collapse
Affiliation(s)
- Mari Kobayashi
- Department of Life Sciences (Biology), The University of Tokyo, Komaba, Meguro, Tokyo, 153-8902 Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Michel KP, Pistorius EK. Adaptation of the photosynthetic electron transport chain in cyanobacteria to iron deficiency: The function of IdiA and IsiA. PHYSIOLOGIA PLANTARUM 2004; 120:36-50. [PMID: 15032875 DOI: 10.1111/j.0031-9317.2004.0229.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In this review we give an overview on the adaptational responses of photosystem (PS) II and PSI in cyanobacteria to iron starvation, mainly summarizing our results with the mesophilic Synechococcus elongatus PCC 7942. We also discuss this process with respect to the strong interrelationship between iron limitation and oxidative stress that exists in cyanobacteria as oxygenic photosynthetic organisms. The adaptation of the multiprotein complexes PSII and PSI to iron starvation is a sequential process, which is characterized by the enhanced expression of two major iron-regulated proteins, IdiA (iron deficiency induced protein A) and IsiA (iron stress induced protein A). Our results suggest that IdiA protects the acceptor side of PSII against oxidative stress under conditions of mild iron limitation in a currently unclear way, whereas prolonged iron deficiency leads to the synthesis of a chlorophyll a antenna around PSI-trimers consisting of IsiA molecules. The physiological consequences of these alterations under prolonged iron starvation, as shown by acridine yellow fluorescence measurements, are a reduction of linear electron transport activity through PSII and an increase of cyclic electron flow around PSI as well as an increase in respiratory activity. IdiA and IsiA expression are mediated by two distinct helix-turn-helix transcriptional regulators of the Crp/Fnr family. IdiB positively regulates expression of idiA under iron starvation, and Fur represses transcription of isiA under iron-sufficient conditions. Although both transcriptional regulators seem to operate independently of each other, our results indicate that a cross-talk between the signal transduction pathways exists. Moreover, IdiA as well as IsiA expression are affected by hydrogen peroxide. We suggest that due to the interdependence of iron limitation and the formation of reactive oxygen species, peroxide stress might be the superior trigger that leads to expression of these proteins under iron starvation. The modifications of PSII and PSI under iron starvation influence the redox state of redox-sensitive components of the electron transport chain, and thus the activity of metabolic pathways being regulated in dependence of the redox state of these components.
Collapse
Affiliation(s)
- Klaus-Peter Michel
- Biologie VIII: Molekulare Zellphysiologie, Universität Bielefeld, D-33501 Bielefeld, Germany
| | | |
Collapse
|
11
|
El-baky A, . HH, . MAA, . MH. Influence of Salinity on Lipid Peroxidation, Antioxidant Enzymes and Electrophoretic Patterns of Protein and Isoenzymes in Leaves of Some Onion Cultivars. ACTA ACUST UNITED AC 2003. [DOI: 10.3923/ajps.2003.1220.1227] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
El-baky A, Hanaa H, A. Amal M, Hussein M. Influence of Salinity on Lipid Peroxidation, Antioxidant Enzymes and Electrophoretic Patterns of Protein and Isoenzymes in Leaves of Some Onion Cultivars. ACTA ACUST UNITED AC 2003. [DOI: 10.3923/ajps.2003.633.638] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Rizhsky L, Hallak-Herr E, Van Breusegem F, Rachmilevitch S, Barr JE, Rodermel S, Inzé D, Mittler R. Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 32:329-42. [PMID: 12410811 DOI: 10.1046/j.1365-313x.2002.01427.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The plant genome is a highly redundant and dynamic genome. Here, we show that double antisense plants lacking the two major hydrogen peroxide-detoxifying enzymes, ascorbate peroxidase (APX) and catalase (CAT), activate an alternative/redundant defense mechanism that compensates for the lack of APX and CAT. A similar mechanism was not activated in single antisense plants that lacked APX or CAT, paradoxically rendering these plants more sensitive to oxidative stress compared to double antisense plants. The reduced susceptibility of double antisense plants to oxidative stress correlated with suppressed photosynthetic activity, the induction of metabolic genes belonging to the pentose phosphate pathway, the induction of monodehydroascorbate reductase, and the induction of IMMUTANS, a chloroplastic homologue of mitochondrial alternative oxidase. Our results suggest that a co-ordinated induction of metabolic and defense genes, coupled with the suppression of photosynthetic activity, can compensate for the lack of APX and CAT. In addition, our findings demonstrate that the plant genome has a high degree of plasticity and will respond differently to different stressful conditions, namely, lack of APX, lack of CAT, or lack of both APX and CAT.
Collapse
Affiliation(s)
- Ludmila Rizhsky
- Department of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Miller AG, Hunter KJ, O'Leary SJ, Hart LJ. The photoreduction of H(2)O(2) by Synechococcus sp. PCC 7942 and UTEX 625. PLANT PHYSIOLOGY 2000; 123:625-36. [PMID: 10859192 PMCID: PMC59030 DOI: 10.1104/pp.123.2.625] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/1999] [Accepted: 02/17/2000] [Indexed: 05/23/2023]
Abstract
It has been claimed that the sole H(2)O(2)-scavenging system in the cyanobacterium Synechococcus sp. PCC 7942 is a cytosolic catalase-peroxidase. We have measured in vivo activity of a light-dependent peroxidase in Synechococcus sp. PCC 7942 and UTEX 625. The addition of small amounts of H(2)O(2) (2.5 microM) to illuminated cells caused photochemical quenching (qP) of chlorophyll fluorescence that was relieved as the H(2)O(2) was consumed. The qP was maximal at about 50 microM H(2)O(2) with a Michaelis constant of about 7 microM. The H(2)O(2)-dependent qP strongly indicates that photoreduction can be involved in H(2)O(2) decomposition. Catalase-peroxidase activity was found to be almost completely inhibited by 10 microM NH(2)OH with no inhibition of the H(2)O(2)-dependent qP, which actually increased, presumably due to the light-dependent reaction now being the only route for H(2)O(2)-decomposition. When (18)O-labeled H(2)O(2) was presented to cells in the light there was an evolution of (16)O(2), indicative of H(2)(16)O oxidation by PS 2 and formation of photoreductant. In the dark (18)O(2) was evolved from added H(2)(18)O(2) as expected for decomposition by the catalase-peroxidase. This evolution was completely blocked by NH(2)OH, whereas the light-dependent evolution of (16)O(2) during H(2)(18)O(2) decomposition was unaffected.
Collapse
Affiliation(s)
- A G Miller
- Department of Biology, St. Francis Xavier University, Nova Scotia, Canada.
| | | | | | | |
Collapse
|
15
|
Tichy M, Vermaas W. In vivo role of catalase-peroxidase in synechocystis sp. strain PCC 6803. J Bacteriol 1999; 181:1875-82. [PMID: 10074082 PMCID: PMC93588 DOI: 10.1128/jb.181.6.1875-1882.1999] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/1998] [Accepted: 01/13/1999] [Indexed: 11/20/2022] Open
Abstract
The katG gene coding for the only catalase-peroxidase in the cyanobacterium Synechocystis sp. strain PCC 6803 was deleted in this organism. Although the rate of H2O2 decomposition was about 30 times lower in the DeltakatG mutant than in the wild type, the strain had a normal phenotype and its doubling time as well as its resistance to H2O2 and methyl viologen were indistinguishable from those of the wild type. The residual H2O2-scavenging capacity was more than sufficient to deal with the rate of H2O2 production by the cell, estimated to be less than 1% of the maximum rate of photosynthetic electron transport in vivo. We propose that catalase-peroxidase has a protective role against environmental H2O2 generated by algae or bacteria in the ecosystem (for example, in mats). This protective role is most apparent at a high cell density of the cyanobacterium. The residual H2O2-scavenging activity in the DeltakatG mutant was a light-dependent peroxidase activity. However, neither glutathione peroxidase nor ascorbate peroxidase accounted for a significant part of this H2O2-scavenging activity. When a small thiol such as dithiothreitol was added to the medium, the rate of H2O2 decomposition in the DeltakatG mutant increased more than 10-fold, indicating that a thiol-specific peroxidase, for which thioredoxin may be the physiological electron donor, is present. Oxidized thioredoxin is likely to be reduced again by photosynthetic electron transport. Therefore, under laboratory conditions, there are only two enzymatic mechanisms for H2O2 decomposition present in Synechocystis sp. strain PCC 6803. One is catalyzed by a catalase-peroxidase, and the other is catalyzed by thiol-specific peroxidase.
Collapse
Affiliation(s)
- M Tichy
- Department of Plant Biology and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1601, USA
| | | |
Collapse
|
16
|
Dat, Lopez-Delgado, Foyer, Scott. Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. PLANT PHYSIOLOGY 1998; 116:1351-7. [PMID: 9536052 PMCID: PMC35042 DOI: 10.1104/pp.116.4.1351] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/1997] [Accepted: 12/16/1997] [Indexed: 05/17/2023]
Abstract
Spraying mustard (Sinapis alba L.) seedlings with salicylic acid (SA) solutions between 10 and 500 &mgr;m significantly improved their tolerance to a subsequent heat shock at 55 degreesC for 1.5 h. The effects of SA were concentration dependent, with higher concentrations failing to induce thermotolerance. The time course of thermotolerance induced by 100 &mgr;m SA was similar to that obtained with seedlings acclimated at 45 degreesC for 1 h. We examined the hypothesis that induced thermotolerance involved H2O2. Heat shock at 55 degreesC caused a significant increase in endogenous H2O2 and reduced catalase activity. A peak in H2O2 content was observed within 5 min of either SA treatment or transfer to the 45 degreesC acclimation temperature. Between 2 and 3 h after SA treatment or heat acclimation, both H2O2 and catalase activity significantly decreased below control levels. The lowered H2O2 content and catalase activity occurred in the period of maximum thermoprotection. It is suggested that thermoprotection obtained either by spraying SA or by heat acclimation may be achieved by a common signal transduction pathway involving an early increase in H2O2.
Collapse
|
17
|
Banzet N, Richaud C, Deveaux Y, Kazmaier M, Gagnon J, Triantaphylidès C. Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 13:519-27. [PMID: 9680997 DOI: 10.1046/j.1365-313x.1998.00056.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Changes in gene expression, by application of H2O2, O2.- generating agents (methyl viologen, digitonin) and gamma irradiation to tomato suspension cultures, were investigated and compared to the well-described heat shock response. Two-dimensional gel protein mapping analyses gave the first indication that at least small heat shock proteins (smHSP) accumulated in response to application of H2O2 and gamma irradiation, but not to O2.- generating agents. While some proteins seemed to be induced specifically by each treatment, only part of the heat shock response was observed. On the basis of Northern hybridization experiments performed with four heterologous cDNA, corresponding to classes I-IV of pea smHSP, it could be concluded that significant amounts of class I and II smHSP mRNA are induced by H2O2 and by irradiation. Taken together, these results demonstrate that in plants some HSP genes are inducible by oxidative stresses, as in micro-organisms and other eukaryotic cells. HSP22, the main stress protein that accumulates following H2O2 action or gamma irradiation, was also purified. Sequence homology of amino terminal and internal sequences, and immunoreactivity with Chenopodium rubrum mitochondrial smHSP antibody, indicated that the protein belongs to the recently discovered class of plant mitochondrial smHSP. Heat shock or a mild H2O2 pretreatment was also shown to lead to plant cell protection against oxidative injury. Therefore, the synthesis of these stress proteins can be considered as an adaptive mechanism in which mitochondrial protection could be essential.
Collapse
Affiliation(s)
- N Banzet
- CEA-Cadarache, Département d'Ecophysiologie Végétale et de Microbiologie, Saint-Paul Lez Durance, France
| | | | | | | | | | | |
Collapse
|
18
|
Kubo A, Saji H, Tanaka K, Kondo N. Expression of Arabidopsis cytosolic ascorbate peroxidase gene in response to ozone or sulfur dioxide. PLANT MOLECULAR BIOLOGY 1995; 29:479-89. [PMID: 8534847 DOI: 10.1007/bf00020979] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The effects of ozone or sulfur dioxide on antioxidant enzymes were investigated in Arabidopsis thaliana. Plants were fumigated with 0.1-0.15 ppm ozone or sulfur dioxide up to about 1 week in an environment-controlled chamber. Both pollutants increased the activities of ascorbate peroxidase and guaiacol peroxidase in leaves, but had little effect on the activities of superoxide dismutase, catalase, monodehydroascorbate reductase, dehydroascorbate reductase or glutathione reductase. Ozone was more effective than sulfur dioxide in increasing the activities of the peroxidases. Ascorbate peroxidase activity increased 1.8-fold without a lag period during fumigation with 0.1 ppm ozone, while guaiacol peroxidase activity increased 4.4-fold with a 1-day lag. Expression of the APX1 gene encoding cytosolic ascorbate peroxidase was further investigated. Its protein levels in leaves exposed to 0.1 ppm ozone for 4 or 8 days were 1.5-fold higher than in controls. Both ozone and sulfur dioxide elevated APX1 mRNA levels in leaves at 4 and 7 days, whereas at 1 day only ozone was effective. The induction of APX1 mRNA levels by ozone (3.4- to 4.1-fold) was more prominent than that by sulfur dioxide (1.6- to 2.6-fold). The APX1 mRNA level increased by day and decreased by night. Exposure of plants to 0.1 ppm ozone enhanced the APX1 mRNA level within 3 h, which showed a diurnal rhythm similar to that of the control. These results demonstrate that near-ambient concentrations of ozone as well as similar concentrations of sulfur dioxide can induce APX1 gene expression in A. thaliana.
Collapse
Affiliation(s)
- A Kubo
- Environmental Biology Division, National Institute for Environmental Studies, Ibaraki, Japan
| | | | | | | |
Collapse
|
19
|
Peña MM, Burkhart W, Bullerjahn GS. Purification and characterization of a Synechococcus sp. strain PCC 7942 polypeptide structurally similar to the stress-induced Dps/PexB protein of Escherichia coli. Arch Microbiol 1995; 163:337-44. [PMID: 7794101 DOI: 10.1007/bf00404206] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A stable DNA/protein complex having an apparent molecular mass of approximately 150 kDa was purified from nitrate-limited cultures of the cyanobacterium Synechococcus sp. strain PCC 7942. Amino-terminal peptide sequencing indicated that the polypeptide was structurally similar to the Dps protein of Escherichia coli; Dps is also known as the product of the starvation- and stationary-phase-inducible gene, pexB. The 150-kDa complex dissociated into a 22-kDa protein monomer after boiling in 2% SDS. The 150-kDa complex preparation had approximately a 10% nucleic acid content and upon dissociation released DNA fragments that were sensitive to S1 nuclease digestion. Immunoblot data indicated that the complex accumulates during stationary phase and during nitrogen, sulfur, and phosphorus limitation. DNA-binding assays indicated that the protein nonspecifically binds both linear and supercoiled DNA. Circular dichroism spectroscopy revealed that the Synechococcus sp. Dps-like protein contains extensive regions of alpha-helical secondary structure. We propose that the 150-kDa complex represents a hexameric aggregate of the Dps-like protein complexed with single-stranded DNA and serves to bind a portion of the chromosomal DNA under nutrient-limited conditions.
Collapse
Affiliation(s)
- M M Peña
- Department of Biological Sciences, Bowling Green State University, OH 43403-0212, USA
| | | | | |
Collapse
|
20
|
Rozen A, Mittler R, Burstein Y, Tel-Or E. A unique ascorbate peroxidase active component in the cyanobacterium Synechococcus PCC 7942 (R2). FREE RADICAL RESEARCH COMMUNICATIONS 1992; 17:1-8. [PMID: 1332915 DOI: 10.3109/10715769209061084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ascorbate peroxidase active component (APAC) was purified and characterized in Synechococcus PCC 9742 (R2) cells. APAC was isolated from freshly harvested cells, by ion exchange chromatography on DEAE cellulose, ultrafiltration through a 3000 dalton cut off filter and high pressure liquid chromatography through a reversed phase C-18 column. APAC was found to be extremely stable to harsh treatments of boiling water for 30 min, acidification to pH 2.0 and proteolytic digestion. A close correlation between activity and iron content of APAC was observed throughout the purification steps. E.S.R. spectrum of APAC showed a resonance line at g = 4.3 in the oxidized from. Peroxide reduction by ascorbate decreased the E.S.R. signal, which reappeared upon reoxidation by H2O2. The affinities of APAC to H2O2 and ascorbate were high (0.38 mM and 0.2 mM, respectively). Amino acid composition analysis of APAC revealed the presence of glutamic acid:glycine:cysteine residues at 2:1:1 ratio.
Collapse
Affiliation(s)
- A Rozen
- Department of Agricultural Botany, Hebrew University of Jerusalem, Rehovot
| | | | | | | |
Collapse
|