Miller E, Wohlfarth G, Diekert G. Studies on tetrachloroethene respiration in Dehalospirillum multivorans.
Arch Microbiol 1996;
166:379-87. [PMID:
9082914 DOI:
10.1007/bf01682983]
[Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tetrachloroethene (PCE) respiration was studied in the tetrachloroethene-utilizing anaerobe, Dehalospirillum multivorans, with respect to localization of the catabolic enzymes, the electron carriers potentially involved in electron transport, and the response to ionophores and specific inhibitors. Hydrogenase and formate dehydrogenase were recovered in the periplasmic cell fraction and were membrane-associated. Electron-accepting tetrachloroethene dehalogenase was found in the cytoplasmic fraction. In the PCE dehalogenase assay, only artificial electron donors with a standard redox potential of D. multivorans (Eo' = -445 mV) could serve as electron donor for PCE reduction. However, the reaction rate with ferredoxin was only 1% of that with methyl viologen, whereas the pyruvate-ferredoxin oxidoreductase exhibited almost the same reaction rates with methyl viologen and ferredoxin as electron acceptors for pyruvate oxidation. Reduced menadione (2-methyl-1, 4-naphthoquinone) did not serve as electron donor in the PCE dehalogenase reaction. 2-Heptyl-4-hydroxyquinoline-N-oxide (HOQNO) had no significant effect on PCE dechlorination in cell suspensions and in crude extracts. Whole cells catalyzed the reductive dechlorination of PCE with H2 or formate as electron donors. The dechlorination in cell suspensions rather than in cell extracts was inhibited by the ionophores carbonylcyanide-p-(trifluoromethoxy)phenylhydrazone (FCCP) and tetrachlorosalicylanilide (TCS), indicating that a membrane potential and/or a pH gradient may be required for the reaction in vivo.
Collapse