1
|
Wu Y, Deng N, Liu J, Cai Y, Yi X, Tan Z. Unlocking the therapeutic potential of Huoxiang Zhengqi San in cold and high humidity-induced diarrhea: Insights into intestinal microbiota modulation and digestive enzyme activity. Heliyon 2024; 10:e32789. [PMID: 38975065 PMCID: PMC11226830 DOI: 10.1016/j.heliyon.2024.e32789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Huoxiang Zhengqi San (HXZQS), a traditional Chinese herbal formula, enjoys widespread use in Chinese medicine to treat diarrhea with cold-dampness trapped spleen syndrome (CDSS), which is induced by exposure to cold and high humidity stress. This study aimed to explore its therapeutic mechanisms in mice, particularly focusing on the intestinal microbiota. Forty male SPF-grade KM mice were allocated into two groups: the normal control group (H-Cc, n = 10) and the CDSS group (H-Mc, n = 30). After modeling, H-Mc was subdivided into H-Mc (n = 15) and HXZQS treatment (H-Tc, n = 15) groups. Intestinal samples were analyzed for enzyme activity and microbiota composition. Our findings demonstrated a notable reduction in intestinal lactase activity post-HXZQS treatment (P < 0.05). Lactobacillus johnsonii, Lactobacillus reuteri, and Lactobacillus murinus emerged as the main dominant species across most groups. However, in the H-Mc group, Clostridium sensu stricto 1 was identified as the exclusive dominant bacteria. LEfSe analysis highlighted Clostridiales vadinBB60 group and Corynebacterium as differential bacteria in the H-Tc group, and Cyanobacteria unidentified specie in the H-Mc group. Predicted microbiota functions aligned with changes in abundance, notably in cofactors and vitamins metabolism. The collinear results of the intestinal microbiota interaction network showed that HXZQS restored cooperative interactions among rare bacteria by mitigating their mutual promotion. The HXZQS decoction effectively alleviates diarrhea with CDSS by regulating intestinal microbiota, digestive enzyme activity, and microbiota interaction. Notably, it enhances Clostridium vadinBB60 and suppresses Cyanobacteria unidentified specie, warranting further study.
Collapse
Affiliation(s)
- Yi Wu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Na Deng
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jing Liu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Ying Cai
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xin Yi
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhoujin Tan
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Characterization of four diol dehydrogenases for enantioselective synthesis of chiral vicinal diols. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Elmahmoudy M, Elfeky N, Zhongji P, Zhang Y, Bao Y. Identification and characterization of a novel 2R,3R-Butanediol dehydrogenase from Bacillus sp. DL01. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2020.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
4
|
Muschallik L, Molinnus D, Jablonski M, Kipp CR, Bongaerts J, Pohl M, Wagner T, Schöning MJ, Selmer T, Siegert P. Synthesis of α-hydroxy ketones and vicinal (R,R)-diols by Bacillus clausii DSM 8716T butanediol dehydrogenase. RSC Adv 2020; 10:12206-12216. [PMID: 35497574 PMCID: PMC9050739 DOI: 10.1039/d0ra02066d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/05/2020] [Indexed: 12/04/2022] Open
Abstract
α-hydroxy ketones (HK) and 1,2-diols are important building blocks for fine chemical synthesis. Here, we describe the R-selective 2,3-butanediol dehydrogenase from B. clausii DSM 8716T (BcBDH) that belongs to the metal-dependent medium chain dehydrogenases/reductases family (MDR) and catalyzes the selective asymmetric reduction of prochiral 1,2-diketones to the corresponding HK and, in some cases, the reduction of the same to the corresponding 1,2-diols. Aliphatic diketones, like 2,3-pentanedione, 2,3-hexanedione, 5-methyl-2,3-hexanedione, 3,4-hexanedione and 2,3-heptanedione are well transformed. In addition, surprisingly alkyl phenyl dicarbonyls, like 2-hydroxy-1-phenylpropan-1-one and phenylglyoxal are accepted, whereas their derivatives with two phenyl groups are not substrates. Supplementation of Mn2+ (1 mM) increases BcBDH's activity in biotransformations. Furthermore, the biocatalytic reduction of 5-methyl-2,3-hexanedione to mainly 5-methyl-3-hydroxy-2-hexanone with only small amounts of 5-methyl-2-hydroxy-3-hexanone within an enzyme membrane reactor is demonstrated. Reduction of symmetric or asymmetric vicinal diketones with BcBDH leads to the synthesis of either α-hydroxyketones or vicinal diols.![]()
Collapse
Affiliation(s)
- Lukas Muschallik
- Institute of Nano- and Biotechnologies
- Aachen University of Applied Sciences
- 52428 Jülich
- Germany
| | - Denise Molinnus
- Institute of Nano- and Biotechnologies
- Aachen University of Applied Sciences
- 52428 Jülich
- Germany
| | - Melanie Jablonski
- Institute of Nano- and Biotechnologies
- Aachen University of Applied Sciences
- 52428 Jülich
- Germany
| | - Carina Ronja Kipp
- Institute of Nano- and Biotechnologies
- Aachen University of Applied Sciences
- 52428 Jülich
- Germany
| | - Johannes Bongaerts
- Institute of Nano- and Biotechnologies
- Aachen University of Applied Sciences
- 52428 Jülich
- Germany
| | - Martina Pohl
- IBG-1: Biotechnology
- Forschungszentrum Jülich
- 52425 Jülich
- Germany
| | - Torsten Wagner
- Institute of Nano- and Biotechnologies
- Aachen University of Applied Sciences
- 52428 Jülich
- Germany
| | - Michael J. Schöning
- Institute of Nano- and Biotechnologies
- Aachen University of Applied Sciences
- 52428 Jülich
- Germany
| | - Thorsten Selmer
- Institute of Nano- and Biotechnologies
- Aachen University of Applied Sciences
- 52428 Jülich
- Germany
| | - Petra Siegert
- Institute of Nano- and Biotechnologies
- Aachen University of Applied Sciences
- 52428 Jülich
- Germany
| |
Collapse
|
5
|
Jia X, Kelly RM, Han Y. Simultaneous biosynthesis of ( R)-acetoin and ethylene glycol from D-xylose through in vitro metabolic engineering. Metab Eng Commun 2018; 7:e00074. [PMID: 30197863 PMCID: PMC6127078 DOI: 10.1016/j.mec.2018.e00074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/18/2018] [Accepted: 06/24/2018] [Indexed: 11/28/2022] Open
Abstract
(R)-acetoin is a four-carbon platform compound used as the precursor for synthesizing novel optically active materials. Ethylene glycol (EG) is a large-volume two-carbon commodity chemical used as the anti-freezing agent and building-block molecule for various polymers. Currently established microbial fermentation processes for converting monosaccharides to either (R)-acetoin or EG are plagued by the formation of undesirable by-products. We show here that a cell-free bioreaction scheme can generate enantiomerically pure acetoin and EG as co-products from biomass-derived D-xylose. The seven-step, ATP-free system included in situ cofactor regeneration and recruited enzymes from Escherichia coli W3110, Bacillus subtilis shaijiu 32 and Caulobacter crescentus CB 2. Optimized in vitro biocatalytic conditions generated 3.2 mM (R)-acetoin with stereoisomeric purity of 99.5% from 10 mM D-xylose at 30 °C and pH 7.5 after 24 h, with an initial (R)-acetoin productivity of 1.0 mM/h. Concomitantly, EG was produced at 5.5 mM, with an initial productivity of 1.7 mM/h. This in vitro biocatalytic platform illustrates the potential for production of multiple value-added biomolecules from biomass-based sugars with no ATP requirement.
Collapse
Key Words
- (R)-acetoin
- BSA, bovine serum albumin
- Cofactor regeneration
- D-xylose
- EG, ethylene glycol
- EMP, Embden-Meyerhoff-Parnas
- Ethylene glycol
- FAD, flavin adenine dinucleotide
- GC, gas chromatography
- HPLC, high-pressure liquid chromatography
- IPTG, isopropyl-β-D-thiogalactopyranoside
- In vitro metabolic engineering
- LB, lysogeny broth
- NAD+, oxidized nicotinamide adenine dinucleotide
- NADH, reduced nicotinamide adenine dinucleotide
- PET, polyethylene terephthalate
- PP, pentose phosphate
- SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis
- ThDP, Thiamine diphosphate
- ee, enantiomeric excess
Collapse
Affiliation(s)
- Xiaojing Jia
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Yejun Han
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
6
|
Zheng Y, Li L, Shi X, Huang Z, Li F, Yang J, Guo Y. Nonionic surfactants and their effects on asymmetric reduction of 2-octanone with Saccharomyces cerevisiae. AMB Express 2018; 8:111. [PMID: 29978349 PMCID: PMC6033843 DOI: 10.1186/s13568-018-0640-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 06/29/2018] [Indexed: 11/17/2022] Open
Abstract
In an aqueous buffer system, serious reverse and side reactions were found in the asymmetric reduction of 2-octanone with Saccharomyces cerevisiae. However, some nonionic surfactants added to the aqueous buffer system improved the bioreduction process by decreasing the reverse and side reaction rates in addition to effectively increasing the average positive reaction rate. Further, a shorter carbon chain length of hydrophilic or hydrophobic moieties in surfactants resulted in a higher yield of (S)-2-octanol. The alkylphenol ethoxylate surfactants had a less influence than polyoxyethylenesorbitan trialiphatic surfactants on the product e.e. It suggested that the product e.e. resulting from the change of carbon chain length of the hydrophobic moieties varied markedly compared with the change of carbon chain length of the hydrophilic moiety. Emulsifier OP-10 and Tween 20 markedly enhanced the yield and product e.e. at the concentration of 0.4 mmol L−1 with a yield of 73.3 and 93.2%, and the product e.e. of 99.2 and 99.3%, respectively, at the reaction time of 96 h.
Collapse
|
7
|
Muschallik L, Molinnus D, Bongaerts J, Pohl M, Wagner T, Schöning MJ, Siegert P, Selmer T. (R,R)-Butane-2,3-diol dehydrogenase from Bacillus clausii DSM 8716 T: Cloning and expression of the bdhA-gene, and initial characterization of enzyme. J Biotechnol 2017; 258:41-50. [PMID: 28793235 DOI: 10.1016/j.jbiotec.2017.07.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/09/2017] [Accepted: 07/21/2017] [Indexed: 12/01/2022]
Abstract
The gene encoding a putative (R,R)-butane-2,3-diol dehydrogenase (bdhA) from Bacillus clausii DSM 8716T was isolated, sequenced and expressed in Escherichia coli. The amino acid sequence of the encoded protein is only distantly related to previously studied enzymes (identity 33-43%) and exhibited some uncharted peculiarities. An N-terminally StrepII-tagged enzyme variant was purified and initially characterized. The isolated enzyme catalyzed the (R)-specific oxidation of (R,R)- and meso-butane-2,3-diol to (R)- and (S)-acetoin with specific activities of 12U/mg and 23U/mg, respectively. Likewise, racemic acetoin was reduced with a specific activity of up to 115U/mg yielding a mixture of (R,R)- and meso-butane-2,3-diol, while the enzyme reduced butane-2,3-dione (Vmax 74U/mg) solely to (R,R)-butane-2,3-diol via (R)-acetoin. For these reactions only activity with the co-substrates NADH/NAD+ was observed. The enzyme accepted a selection of vicinal diketones, α-hydroxy ketones and vicinal diols as alternative substrates. Although the physiological function of the enzyme in B. clausii remains elusive, the data presented herein clearly demonstrates that the encoded enzyme is a genuine (R,R)-butane-2,3-diol dehydrogenase with potential for applications in biocatalysis and sensor development.
Collapse
Affiliation(s)
- Lukas Muschallik
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428 Jülich, Germany
| | - Denise Molinnus
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428 Jülich, Germany
| | - Johannes Bongaerts
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428 Jülich, Germany
| | - Martina Pohl
- IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Torsten Wagner
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428 Jülich, Germany
| | - Michael J Schöning
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428 Jülich, Germany
| | - Petra Siegert
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428 Jülich, Germany
| | - Thorsten Selmer
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428 Jülich, Germany.
| |
Collapse
|
8
|
Efficient whole-cell biocatalyst for acetoin production with NAD+ regeneration system through homologous co-expression of 2,3-butanediol dehydrogenase and NADH oxidase in engineered Bacillus subtilis. PLoS One 2014; 9:e102951. [PMID: 25036158 PMCID: PMC4103878 DOI: 10.1371/journal.pone.0102951] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/24/2014] [Indexed: 01/19/2023] Open
Abstract
Acetoin (3-hydroxy-2-butanone), an extensively-used food spice and bio-based platform chemical, is usually produced by chemical synthesis methods. With increasingly requirement of food security and environmental protection, bio-fermentation of acetoin by microorganisms has a great promising market. However, through metabolic engineering strategies, the mixed acid-butanediol fermentation metabolizes a certain portion of substrate to the by-products of organic acids such as lactic acid and acetic acid, which causes energy cost and increases the difficulty of product purification in downstream processes. In this work, due to the high efficiency of enzymatic reaction and excellent selectivity, a strategy for efficiently converting 2,3-butandiol to acetoin using whole-cell biocatalyst by engineered Bacillus subtilis is proposed. In this process, NAD+ plays a significant role on 2,3-butanediol and acetoin distribution, so the NADH oxidase and 2,3-butanediol dehydrogenase both from B. subtilis are co-expressed in B. subtilis 168 to construct an NAD+ regeneration system, which forces dramatic decrease of the intracellular NADH concentration (1.6 fold) and NADH/NAD+ ratio (2.2 fold). By optimization of the enzymatic reaction and applying repeated batch conversion, the whole-cell biocatalyst efficiently produced 91.8 g/L acetoin with a productivity of 2.30 g/(L·h), which was the highest record ever reported by biocatalysis. This work indicated that manipulation of the intracellular cofactor levels was more effective than the strategy of enhancing enzyme activity, and the bioprocess for NAD+ regeneration may also be a useful way for improving the productivity of NAD+-dependent chemistry-based products.
Collapse
|
9
|
Zhang X, Bao T, Rao Z, Yang T, Xu Z, Yang S, Li H. Two-stage pH control strategy based on the pH preference of acetoin reductase regulates acetoin and 2,3-butanediol distribution in Bacillus subtilis. PLoS One 2014; 9:e91187. [PMID: 24608678 PMCID: PMC3946754 DOI: 10.1371/journal.pone.0091187] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/10/2014] [Indexed: 11/24/2022] Open
Abstract
Acetoin reductase/2,3-butanediol dehydrogenase (AR/BDH), which catalyzes the interconversion between acetoin and 2,3-butanediol, plays an important role in distribution of the products pools. This work characterized the Bacillus subtilis AR/BDH for the first time. The enzyme showed very different pH preferences of pH 6.5 for reduction and pH 8.5 for oxidation. Based on these above results, a two-stage pH control strategy was optimized for acetoin production, in which the pH was controlled at 6.5 for quickly converting glucose to acetoin and 2,3-butanediol, and then 8.0 for reversely transforming 2,3-butanediol to acetoin. By over-expression of AR/BDH in the wild-type B. subtilis JNA 3-10 and applying fed-batch fermentation based on the two-stage pH control strategy, acetoin yield of B. subtilis was improved to a new record of 73.6 g/l, with the productivity of 0.77 g/(l·h). The molar yield of acetoin was improved from 57.5% to 83.5% and the ratio of acetoin/2,3-butanediol was switched from 2.7∶1 to 18.0∶1.
Collapse
Affiliation(s)
- Xian Zhang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Teng Bao
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, P. R. China
- * E-mail: (ZR); (HL)
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Zhenghong Xu
- School of Medicine and Pharmaceuticals, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Shangtian Yang
- Department of Chemical Engineering, Ohio State University, Columbus, Ohio, United States of America
| | - Huazhong Li
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, P. R. China
- * E-mail: (ZR); (HL)
| |
Collapse
|
10
|
Liu ZL, Moon J, Andersh BJ, Slininger PJ, Weber S. Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2008; 81:743-53. [PMID: 18810428 DOI: 10.1007/s00253-008-1702-0] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 08/25/2008] [Accepted: 09/01/2008] [Indexed: 11/28/2022]
Abstract
Furfural and 5-hydroxymethylfurfural (HMF) are representative inhibitors generated from biomass pretreatment using dilute acid hydrolysis that interfere with yeast growth and subsequent fermentation. Few yeast strains tolerant to inhibitors are available. In this study, we report a tolerant strain, Saccharomyces cerevisiae NRRL Y-50049, which has enhanced biotransformation ability to convert furfural to furan methanol (FM), HMF to furan di-methanol (FDM), and produce a normal yield of ethanol. Our recent identification of HMF and development of protocol to synthesize the HMF metabolic conversion product FDM allowed studies on fermentation metabolic kinetics in the presence of HMF and furfural. Individual gene-encoding enzymes possessing aldehyde reduction activities demonstrated cofactor preference for NADH or NADPH. However, protein extract from whole yeast cells showed equally strong aldehyde reduction activities coupled with either cofactor. Deletion of a single candidate gene did not affect yeast growth in the presence of the inhibitors. Our results suggest that detoxification of furfural and HMF by the ethanologenic yeast S. cerevisiae strain Y-50049 likely involves multiple gene mediated NAD(P)H-dependent aldehyde reduction. Conversion pathways of furfural and HMF relevant to glycolysis and ethanol production were refined based on our findings in this study.
Collapse
Affiliation(s)
- Z Lewis Liu
- US Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 North University Street, Peoria, IL 61604, USA.
| | | | | | | | | |
Collapse
|
11
|
Knoll M, Pleiss J. The Medium-Chain Dehydrogenase/reductase Engineering Database: a systematic analysis of a diverse protein family to understand sequence-structure-function relationship. Protein Sci 2008; 17:1689-97. [PMID: 18614751 DOI: 10.1110/ps.035428.108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The Medium-Chain Dehydrogenase/Reductase Engineering Database (MDRED, http://www.mdred.uni-stuttgart.de) has been established to serve as an analysis tool for a systematic investigation of sequence-structure-function relationships. It includes sequence and structure information of 2684 and 42 medium-chain dehydrogenases/reductases (MDRs), respectively. Although MDRs are very diverse in sequence, they have a conserved tertiary structure. MDRs are assigned to 199 homologous families and 29 superfamilies. For each family, annotated multiple sequence alignments are provided, and functionally relevant residues are annotated. Twenty-five superfamilies were classified as zinc-containing MDRs, four as non-zinc-containing MDRs. For the zinc-containing MDRs, three subclasses were identified by systematic analysis of a variable loop region, the quaternary structure determining loop (QSDL): the class of short, medium, and long QSDL, which include 11, 3, and 5 superfamilies, respectively. The length of the QSDL is predictive for tetramer (short QSDL) and dimer (long QSDL) formation. The class of medium QSDL includes both tetrameric and dimeric MDRs. The shape of the substrate-binding site is highly conserved in all zinc-containing MDRs with the exception of two variable regions, the substrate recognition sites (SRS): two residues located on the QSDL (SRS1) and, for the class of long QSDL, one residue located in the catalytic domain (SRS2). The MDRED is the first online-accessible resource of MDRs that integrates information on sequence, structure, and function. Annotation of functionally relevant residues assist the understanding of sequence-structure-function relationships. Thus, the MDRED serves as a valuable tool to identify potential hotspots for engineering properties such as substrate specificity.
Collapse
Affiliation(s)
- Michael Knoll
- Institute of Technical Biochemistry, University of Stuttgart, D-70569 Stuttgart, Germany
| | | |
Collapse
|
12
|
|
13
|
Impact of the addition of electron acceptors on the by-products of alcoholic fermentation. Enzyme Microb Technol 2002. [DOI: 10.1016/s0141-0229(02)00086-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Wahlbom CF, Hahn-Hägerdal B. Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 2002; 78:172-8. [PMID: 11870608 DOI: 10.1002/bit.10188] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The electron acceptors acetoin, acetaldehyde, furfural, and 5-hydroxymethylfurfural (HMF) were added to anaerobic batch fermentation of xylose by recombinant, xylose utilising Saccharomyces cerevisiae TMB 3001. The intracellular fluxes during xylose fermentation before and after acetoin addition were calculated with metabolic flux analysis. Acetoin halted xylitol excretion and decreased the flux through the oxidative pentose phosphate pathway. The yield of ethanol increased from 0.62 mol ethanol/mol xylose to 1.35 mol ethanol/mol xylose, and the cell more than doubled its specific ATP production after acetoin addition compared to fermentation of xylose only. This did, however, not result in biomass growth. The xylitol excretion was also decreased by furfural and acetaldehyde but was unchanged by HMF. Thus, furfural present in lignocellulosic hydrolysate can be beneficial for ethanolic fermentation of xylose. Enzymatic analyses showed that the reduction of acetoin and furfural required NADH, whereas the reduction of HMF required NADPH. The enzymatic activity responsible for furfural reduction was considerably higher than for HMF reduction and also in situ furfural conversion was higher than HMF conversion.
Collapse
Affiliation(s)
- C Fredrik Wahlbom
- Department of Applied Microbiology, Lund University, PO Box 124, SE-221 00 Lund, Sweden
| | | |
Collapse
|
15
|
Modification of the acetaldehyde concentration during alcoholic fermentation and effects on fermentation kinetics. J Biosci Bioeng 2002. [DOI: 10.1016/s1389-1723(02)80069-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
González E, Fernández MR, Larroy C, Parés X, Biosca JA. Characterization and functional role of Saccharomyces cerevisiae 2,3-butanediol dehydrogenase. Chem Biol Interact 2001; 130-132:425-34. [PMID: 11306064 DOI: 10.1016/s0009-2797(00)00282-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Using a conserved sequence motif, a new gene (YAL060W) of the MDR family has been identified in Saccharomyces cerevisiae. The expressed protein was a stereoespecific (2R,3R)-2,3-butanediol dehydrogenase (BDH). The best substrates were (2R,3R)-2,3-butanediol for the oxidation and (3R/3S)-acetoin and 1-hydroxy-2-propanone for the reduction reactions. The enzyme is extremely specific for NAD(H) as cofactor, probably because the presence of Glu223 in the cofactor binding site, instead of the highly conserved Asp223. BDH is inhibited competitively by 4-methylpyrazole with a K(i) of 34 microM. Yeast could grow on 2,3-butanediol or acetoin as a sole energy and carbon sources, and a 3.6-fold increase in BDH activity was observed when cells were grown in 2,3-butanediol, suggesting a role of the enzyme in 2,3-butanediol metabolism. However, the disruption of the YAL060W gene was not lethal for the yeast under laboratory conditions, and the disrupted strain could also grow in 2,3-butanediol and acetoin. This suggests that other enzymes, in addition to BDH, can also metabolize 2,3-butanediol in yeast.
Collapse
Affiliation(s)
- E González
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
| | | | | | | | | |
Collapse
|
17
|
González E, Fernández MR, Larroy C, Solà L, Pericàs MA, Parés X, Biosca JA. Characterization of a (2R,3R)-2,3-butanediol dehydrogenase as the Saccharomyces cerevisiae YAL060W gene product. Disruption and induction of the gene. J Biol Chem 2000; 275:35876-85. [PMID: 10938079 DOI: 10.1074/jbc.m003035200] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The completion of the Saccharomyces cerevisiae genome project in 1996 showed that almost 60% of the potential open reading frames of the genome had no experimentally determined function. Using a conserved sequence motif present in the zinc-containing medium-chain alcohol dehydrogenases, we found several potential alcohol dehydrogenase genes with no defined function. One of these, YAL060W, was overexpressed using a multicopy inducible vector, and its protein product was purified to homogeneity. The enzyme was found to be a homodimer that, in the presence of NAD(+), but not of NADP, could catalyze the stereospecific oxidation of (2R,3R)-2, 3-butanediol (K(m) = 14 mm, k(cat) = 78,000 min(-)(1)) and meso-butanediol (K(m) = 65 mm, k(cat) = 46,000 min(-)(1)) to (3R)-acetoin and (3S)-acetoin, respectively. It was unable, however, to further oxidize these acetoins to diacetyl. In the presence of NADH, it could catalyze the stereospecific reduction of racemic acetoin ((3R/3S)- acetoin; K(m) = 4.5 mm, k(cat) = 98,000 min(-)(1)) to (2R,3R)-2,3-butanediol and meso-butanediol, respectively. The substrate stereospecificity was determined by analysis of products by gas-liquid chromatography. The YAL060W gene product can therefore be classified as an NAD-dependent (2R,3R)-2,3-butanediol dehydrogenase (BDH). S. cerevisiae could grow on 2,3-butanediol as the sole carbon and energy source. Under these conditions, a 3. 5-fold increase in (2R,3R)-2,3-butanediol dehydrogenase activity was observed in the total cell extracts. The isoelectric focusing pattern of the induced enzyme coincided with that of the pure BDH (pI 6.9). The disruption of the YAL060W gene was not lethal for the yeast under laboratory conditions. The disrupted strain could also grow on 2,3-butanediol, although attaining a lesser cell density than the wild-type strain. Taking into consideration the substrate specificity of the YAL060W gene product, we propose the name of BDH for this gene. The corresponding enzyme is the first eukaryotic (2R, 3R)-2,3-butanediol dehydrogenase characterized of the medium-chain dehydrogenase/reductase family.
Collapse
Affiliation(s)
- E González
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona),and Spain
| | | | | | | | | | | | | |
Collapse
|
18
|
Schwarz JG, Hang YD. Study of acetoin reductase from Kluyveromyces marxianus. Lett Appl Microbiol 1993. [DOI: 10.1111/j.1472-765x.1993.tb01361.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|