1
|
Xiong W, Chen X, Zhu C, Zhang J, Lan T, Liu L, Mo B, Chen X. Arabidopsis paralogous genes RPL23aA and RPL23aB encode functionally equivalent proteins. BMC PLANT BIOLOGY 2020; 20:463. [PMID: 33032526 PMCID: PMC7545930 DOI: 10.1186/s12870-020-02672-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 09/23/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND In plants, each ribosomal protein (RP) is encoded by a small gene family but it is largely unknown whether the family members are functionally diversified. There are two RPL23a paralogous genes (RPL23aA and RPL23aB) encoding cytoplasmic ribosomal proteins in Arabidopsis thaliana. Knock-down of RPL23aA using RNAi impeded growth and led to morphological abnormalities, whereas knock-out of RPL23aB had no observable phenotype, thus these two RPL23a paralogous proteins have been used as examples of ribosomal protein paralogues with functional divergence in many published papers. RESULTS In this study, we characterized T-DNA insertion mutants of RPL23aA and RPL23aB. A rare non-allelic non-complementation phenomenon was found in the F1 progeny of the rpl23aa X rpl23ab cross, which revealed a dosage effect of these two genes. Both RPL23aA and RPL23aB were found to be expressed almost in all examined tissues as revealed by GUS reporter analysis. Expression of RPL23aB driven by the RPL23aA promoter can rescue the phenotype of rpl23aa, indicating these two proteins are actually equivalent in function. Interestingly, based on the publicly available RNA-seq data, we found that these two RPL23a paralogues were expressed in a concerted manner and the expression level of RPL23aA was much higher than that of RPL23aB at different developmental stages and in different tissues. CONCLUSIONS Our findings suggest that the two RPL23a paralogous proteins are functionally equivalent but the two genes are not. RPL23aA plays a predominant role due to its higher expression levels. RPL23aB plays a lesser role due to its lower expression. The presence of paralogous genes for the RPL23a protein in plants might be necessary to maintain its adequate dosage.
Collapse
Affiliation(s)
- Wei Xiong
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xiangze Chen
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong, China
| | - Chengxin Zhu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong, China
| | - Jiancong Zhang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong, China
| | - Ting Lan
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong, China.
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
2
|
O'Dwyer K, Watts JM, Biswas S, Ambrad J, Barber M, Brulé H, Petit C, Holmes DJ, Zalacain M, Holmes WM. Characterization of Streptococcus pneumoniae TrmD, a tRNA methyltransferase essential for growth. J Bacteriol 2004; 186:2346-54. [PMID: 15060037 PMCID: PMC412112 DOI: 10.1128/jb.186.8.2346-2354.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Down-regulation of expression of trmD, encoding the enzyme tRNA (guanosine-1)-methyltransferase, has shown that this gene is essential for growth of Streptococcus pneumoniae. The S. pneumoniae trmD gene has been isolated and expressed in Escherichia coli by using a His-tagged T7 expression vector. Recombinant protein has been purified, and its catalytic and physical properties have been characterized. The native enzyme displays a molecular mass of approximately 65,000 Da, suggesting that streptococcal TrmD is a dimer of two identical subunits. In fact, this characteristic can be extended to several other TrmD orthologs, including E. coli TrmD. Kinetic studies show that the streptococcal enzyme utilizes a sequential mechanism. Binding of tRNA by gel mobility shift assays gives a dissociation constant of 22 nM for one of its substrates, tRNA(Leu)(CAG). Other heterologous nonsubstrate tRNA species, like, tRNA (Thr)(GGT), tRNA(Phe), and tRNA (Ala)(TGC), bind the enzyme with similar affinities, suggesting that tRNA specificity is achieved via a postbinding event(s).
Collapse
Affiliation(s)
- Karen O'Dwyer
- Microbial, Musculoskeletal and Proliferative Diseases CEDD, GlaxoSmithKline, Collegeville, Pennsylvania 19426, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Lövgren JM, Wikström PM. Hybrid protein between ribosomal protein S16 and RimM of Escherichia coli retains the ribosome maturation function of both proteins. J Bacteriol 2001; 183:5352-7. [PMID: 11514519 PMCID: PMC95418 DOI: 10.1128/jb.183.18.5352-5357.2001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The RimM protein in Escherichia coli is associated with free 30S ribosomal subunits but not with 70S ribosomes and is important for efficient maturation of the 30S subunits. A mutant lacking RimM shows a sevenfold-reduced growth rate and a reduced translational efficiency. Here we show that a double alanine-for-tyrosine substitution in RimM prevents it from associating with the 30S subunits and reduces the growth rate of E. coli approximately threefold. Several faster-growing derivatives of the rimM amino acid substitution mutant were found that contain suppressor mutations which increased the amount of the RimM protein by two different mechanisms. Most of the suppressor mutations destabilized a secondary structure in the rimM mRNA, which previously was shown to decrease the synthesis of RimM by preventing the access of the ribosomes to the translation initiation region on the rimM mRNA. Three other independently isolated suppressor mutations created a fusion between rpsP, encoding the ribosomal protein S16, and rimM on the chromosome as a result of mutations in the rpsP stop codon preceding rimM. A severalfold-higher amount of the produced hybrid S16-RimM protein in the suppressor strains than of the native-sized RimM in the original substitution mutant seems to explain the suppression. The S16-RimM protein but not any native-size ribosomal protein S16 was found both in free 30S ribosomal subunits and in translationally active 70S ribosomes of the suppressor strains. This suggests that the hybrid protein can substitute for S16, which is an essential protein probably because of its role in ribosome assembly. Thus, the S16-RimM hybrid protein seems capable of carrying out the important functions that native S16 and RimM have in ribosome biogenesis.
Collapse
Affiliation(s)
- J M Lövgren
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | | |
Collapse
|
4
|
Bylund GO, Wipemo LC, Lundberg LA, Wikström PM. RimM and RbfA are essential for efficient processing of 16S rRNA in Escherichia coli. J Bacteriol 1998; 180:73-82. [PMID: 9422595 PMCID: PMC106851 DOI: 10.1128/jb.180.1.73-82.1998] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The trmD operon is located at 56.7 min on the genetic map of the Escherichia coli chromosome and contains the genes for ribosomal protein (r-protein) S16, a 21-kDa protein (RimM, formerly called 21K), the tRNA (m1G37)methyltransferase (TrmD), and r-protein L19, in that order. Previously, we have shown that strains from which the rimM gene has been deleted have a sevenfold-reduced growth rate and a reduced translational efficiency. The slow growth and translational deficiency were found to be partly suppressed by mutations in rpsM, which encodes r-protein S13. Further, the RimM protein was shown to have affinity for free ribosomal 30S subunits but not for 30S subunits in the 70S ribosomes. Here we have isolated several new suppressor mutations, most of which seem to be located close to or within the nusA operon at 68.9 min on the chromosome. For at least one of these mutations, increased expression of the ribosome binding factor RbfA is responsible for the suppression of the slow growth and translational deficiency of a deltarimM mutant. Further, the RimM and RbfA proteins were found to be essential for efficient processing of 16S rRNA.
Collapse
Affiliation(s)
- G O Bylund
- Department of Microbiology, Umeå University, Sweden
| | | | | | | |
Collapse
|
5
|
Chang JT, Green CB, Wolf RE. Inhibition of translation initiation on Escherichia coli gnd mRNA by formation of a long-range secondary structure involving the ribosome binding site and the internal complementary sequence. J Bacteriol 1995; 177:6560-7. [PMID: 7592434 PMCID: PMC177509 DOI: 10.1128/jb.177.22.6560-6567.1995] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Previous research has indicated that the growth rate-dependent regulation of Escherichia coli gnd expression involves the internal complementary sequence (ICS), a negative control site that lies within the 6-phosphogluconate dehydrogenase coding sequence. To determine whether the ICS acts as a transcriptional operator or attenuator, we measured beta-galactosidase-specific activities in strains carrying gnd-lac operon and protein fusions containing or lacking the ICS. Whereas the presence of the ICS repressed beta-galactosidase expression from a protein fusion by 5-fold during growth on acetate and by 2.5-fold during growth on glucose, it had no effect on beta-galactosidase expression from an operon fusion. In vitro ribosome binding experiments employing the primer extension inhibition (toeprint) assay demonstrated that the presence of the ICS in gnd mRNA reduces both the maximum extent and the rate of ternary complex formation. Moreover, the effects of deletions scanning the ICS on in vivo gene expression were highly correlated with the effects of the deletions on ribosome binding in vitro. In addition, the distal end of the ICS element was found to contribute more to ICS function than did the proximal portion, which contains the complement to the Shine-Dalgarno sequence. Finally, RNA structure mapping experiments indicated that the presence of the ICS in gnd mRNA reduces the access of the nucleotides of the ribosome binding site to the single-strand-specific chemical reagents dimethyl sulfate and kethoxal. Taken together, these data support the hypothesis that the role of the ICS in the growth rate-dependent regulation of gnd expression is to sequester the translation initiation region into a long-range mRNA secondary structure that blocks ribosome binding and thereby reduces the frequency of translation initiation.
Collapse
Affiliation(s)
- J T Chang
- Department of Biological Sciences, University of Maryland Baltimore County 21228, USA
| | | | | |
Collapse
|
6
|
Persson BC, Bylund GO, Berg DE, Wikström PM. Functional analysis of the ffh-trmD region of the Escherichia coli chromosome by using reverse genetics. J Bacteriol 1995; 177:5554-60. [PMID: 7559342 PMCID: PMC177364 DOI: 10.1128/jb.177.19.5554-5560.1995] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have analyzed the essentiality or contribution to growth of each of four genes in the Escherichia coli trmD operon (rpsP, 21K, trmD, and rplS) and of the flanking genes ffh and 16K by a reverse genetic method. Mutant alleles were constructed in vitro on plasmids and transferred by recombination to the corresponding lambda phage clone (lambda 439) and from the phage clone to the E. coli chromosome. An ability to obtain recombinants only in cells carrying a complementing plasmid indicated that the mutated gene was essential, while an ability to obtain recombinants in plasmid-free cells indicated nonessentiality. In this way, Ffh, the E. coli homolog to the 54-kDa protein of the signal recognition particle of mammalian cells, and ribosomal proteins S16 and L19 were shown to be essential for viability. A deletion of the second gene, 21K, of the trmD operon reduced the growth rate of the cells fivefold, indicating that the wild-type 21-kDa protein is important for viability. A deletion-insertion in the same gene resulted in the accumulation of an assembly intermediate of the 50S ribosomal subunit, as a result of polar effects on the expression of a downstream gene, rplS, which encodes ribosomal protein L19. This finding suggests that L19, previously not considered to be an assembly protein, contributes to the assembly of the 50S ribosomal subunits. Strains deleted for the trmD gene, the third gene of the operon, encoding the tRNA (m1G37)methyltransferase (or TrmD) showed a severalfold reduced growth rate. Since such a strain grew much slower than a strain lacking the tRNA(m(1)G37) methyltransferase activity because of a point mutation, the TrmD protein might have a second function in the cell. Finally, a 16-kDa protein encoded by the gene located downstream of, and convergently transcribed to, the trmD operon was found to be nonessential and not to contribute to growth.
Collapse
Affiliation(s)
- B C Persson
- Department of Microbiology, University of Umeå, Sweden
| | | | | | | |
Collapse
|
7
|
Abstract
The trmD and rplS genes from the Serratia marcescens trmD operon are presented. These genes are about 85% similar to those of Escherichia coli and encode very nearly identical proteins. However, there are an additional 22 nt around the beginning of trmD in S. marcescens which in addition uses a GUG start codon.
Collapse
Affiliation(s)
- S Jin
- Department of Biochemical and Biophysical Sciences, University of Houston, TX 77204-5934
| | | |
Collapse
|
8
|
Wikström PM, Lind LK, Berg DE, Björk GR. Importance of mRNA folding and start codon accessibility in the expression of genes in a ribosomal protein operon of Escherichia coli. J Mol Biol 1992; 224:949-66. [PMID: 1569581 DOI: 10.1016/0022-2836(92)90462-s] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The trmD operon of Escherichia coli consists of the genes for the ribosomal protein (r-protein) S16, a 21 kilodalton protein (21K) of unknown function, the tRNA(m1G37)methyltransferase (TrmD), and r-protein L19, in that order. The synthesis of the 21K and TrmD proteins is 12 and 40-fold lower, respectively, than that of the two r-proteins, although the corresponding parts of the mRNA are equally abundant. This translational control of expression of at least the 21K protein gene (21K), is mediated by a negative control element located between codons 18 and 50 of 21K. Here, we present evidence for a model in which mRNA sequences up to around 100 nucleotides downstream from the start codon of 21K fold back and base-pair to the 21K translation initiation region, thereby decreasing the translation initiation frequency. Mutations in the internal negative control element of 21K that would prevent the formation of the proposed mRNA secondary structure over both the Shine-Dalgarno (SD) sequence and the start codon increased expression up to about 20-fold, whereas mutations that would disrupt the base-pairing with the SD-sequence had only relatively small effects on expression. In addition, the expression increased 12-fold when the stop codon of the preceding gene, rpsP, was moved next to the SD-sequence of 21K allowing the ribosomes to unfold the postulated mRNA secondary structure. The expression increased up to 150-fold when that stop codon change was combined with the internal negative control element base-substitutions that derepressed translation about 20-fold. The negative control element of 21K does not seem to be responsible for the low expression of the trmD gene located downstream. However, a similar negative control element native to trmD can explain at least partly the low expression of trmD. Possibly, the two mRNA secondary structures function to decouple translation of 21K and trmD from that of the respective upstream cistron in order to achieve their independent regulation.
Collapse
Affiliation(s)
- P M Wikström
- Department of Microbiology, University of Umeå, Sweden
| | | | | | | |
Collapse
|
9
|
Richter-Dahlfors AA, Andersson DI. Cobalamin (vitamin B12) repression of the Cob operon in Salmonella typhimurium requires sequences within the leader and the first translated open reading frame. Mol Microbiol 1992; 6:743-9. [PMID: 1374146 DOI: 10.1111/j.1365-2958.1992.tb01524.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Expression of the Cob operon in Salmonella typhimurium is repressed by cobalamin (Cbl). Here it is shown that Cbl repression is mediated by a post-transcriptional regulatory mechanism that requires sequences within the leader and the first translated open reading frame, the cbiA gene. Transcriptional and translational Cob::lacZ fusions containing various lengths of Cob DNA were analysed. In a translational Cob::lacZ fusion 407 bp of leader sequence (+69 to +476) was sufficient to confer normal repression. However in a transcriptional Cob::lacZ fusion a 618 bp region (+69 to +687) was required for normal repression. This 618 bp region included sequences in the leader as well as sequences within the cbiA gene. Point mutations which resulted in loss of repression control were isolated and shown to be clustered in the leader sequence (+257 to +380). This region contains a putative hairpin-loop structure which we propose functions as an RNA operator site for a vitamin B12-responsive repressor protein.
Collapse
|
10
|
Lawrence JG, Hartl DL. Unusual codon bias occurring within insertion sequences in Escherichia coli. Genetica 1991; 84:23-9. [PMID: 1651881 DOI: 10.1007/bf00123981] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The large open reading frames of insertion sequences from Escherichia coli were examined for their spatial pattern of codon usage bias and distribution of rarely used codons. There is a bias in codon usage that is generally lower toward the terminal ends of the coding regions, which is reflected in the occurrence of an excess of nonpreferred codons in the 3' portions of the coding regions as compared with the 5' portions. In contrast, typical chromosomal genes have a lower codon usage bias toward the 5' ends of the coding regions. These results imply that the selective forces reflected in codon usage bias may differ according to position within the coding sequence. In addition, these constraints apparently differ in important ways between genes contained in insertion sequences and those in the chromosome.
Collapse
Affiliation(s)
- J G Lawrence
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | | |
Collapse
|