1
|
Andreyeva EN, Emelyanov AV, Nevil M, Sun L, Vershilova E, Hill CA, Keogh MC, Duronio RJ, Skoultchi AI, Fyodorov DV. Drosophila SUMM4 complex couples insulator function and DNA replication control. eLife 2022; 11:e81828. [PMID: 36458689 PMCID: PMC9917439 DOI: 10.7554/elife.81828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Asynchronous replication of chromosome domains during S phase is essential for eukaryotic genome function, but the mechanisms establishing which domains replicate early versus late in different cell types remain incompletely understood. Intercalary heterochromatin domains replicate very late in both diploid chromosomes of dividing cells and in endoreplicating polytene chromosomes where they are also underreplicated. Drosophila SNF2-related factor SUUR imparts locus-specific underreplication of polytene chromosomes. SUUR negatively regulates DNA replication fork progression; however, its mechanism of action remains obscure. Here, we developed a novel method termed MS-Enabled Rapid protein Complex Identification (MERCI) to isolate a stable stoichiometric native complex SUMM4 that comprises SUUR and a chromatin boundary protein Mod(Mdg4)-67.2. Mod(Mdg4) stimulates SUUR ATPase activity and is required for a normal spatiotemporal distribution of SUUR in vivo. SUUR and Mod(Mdg4)-67.2 together mediate the activities of gypsy insulator that prevent certain enhancer-promoter interactions and establish euchromatin-heterochromatin barriers in the genome. Furthermore, SuUR or mod(mdg4) mutations reverse underreplication of intercalary heterochromatin. Thus, SUMM4 can impart late replication of intercalary heterochromatin by attenuating the progression of replication forks through euchromatin/heterochromatin boundaries. Our findings implicate a SNF2 family ATP-dependent motor protein SUUR in the insulator function, reveal that DNA replication can be delayed by a chromatin barrier, and uncover a critical role for architectural proteins in replication control. They suggest a mechanism for the establishment of late replication that does not depend on an asynchronous firing of late replication origins.
Collapse
Affiliation(s)
- Evgeniya N Andreyeva
- Department of Cell Biology, Albert Einstein College of MedicineBronxUnited States
| | | | - Markus Nevil
- UNC-SPIRE, University of North CarolinaChapel HillUnited States
| | - Lu Sun
- EpiCypherDurhamUnited States
| | - Elena Vershilova
- Department of Cell Biology, Albert Einstein College of MedicineBronxUnited States
| | - Christina A Hill
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel HillChapel HillUnited States
| | | | - Robert J Duronio
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel HillChapel HillUnited States
- Lineberger Comprehensive Cancer Center, University of North CarolinaChapel HillUnited States
- Department of Biology, University of North CarolinaChapel HillUnited States
- Department of Genetics, University of North CarolinaChapel HillUnited States
| | - Arthur I Skoultchi
- Department of Cell Biology, Albert Einstein College of MedicineBronxUnited States
| | - Dmitry V Fyodorov
- Department of Cell Biology, Albert Einstein College of MedicineBronxUnited States
| |
Collapse
|
2
|
Stow EC, Simmons JR, An R, Schoborg TA, Davenport NM, Labrador M. A Drosophila insulator interacting protein suppresses enhancer-blocking function and modulates replication timing. Gene 2022; 819:146208. [PMID: 35092858 DOI: 10.1016/j.gene.2022.146208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/17/2021] [Accepted: 01/13/2022] [Indexed: 01/02/2023]
Abstract
Insulators play important roles in genome structure and function in eukaryotes. Interactions between a DNA binding insulator protein and its interacting partner proteins define the properties of each insulator site. The different roles of insulator protein partners in the Drosophila genome and how they confer functional specificity remain poorly understood. The Suppressor of Hairy wing [Su(Hw)] insulator is targeted to the nuclear lamina, preferentially localizes at euchromatin/heterochromatin boundaries, and is associated with the gypsy retrotransposon. Insulator activity relies on the ability of the Su(Hw) protein to bind the DNA at specific sites and interact with Mod(mdg4)67.2 and CP190 partner proteins. HP1 and insulator partner protein 1 (HIPP1) is a partner of Su(Hw), but how HIPP1 contributes to the function of Su(Hw) insulator complexes is unclear. Here, we demonstrate that HIPP1 colocalizes with the Su(Hw) insulator complex in polytene chromatin and in stress-induced insulator bodies. We find that the overexpression of either HIPP1 or Su(Hw) or mutation of the HIPP1 crotonase-like domain (CLD) causes defects in cell proliferation by limiting the progression of DNA replication. We also show that HIPP1 overexpression suppresses the Su(Hw) insulator enhancer-blocking function, while mutation of the HIPP1 CLD does not affect Su(Hw) enhancer blocking. These findings demonstrate a functional relationship between HIPP1 and the Su(Hw) insulator complex and suggest that the CLD, while not involved in enhancer blocking, influences cell cycle progression.
Collapse
Affiliation(s)
- Emily C Stow
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996, USA
| | - James R Simmons
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996, USA
| | - Ran An
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996, USA
| | - Todd A Schoborg
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996, USA
| | - Nastasya M Davenport
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996, USA
| | - Mariano Labrador
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
3
|
Su(Hw) primes 66D and 7F Drosophila chorion genes loci for amplification through chromatin decondensation. Sci Rep 2021; 11:16963. [PMID: 34417521 PMCID: PMC8379230 DOI: 10.1038/s41598-021-96488-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/11/2021] [Indexed: 11/11/2022] Open
Abstract
Suppressor of Hairy wing [Su(Hw)] is an insulator protein that participates in regulating chromatin architecture and gene repression in Drosophila. In previous studies we have shown that Su(Hw) is also required for pre-replication complex (pre-RC) recruitment on Su(Hw)-bound sites (SBSs) in Drosophila S2 cells and pupa. Here, we describe the effect of Su(Hw) on developmentally regulated amplification of 66D and 7F Drosophila amplicons in follicle cells (DAFCs), widely used as models in replication studies. We show Su(Hw) binding co-localizes with all known DAFCs in Drosophila ovaries, whereas disruption of Su(Hw) binding to 66D and 7F DAFCs causes a two-fold decrease in the amplification of these loci. The complete loss of Su(Hw) binding to chromatin impairs pre-RC recruitment to all amplification regulatory regions of 66D and 7F loci at early oogenesis (prior to DAFCs amplification). These changes coincide with a considerable Su(Hw)-dependent condensation of chromatin at 66D and 7F loci. Although we observed the Brm, ISWI, Mi-2, and CHD1 chromatin remodelers at SBSs genome wide, their remodeler activity does not appear to be responsible for chromatin decondensation at the 66D and 7F amplification regulatory regions. We have discovered that, in addition to the CBP/Nejire and Chameau histone acetyltransferases, the Gcn5 acetyltransferase binds to 66D and 7F DAFCs at SBSs and this binding is dependent on Su(Hw). We propose that the main function of Su(Hw) in developmental amplification of 66D and 7F DAFCs is to establish a chromatin structure that is permissive to pre-RC recruitment.
Collapse
|
4
|
Hsu SJ, Stow EC, Simmons JR, Wallace HA, Lopez AM, Stroud S, Labrador M. Mutations in the insulator protein Suppressor of Hairy wing induce genome instability. Chromosoma 2020; 129:255-274. [PMID: 33140220 DOI: 10.1007/s00412-020-00743-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022]
Abstract
Insulator proteins orchestrate the three-dimensional organization of the genome. Insulators function by facilitating communications between regulatory sequences and gene promoters, allowing accurate gene transcription regulation during embryo development and cell differentiation. However, the role of insulator proteins beyond genome organization and transcription regulation remains unclear. Suppressor of Hairy wing [Su(Hw)] is a Drosophila insulator protein that plays an important function in female oogenesis. Here we find that su(Hw) has an unsuspected role in genome stability during cell differentiation. We show that su(Hw) mutant developing egg chambers have poorly formed microtubule organization centers (MTOCs) in the germarium and display mislocalization of the anterior/posterior axis specification factor gurken in later oogenesis stages. Additionally, eggshells from partially rescued su(Hw) mutant female germline exhibit dorsoventral patterning defects. These phenotypes are very similar to phenotypes found in the important class of spindle mutants or in piRNA pathway mutants in Drosophila, in which defects generally result from the failure of germ cells to repair DNA damage. Similarities between mutations in su(Hw) and spindle and piRNA mutants are further supported by an excess of DNA damage in nurse cells, and because Gurken localization defects are partially rescued by mutations in the ATR (mei-41) and Chk1 (grapes) DNA damage response genes. Finally, we also show that su(Hw) mutants produce an elevated number of chromosome breaks in dividing neuroblasts from larval brains. Together, these findings suggest that Su(Hw) is necessary for the maintenance of genome integrity during Drosophila development, in both germline and dividing somatic cells.
Collapse
Affiliation(s)
- Shih-Jui Hsu
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Emily C Stow
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, 37996, USA
| | - James R Simmons
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Heather A Wallace
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Andrea Mancheno Lopez
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Shannon Stroud
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Mariano Labrador
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
5
|
Nuño-Cabanes C, Rodríguez-Navarro S. The promiscuity of the SAGA complex subunits: Multifunctional or moonlighting proteins? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194607. [PMID: 32712338 DOI: 10.1016/j.bbagrm.2020.194607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022]
Abstract
Gene expression, the decoding of DNA information into accessible instructions for protein synthesis, is a complex process in which multiple steps, including transcription, mRNA processing and mRNA export, are regulated by different factors. One of the first steps in this process involves chemical and structural changes in chromatin to allow transcription. For such changes to occur, histone tail and DNA epigenetic modifications foster the binding of transcription factors to promoter regions. The SAGA coactivator complex plays a crucial role in this process by mediating histone acetylation through Gcn5, and histone deubiquitination through Ubp8 enzymes. However, most SAGA subunits interact physically with other proteins beyond the SAGA complex. These interactions could represent SAGA-independent functions or a mechanism to widen SAGA multifunctionality. Among the different mechanisms to perform more than one function, protein moonlighting defines unrelated molecular activities for the same polypeptide sequence. Unlike pleiotropy, where a single gene can affect different phenotypes, moonlighting necessarily involves separate functions of a protein at the molecular level. In this review we describe in detail some of the alternative physical interactions of several SAGA subunits. In some cases, the alternative role constitutes a clear moonlighting function, whereas in most of them the lack of molecular evidence means that we can only define these interactions as promiscuous that require further work to verify if these are moonlighting functions.
Collapse
Affiliation(s)
- Carme Nuño-Cabanes
- Gene Expression and RNA Metabolism Laboratory, Instituto de Biomedicina de Valencia (CSIC), Jaume Roig, 11, E-46010 Valencia, Spain
| | - Susana Rodríguez-Navarro
- Gene Expression and RNA Metabolism Laboratory, Instituto de Biomedicina de Valencia (CSIC), Jaume Roig, 11, E-46010 Valencia, Spain.
| |
Collapse
|
6
|
Kachaev ZM, Lebedeva LA, Kozlov EN, Toropygin IY, Schedl P, Shidlovskii YV. Paip2 is localized to active promoters and loaded onto nascent mRNA in Drosophila. Cell Cycle 2018; 17:1708-1720. [PMID: 29995569 DOI: 10.1080/15384101.2018.1496738] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Paip2 (Poly(A)-binding protein - interacting protein 2) is a conserved metazoan-specific protein that has been implicated in regulating the translation and stability of mRNAs. However, we have found that Paip2 is not restricted to the cytoplasm but is also found in the nucleus in Drosophila embryos, salivary glands, testes, and tissue culture cells. Nuclear Paip2 is associated with chromatin, and in chromatin immunoprecipitation experiments it maps to the promoter regions of active genes. However, this chromatin association is indirect, as it is RNA-dependent. Thus, Paip2 is one more item in the growing list of translation factors that are recruited to mRNAs co-transcriptionally.
Collapse
Affiliation(s)
- Zaur M Kachaev
- a Laboratory of Gene Expression Regulation in Development , Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia
| | - Lyubov A Lebedeva
- a Laboratory of Gene Expression Regulation in Development , Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia
| | - Eugene N Kozlov
- a Laboratory of Gene Expression Regulation in Development , Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia
| | - Ilya Y Toropygin
- d Center of Common Use "Human Proteome" , V.I. Orekhovich Research Institute of Biomedical Chemistry , Moscow , Russia
| | - Paul Schedl
- a Laboratory of Gene Expression Regulation in Development , Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia.,b Department of Molecular Biology , Princeton University , Princeton , NJ , USA
| | - Yulii V Shidlovskii
- a Laboratory of Gene Expression Regulation in Development , Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia.,c Department of Biology and General Genetics , I.M. Sechenov First Moscow State Medical University , Moscow , Russia
| |
Collapse
|
7
|
Spermiogenesis and Male Fertility Require the Function of Suppressor of Hairy-Wing in Somatic Cyst Cells of Drosophila. Genetics 2018; 209:757-772. [PMID: 29739818 DOI: 10.1534/genetics.118.301088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/01/2018] [Indexed: 02/07/2023] Open
Abstract
Drosophila Suppressor of Hairy-wing [Su(Hw)] protein is an example of a multivalent transcription factor. Although best known for its role in establishing the chromatin insulator of the gypsy retrotransposon, Su(Hw) functions as an activator and repressor at non-gypsy genomic sites. It remains unclear how the different regulatory activities of Su(Hw) are utilized during development. Motivated from observations of spatially restricted expression of Su(Hw) in the testis, we investigated the role of Su(Hw) in spermatogenesis to advance an understanding of its developmental contributions as an insulator, repressor, and activator protein. We discovered that Su(Hw) is required for sustained male fertility. Although dynamics of Su(Hw) expression coincide with changes in nuclear architecture and activation of coregulated testis-specific gene clusters, we show that loss of Su(Hw) does not disrupt meiotic chromosome pairing or transcription of testis-specific genes, suggesting that Su(Hw) has minor architectural or insulator functions in the testis. Instead, Su(Hw) has a prominent role as a repressor of neuronal genes, consistent with suggestions that Su(Hw) is a functional homolog of mammalian REST, a repressor of neuronal genes in non-neuronal tissues. We show that Su(Hw) regulates transcription in both germline and somatic cells. Surprisingly, the essential spermatogenesis function of Su(Hw) resides in somatic cyst cells, implying context-specific consequences due to loss of this transcription factor. Together, our studies highlight that Su(Hw) has a major developmental function as a transcriptional repressor, with the effect of its loss dependent upon the cell-specific factors.
Collapse
|
8
|
Baxley RM, Bullard JD, Klein MW, Fell AG, Morales-Rosado JA, Duan T, Geyer PK. Deciphering the DNA code for the function of the Drosophila polydactyl zinc finger protein Suppressor of Hairy-wing. Nucleic Acids Res 2017; 45:4463-4478. [PMID: 28158673 PMCID: PMC5416891 DOI: 10.1093/nar/gkx040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/30/2017] [Indexed: 12/19/2022] Open
Abstract
Polydactyl zinc finger (ZF) proteins have prominent roles in gene regulation and often execute multiple regulatory functions. To understand how these proteins perform varied regulation, we studiedDrosophila Suppressor of Hairy-wing [Su(Hw)], an exemplar multifunctional polydactyl ZF protein. We identified separation-of-function (SOF) alleles that encode proteins disrupted in a single ZF that retain one of the Su(Hw) regulatory activities. Through extended in vitro analyses of the Su(Hw) ZF domain, we show that clusters of ZFs bind individual modules within a compound DNA consensus sequence. Through in vivo analysis of SOF mutants, we find that Su(Hw) genomic sites separate into sequence subclasses comprised of combinations of modules, with subclasses enriched for different chromatin features. These data suggest a Su(Hw) code, wherein DNA binding dictates its cofactor recruitment and regulatory output. We propose that similar DNA codes might be used to confer multiple regulatory functions of other polydactyl ZF proteins.
Collapse
Affiliation(s)
- Ryan M Baxley
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, University of Iowa, Iowa City, IA 52242, USA
| | - James D Bullard
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Michael W Klein
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Ashley G Fell
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | - Tingting Duan
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Pamela K Geyer
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, University of Iowa, Iowa City, IA 52242, USA.,Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
9
|
Three-Dimensional Genome Organization and Function in Drosophila. Genetics 2017; 205:5-24. [PMID: 28049701 PMCID: PMC5223523 DOI: 10.1534/genetics.115.185132] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/15/2016] [Indexed: 12/18/2022] Open
Abstract
Understanding how the metazoan genome is used during development and cell differentiation is one of the major challenges in the postgenomic era. Early studies in Drosophila suggested that three-dimensional (3D) chromosome organization plays important regulatory roles in this process and recent technological advances started to reveal connections at the molecular level. Here we will consider general features of the architectural organization of the Drosophila genome, providing historical perspective and insights from recent work. We will compare the linear and spatial segmentation of the fly genome and focus on the two key regulators of genome architecture: insulator components and Polycomb group proteins. With its unique set of genetic tools and a compact, well annotated genome, Drosophila is poised to remain a model system of choice for rapid progress in understanding principles of genome organization and to serve as a proving ground for development of 3D genome-engineering techniques.
Collapse
|
10
|
Drosophila TRF2 and TAF9 regulate lipid droplet size and phospholipid fatty acid composition. PLoS Genet 2017; 13:e1006664. [PMID: 28273089 PMCID: PMC5362240 DOI: 10.1371/journal.pgen.1006664] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/22/2017] [Accepted: 02/28/2017] [Indexed: 11/19/2022] Open
Abstract
The general transcription factor TBP (TATA-box binding protein) and its associated factors (TAFs) together form the TFIID complex, which directs transcription initiation. Through RNAi and mutant analysis, we identified a specific TBP family protein, TRF2, and a set of TAFs that regulate lipid droplet (LD) size in the Drosophila larval fat body. Among the three Drosophila TBP genes, trf2, tbp and trf1, only loss of function of trf2 results in increased LD size. Moreover, TRF2 and TAF9 regulate fatty acid composition of several classes of phospholipids. Through RNA profiling, we found that TRF2 and TAF9 affects the transcription of a common set of genes, including peroxisomal fatty acid β-oxidation-related genes that affect phospholipid fatty acid composition. We also found that knockdown of several TRF2 and TAF9 target genes results in large LDs, a phenotype which is similar to that of trf2 mutants. Together, these findings provide new insights into the specific role of the general transcription machinery in lipid homeostasis. Lipid droplets (LD) are main lipid storage structures in most cells. The size of LDs varies greatly in different cell types or different metabolic states to accommodate cellular functions and metabolism demands. How cells regulate the lipid storage and LD dynamics is not fully understood. Here, we identified that general transcription factors, including a specific TBP (TATA-box binding protein) family protein TRF2 (TBP-related factor 2) and several TAFs (TBP-associated factors), regulate LD size in the fruitfly larval fat body. Moreover, quantitated lipid analysis reveals that TRF2 and TAF9 affect the fatty acid composition of several classes of phospholipids. We showed that TRF2 and TAF9 regulate transcription of several target genes, including peroxisomal fatty acid β-oxidation-related genes which likely mediate the effect of TRF2 and TAF9 on phospholipid fatty acid composition. We also found that overexpression of some target genes restores the LD phenotype in trf2 mutants. Our findings therefore reveal specific roles of general transcription factors in lipid homeostasis.
Collapse
|
11
|
Carballar-Lejarazú R, Brennock P, James AA. Suppressor of hairy-wing, modifier of mdg4 and centrosomal protein of 190 gene orthologues of the gypsy insulator complex in the malaria mosquito, Anopheles stephensi. INSECT MOLECULAR BIOLOGY 2016; 25:460-469. [PMID: 27110891 PMCID: PMC4935592 DOI: 10.1111/imb.12233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
DNA insulators organize independent gene regulatory domains and can regulate interactions amongst promoter and enhancer elements. They have the potential to be important in genome enhancing and editing technologies because they can mitigate chromosomal position effects on transgenes. The orthologous genes of the Anopheles stephensi putative gypsy-like insulator protein complex were identified and expression characteristics studied. These genes encode polypeptides with all the expected protein domains (Cysteine 2 Histidine 2 (C2H2) zinc fingers and/or a bric-a-brac/poxvirus and zinc finger). The mosquito gypsy transcripts are expressed constitutively and are upregulated in ovaries of blood-fed females. We have uncovered significant experimental evidence that the gypsy insulator protein complex is widespread in vector mosquitoes.
Collapse
Affiliation(s)
- R Carballar-Lejarazú
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - P Brennock
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - A A James
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
| |
Collapse
|
12
|
Distinct Roles of Chromatin Insulator Proteins in Control of the Drosophila Bithorax Complex. Genetics 2015; 202:601-17. [PMID: 26715665 DOI: 10.1534/genetics.115.179309] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 12/22/2015] [Indexed: 11/18/2022] Open
Abstract
Chromatin insulators are remarkable regulatory elements that can bring distant genomic sites together and block unscheduled enhancer-promoter communications. Insulators act via associated insulator proteins of two classes: sequence-specific DNA binding factors and "bridging" proteins. The latter are required to mediate interactions between distant insulator elements. Chromatin insulators are critical for correct expression of complex loci; however, their mode of action is poorly understood. Here, we use the Drosophila bithorax complex as a model to investigate the roles of the bridging proteins Cp190 and Mod(mdg4). The bithorax complex consists of three evolutionarily conserved homeotic genes Ubx, abd-A, and Abd-B, which specify anterior-posterior identity of the last thoracic and all abdominal segments of the fly. Looking at effects of CTCF, mod(mdg4), and Cp190 mutations on expression of the bithorax complex genes, we provide the first functional evidence that Mod(mdg4) acts in concert with the DNA binding insulator protein CTCF. We find that Mod(mdg4) and Cp190 are not redundant and may have distinct functional properties. We, for the first time, demonstrate that Cp190 is critical for correct regulation of the bithorax complex and show that Cp190 is required at an exceptionally strong Fub insulator to partition the bithorax complex into two topological domains.
Collapse
|
13
|
Alekseyenko AA, Gorchakov AA, Zee BM, Fuchs SM, Kharchenko PV, Kuroda MI. Heterochromatin-associated interactions of Drosophila HP1a with dADD1, HIPP1, and repetitive RNAs. Genes Dev 2014; 28:1445-60. [PMID: 24990964 PMCID: PMC4083088 DOI: 10.1101/gad.241950.114] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Heterochromatin protein 1 (HP1a) plays conserved roles in gene silencing and heterochromatin and is also implicated in transcription, DNA replication, and repair. Using BioTAP-XL mass spectrometry and sequencing across multiple life stages of Drosophila, Alekseyenko et al. identify HP1a chromatin-associated protein and RNA interactions. They discover 13 novel candidates among the top interactions. Furthermore, HP1a selectively associates with a broad set of RNAs transcribed from repetitive regions. The validation of several novel HP1a protein interactors reveals new HP1a links to chromatin organization and function. Heterochromatin protein 1 (HP1a) has conserved roles in gene silencing and heterochromatin and is also implicated in transcription, DNA replication, and repair. Here we identify chromatin-associated protein and RNA interactions of HP1a by BioTAP-XL mass spectrometry and sequencing from Drosophila S2 cells, embryos, larvae, and adults. Our results reveal an extensive list of known and novel HP1a-interacting proteins, of which we selected three for validation. A strong novel interactor, dADD1 (Drosophila ADD1) (CG8290), is highly enriched in heterochromatin, harbors an ADD domain similar to human ATRX, displays selective binding to H3K9me2 and H3K9me3, and is a classic genetic suppressor of position-effect variegation. Unexpectedly, a second hit, HIPP1 (HP1 and insulator partner protein-1) (CG3680), is strongly connected to CP190-related complexes localized at putative insulator sequences throughout the genome in addition to its colocalization with HP1a in heterochromatin. A third interactor, the histone methyltransferase MES-4, is also enriched in heterochromatin. In addition to these protein–protein interactions, we found that HP1a selectively associated with a broad set of RNAs transcribed from repetitive regions. We propose that this rich network of previously undiscovered interactions will define how HP1a complexes perform their diverse functions in cells and developing organisms.
Collapse
Affiliation(s)
- Artyom A Alekseyenko
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Andrey A Gorchakov
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; Institute of Molecular and Cellular Biology, Novosibirsk 630090, Russia
| | - Barry M Zee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Stephen M Fuchs
- Department of Biology, Tufts University, Medford, Massachusetts 02155, USA
| | - Peter V Kharchenko
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA; Hematology/Oncology Program, Children's Hospital, Boston, Massachusetts 02115, USA
| | - Mitzi I Kuroda
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
14
|
Xie G, Yu Z, Jia D, Jiao R, Deng WM. E(y)1/TAF9 mediates the transcriptional output of Notch signaling in Drosophila. J Cell Sci 2014; 127:3830-9. [PMID: 25015288 DOI: 10.1242/jcs.154583] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transcriptional activation of Notch signaling targets requires the formation of a ternary complex that involves the intracellular domain of the Notch receptor (NICD), DNA-binding protein Suppressor of Hairless [Su(H), RPBJ in mammals] and coactivator Mastermind (Mam). Here, we report that E(y)1/TAF9, a component of the transcription factor TFIID complex, interacts specifically with the NICD-Su(H)-Mam complex to facilitate the transcriptional output of Notch signaling. We identified E(y)1/TAF9 in a large-scale in vivo RNA interference (RNAi) screen for genes that are involved in a Notch-dependent mitotic-to-endocycle transition in Drosophila follicle cells. Knockdown of e(y)1/TAF9 displayed Notch-mutant-like phenotypes and defects in target gene and activity reporter expression in both the follicle cells and wing imaginal discs. Epistatic analyses in these two tissues indicated that E(y)1/TAF9 functions downstream of Notch cleavage. Biochemical studies in S2 cells demonstrated that E(y)1/TAF9 physically interacts with the transcriptional effectors of Notch signaling Su(H) and NICD. Taken together, our data suggest that the association of the NICD-Su(H)-Mastermind complex with E(y)1/TAF9 in response to Notch activation recruits the transcription initiation complex to induce Notch target genes, coupling Notch signaling with the transcription machinery.
Collapse
Affiliation(s)
- Gengqiang Xie
- Department of Biological Science, Florida State University, Tallahassee, FL 32304-4295, USA
| | - Zhongsheng Yu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, the Chinese Academy of Sciences, Datun Road 15, Beijing 100101, China
| | - Dongyu Jia
- Department of Biological Science, Florida State University, Tallahassee, FL 32304-4295, USA
| | - Renjie Jiao
- Department of Biological Science, Florida State University, Tallahassee, FL 32304-4295, USA
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, FL 32304-4295, USA
| |
Collapse
|
15
|
Heger P, Wiehe T. New tools in the box: An evolutionary synopsis of chromatin insulators. Trends Genet 2014; 30:161-71. [DOI: 10.1016/j.tig.2014.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 01/19/2023]
|
16
|
Matzat LH, Lei EP. Surviving an identity crisis: a revised view of chromatin insulators in the genomics era. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1839:203-14. [PMID: 24189492 DOI: 10.1016/j.bbagrm.2013.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 10/10/2013] [Indexed: 10/26/2022]
Abstract
The control of complex, developmentally regulated loci and partitioning of the genome into active and silent domains is in part accomplished through the activity of DNA-protein complexes termed chromatin insulators. Together, the multiple, well-studied classes of insulators in Drosophila melanogaster appear to be generally functionally conserved. In this review, we discuss recent genomic-scale experiments and attempt to reconcile these newer findings in the context of previously defined insulator characteristics based on classical genetic analyses and transgenic approaches. Finally, we discuss the emerging understanding of mechanisms of chromatin insulator regulation. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.
Collapse
Affiliation(s)
- Leah H Matzat
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elissa P Lei
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
17
|
Soshnev AA, Baxley RM, Manak JR, Tan K, Geyer PK. The insulator protein Suppressor of Hairy-wing is an essential transcriptional repressor in the Drosophila ovary. Development 2013; 140:3613-23. [PMID: 23884443 DOI: 10.1242/dev.094953] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Suppressor of Hairy-wing [Su(Hw)] is a DNA-binding factor required for gypsy insulator function and female germline development in Drosophila. The insulator function of the gypsy retrotransposon depends on Su(Hw) binding to clustered Su(Hw) binding sites (SBSs) and recruitment of the insulator proteins Centrosomal Protein 190 kD (CP190) and Modifier of mdg4 67.2 kD (Mod67.2). By contrast, the Su(Hw) germline function involves binding to non-clustered SBSs and does not require CP190 or Mod67.2. Here, we identify Su(Hw) target genes, using genome-wide analyses in the ovary to uncover genes with an ovary-bound SBS that are misregulated upon Su(Hw) loss. Most Su(Hw) target genes demonstrate enriched expression in the wild-type CNS. Loss of Su(Hw) leads to increased expression of these CNS-enriched target genes in the ovary and other tissues, suggesting that Su(Hw) is a repressor of neural genes in non-neural tissues. Among the Su(Hw) target genes is RNA-binding protein 9 (Rbp9), a member of the ELAV/Hu gene family. Su(Hw) regulation of Rbp9 appears to be insulator independent, as Rbp9 expression is unchanged in a genetic background that compromises the functions of the CP190 and Mod67.2 insulator proteins, even though both localize to Rbp9 SBSs. Rbp9 misregulation is central to su(Hw)(-/-) sterility, as Rbp9(+/-), su(Hw)(-/-) females are fertile. Eggs produced by Rbp9(+/-), su(Hw)(-/-) females show patterning defects, revealing a somatic requirement for Su(Hw) in the ovary. Our studies demonstrate that Su(Hw) is a versatile transcriptional regulatory protein with an essential developmental function involving transcriptional repression.
Collapse
Affiliation(s)
- Alexey A Soshnev
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
18
|
Galán A, Rodríguez-Navarro S. Sus1/ENY2: a multitasking protein in eukaryotic gene expression. Crit Rev Biochem Mol Biol 2012; 47:556-68. [PMID: 23057668 DOI: 10.3109/10409238.2012.730498] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The purpose of this review is to provide a complete overview on the functions of the transcription/export factor Sus1. Sus1 is a tiny conserved factor in sequence and functions through the eukaryotic kingdom. Although it was discovered recently, research done to address the role of Sus1/ENY2 has provided in deep description of different mechanisms influencing gene expression. Initially found to interact with the transcription and mRNA export machinery in yeast, it is now clear that it has a broad role in mRNA biogenesis. Sus1 is necessary for histone H2B deubiquitination, mRNA export and gene gating. Moreover, interesting observations also suggest a link with the cytoplasmatic mRNP fate. Although the role of Sus1 in human cells is largely unknown, preliminary results suggest interesting links to pathological states that range from rare diseases to diabetes. We will describe what is known about Sus1/ENY2 in yeast and other eukaryotes and discuss some exciting open questions to be solved in the future.
Collapse
Affiliation(s)
- Amparo Galán
- Centro de Investigación Príncipe Felipe, CIPF. Gene Expression coupled to RNA Transport Laboratory, Eduardo Primo Yúfera, Valencia, Spain
| | | |
Collapse
|
19
|
Simonova OB, Modestova EA, Vorontsova JE, Cherezov RO. Screening of genomic regions affecting lawc/Trf2 gene expression during Drosophila melanogaster development. Russ J Dev Biol 2012. [DOI: 10.1134/s1062360412050086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Schwartz YB, Linder-Basso D, Kharchenko PV, Tolstorukov MY, Kim M, Li HB, Gorchakov AA, Minoda A, Shanower G, Alekseyenko AA, Riddle NC, Jung YL, Gu T, Plachetka A, Elgin SCR, Kuroda MI, Park PJ, Savitsky M, Karpen GH, Pirrotta V. Nature and function of insulator protein binding sites in the Drosophila genome. Genome Res 2012; 22:2188-98. [PMID: 22767387 PMCID: PMC3483548 DOI: 10.1101/gr.138156.112] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Chromatin insulator elements and associated proteins have been proposed to partition eukaryotic genomes into sets of independently regulated domains. Here we test this hypothesis by quantitative genome-wide analysis of insulator protein binding to Drosophila chromatin. We find distinct combinatorial binding of insulator proteins to different classes of sites and uncover a novel type of insulator element that binds CP190 but not any other known insulator proteins. Functional characterization of different classes of binding sites indicates that only a small fraction act as robust insulators in standard enhancer-blocking assays. We show that insulators restrict the spreading of the H3K27me3 mark but only at a small number of Polycomb target regions and only to prevent repressive histone methylation within adjacent genes that are already transcriptionally inactive. RNAi knockdown of insulator proteins in cultured cells does not lead to major alterations in genome expression. Taken together, these observations argue against the concept of a genome partitioned by specialized boundary elements and suggest that insulators are reserved for specific regulation of selected genes.
Collapse
Affiliation(s)
- Yuri B Schwartz
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Singer SD, Liu Z, Cox KD. Minimizing the unpredictability of transgene expression in plants: the role of genetic insulators. PLANT CELL REPORTS 2012; 31:13-25. [PMID: 21987122 DOI: 10.1007/s00299-011-1167-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 09/27/2011] [Indexed: 05/20/2023]
Abstract
The genetic transformation of plants has become a necessary tool for fundamental plant biology research, as well as the generation of engineered plants exhibiting improved agronomic and industrial traits. However, this technology is significantly hindered by the fact that transgene expression is often highly variable amongst independent transgenic lines. Two of the major contributing factors to this type of inconsistency are inappropriate enhancer-promoter interactions and chromosomal position effects, which frequently result in mis-expression or silencing of the transgene, respectively. Since the precise, often tissue-specific, expression of the transgene(s) of interest is often a necessity for the successful generation of transgenic plants, these undesirable side effects have the potential to pose a major challenge for the genetic engineering of these organisms. In this review, we discuss strategies for improving foreign gene expression in plants via the inclusion of enhancer-blocking insulators, which function to impede enhancer-promoter communication, and barrier insulators, which block the spread of heterochromatin, in transgenic constructs. While a complete understanding of these elements remains elusive, recent studies regarding their use in genetically engineered plants indicate that they hold great promise for the improvement of transgene expression, and thus the future of plant biotechnology.
Collapse
Affiliation(s)
- Stacy D Singer
- Department of Plant Pathology and Plant-Microbe Biology, New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456, USA
| | | | | |
Collapse
|
22
|
Panov VV, Kuzmina JL, Doronin SA, Kopantseva MR, Nabirochkina EN, Georgieva SG, Vorobyeva NE, Shidlovskii YV. Transcription co-activator SAYP mediates the action of STAT activator. Nucleic Acids Res 2011; 40:2445-53. [PMID: 22123744 PMCID: PMC3315317 DOI: 10.1093/nar/gkr1165] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Jak/STAT is an important signaling pathway mediating multiple events in development. We describe participation of metazoan co-activator SAYP/PHF10 in this pathway downstream of STAT. The latter, via its activation domain, interacts with the conserved core of SAYP. STAT is associated with the SAYP-containing co-activator complex BTFly and recruits BTFly onto genes. SAYP is necessary for stimulating STAT-driven transcription of numerous genes. Mutation of SAYP leads to maldevelopments similar to those observed in STAT mutants. Thus, SAYP is a novel co-activator mediating the action of STAT.
Collapse
Affiliation(s)
- Vladislav V Panov
- Department of Regulation of Genes Expression, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Baxley RM, Soshnev AA, Koryakov DE, Zhimulev IF, Geyer PK. The role of the Suppressor of Hairy-wing insulator protein in Drosophila oogenesis. Dev Biol 2011; 356:398-410. [PMID: 21651900 DOI: 10.1016/j.ydbio.2011.05.666] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 05/16/2011] [Accepted: 05/22/2011] [Indexed: 12/21/2022]
Abstract
The Drosophila Suppressor of Hairy wing [Su(Hw)] insulator protein has an essential role in the development of the female germline. Here we investigate the function of Su(Hw) in the ovary. We show that Su(Hw) is universally expressed in somatic cells, while germ cell expression is dynamic. Robust levels accumulate in post-mitotic germ cells, where Su(Hw) localization is limited to chromosomes within nurse cells, the specialized cells that support oocyte growth. Although loss of Su(Hw) causes global defects in nurse cell chromosome structure, we demonstrate that these architectural changes are not responsible for the block in oogenesis. Connections between the fertility and insulator functions of Su(Hw) were investigated through studies of the two gypsy insulator proteins, Modifier of (mdg4)67.2 (Mod67.2) and Centrosomal Protein of 190kDa (CP190). Accumulation of these proteins is distinct from Su(Hw), with Mod67.2 and CP190 showing uniform expression in all cells during early stages of oogenesis that diminishes in later stages. Although Mod67.2 and CP190 extensively co-localize with Su(Hw) on nurse cell chromosomes, neither protein is required for nurse cell chromosome development or oocyte production. These data indicate that while the gypsy insulator function requires both Mod67.2 and CP190, these proteins are not essential for oogenesis. These studies represent the first molecular investigations of Su(Hw) function in the germline, which uncover distinct requirements for Su(Hw) insulator and ovary functions.
Collapse
Affiliation(s)
- Ryan M Baxley
- Molecular Biology Program, University of Iowa, College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
24
|
Amouyal M. Gene insulation. Part I: natural strategies in yeast and Drosophila. Biochem Cell Biol 2011; 88:875-84. [PMID: 21102650 DOI: 10.1139/o10-110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This review in two parts deals with the increasing number of processes known to be used by eukaryotic cells to protect gene expression from undesired genomic enhancer or chromatin effects, by means of the so-called insulators or barriers. The most advanced studies in this expanding field concern yeasts and Drosophila (this article) and the vertebrates (next article in this issue). Clearly, the cell makes use of every gene context to find the appropriate, economic, solution. Thus, besides the elements formerly identified and specifically dedicated to insulation, a number of unexpected elements are diverted from their usual function to structure the genome and enhancer action or to prevent heterochromatin spreading. They are, for instance, genes actively transcribed by RNA polymerase II or III, partial elements of these transcriptional machineries (stalled RNA polymerase II, normally required by genes that must respond quickly to stimuli, or TFIIIC bound at its B-box, normally required by RNA polymerase III for assembly of the transcription initiation complex at tRNA genes), or genomic sequences occupied by variants of standard histones, which, being rapidly and permanently replaced, impede heterochromatin formation.
Collapse
|
25
|
Gurskiy DY, Orlova AV, Kopytova DV, Krasnov AN, Nabirochkina EN, Georgieva SG, Shidlovskii YV. Multifunctional factor ENY2 couples different stages of gene expression. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410120148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Vorob’eva NE, Soshnikova NV, Nikolenko YV, Kuz’mina YL, Nabirochkina EN, Georgieva SG, Shidlovskii YV. A novel conserved domain of SAYP coactivator mediates the interaction of TFIID and brahma transcription complexes. Mol Biol 2010. [DOI: 10.1134/s0026893310050134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Gurskiy DY, Nabirochkina EN, Kopytova DV, Nikolenko YV, Ilyin YV, Georgieva SG, Shidlovskii YV. ENY2 protein forms a part of the THO complex of Drosophila melanogaster. DOKL BIOCHEM BIOPHYS 2010; 433:212-5. [PMID: 20714859 DOI: 10.1134/s1607672910040174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Indexed: 11/23/2022]
Affiliation(s)
- D Ya Gurskiy
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
28
|
Kuzmina JL, Panov VV, Vorobyeva NE, Soshnikova NV, Kopantseva MR, Nikolenko JV, Nabirochkina EN, Georgieva SG, Shidlovskii YV. SAYP is a novel regulator of metazoan development. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410080028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Kopytova DV, Orlova AV, Krasnov AN, Gurskiy DY, Nikolenko JV, Nabirochkina EN, Shidlovskii YV, Georgieva SG. Multifunctional factor ENY2 is associated with the THO complex and promotes its recruitment onto nascent mRNA. Genes Dev 2010; 24:86-96. [PMID: 20048002 DOI: 10.1101/gad.550010] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Metazoan E(y)2/ENY2 is a multifunctional protein important for transcription activation and mRNA export, being a component of SAGA/TFTC and the mRNA export complex AMEX. Here, we show that ENY2 in Drosophila is also stably associated with THO, the complex involved in mRNP biogenesis. The ENY2-THO complex is required for normal Drosophila development, functioning independently on SAGA and AMEX. ENY2 and THO arrive on the transcribed region of the hsp70 gene after its activation, and ENY2 plays an important role in THO recruitment. ENY2 and THO show no direct association with elongating RNA polymerase II. Recruitment of ENY2 and THO occurs by their loading onto nascent mRNA, apparently immediately after its synthesis, while the AMEX component Xmas-2 is loaded onto mRNA at a later stage. Knockdown of either ENY2 or THO, but not SAGA or AMEX, affects the processing of the transcript's 3' end. Thus, ENY2, as a shared subunit of several protein complexes governing the sequential steps of gene expression, plays an important role in the coordination of these steps.
Collapse
Affiliation(s)
- Daria V Kopytova
- Department of Regulation of Gene Expression, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334 Russia
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Soshnikova NV, Vorobyeva NI, Krasnov AN, Georgieva SG, Nabirochkina EN, Shidlovskii YV. Novel complex formed by the SAYP transcriptional coactivator. Mol Biol 2009. [DOI: 10.1134/s0026893309060107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Kurshakova MM, Nabirochkina EN, Georgieva SG. E(y)2, a novel component of the eukaryotic SAGA/TFTC complex, is involved in mRNP export from the nucleus and couples transcription with the nuclear pore. Mol Biol 2009. [DOI: 10.1134/s002689330902006x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Vorobyeva NE, Soshnikova NV, Nikolenko YV, Nabirochkina EN, Georgieva SG, Shidlovskii YV. A new evolutionarily conserved protein domain is capable of transcription activation. DOKL BIOCHEM BIOPHYS 2009; 423:349-51. [PMID: 19230386 DOI: 10.1134/s1607672908060082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- N E Vorobyeva
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, Moscow, 119334 Russia
| | | | | | | | | | | |
Collapse
|
33
|
Soshnev AA, Li X, Wehling MD, Geyer PK. Context differences reveal insulator and activator functions of a Su(Hw) binding region. PLoS Genet 2008; 4:e1000159. [PMID: 18704163 PMCID: PMC2493044 DOI: 10.1371/journal.pgen.1000159] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 07/10/2008] [Indexed: 11/19/2022] Open
Abstract
Insulators are DNA elements that divide chromosomes into independent transcriptional domains. The Drosophila genome contains hundreds of binding sites for the Suppressor of Hairy-wing [Su(Hw)] insulator protein, corresponding to locations of the retroviral gypsy insulator and non-gypsy binding regions (BRs). The first non-gypsy BR identified, 1A-2, resides in cytological region 1A. Using a quantitative transgene system, we show that 1A-2 is a composite insulator containing enhancer blocking and facilitator elements. We discovered that 1A-2 separates the yellow (y) gene from a previously unannotated, non-coding RNA gene, named yar for y-achaete (ac) intergenic RNA. The role of 1A-2 was elucidated using homologous recombination to excise these sequences from the natural location, representing the first deletion of any Su(Hw) BR in the genome. Loss of 1A-2 reduced yar RNA accumulation, without affecting mRNA levels from the neighboring y and ac genes. These data indicate that within the 1A region, 1A-2 acts an activator of yar transcription. Taken together, these studies reveal that the properties of 1A-2 are context-dependent, as this element has both insulator and enhancer activities. These findings imply that the function of non-gypsy Su(Hw) BRs depends on the genomic environment, predicting that Su(Hw) BRs represent a diverse collection of genomic regulatory elements.
Collapse
Affiliation(s)
- Alexey A. Soshnev
- Program in Molecular and Cellular Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Xingguo Li
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Misty D. Wehling
- Program in Molecular and Cellular Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Pamela K. Geyer
- Program in Molecular and Cellular Biology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
34
|
Abstract
Insulators define interactions between transcriptional control elements in eukaryotic genomes. The gypsy insulator found in the gypsy retrovirus binds the zinc-finger Suppressor of Hairy-wing [Su(Hw)] protein that associates with hundreds of non-gypsy regions throughout the Drosophila genome. Models of insulator function predict that the gypsy insulator forms chromatin loop domains through interactions with endogenous Su(Hw) insulators (SIs) to limit the action of transcriptional control elements. Here we study SI 62D and show that interactions occur between two SI 62D elements, but not between SI 62D and the gypsy insulator, limiting the scope of genomic gypsy insulator interactions. Enhancer blocking by SI 62D requires fewer Su(Hw)-binding sites than needed for gypsy insulator function, with these target regions having distinct zinc-finger requirements for in vivo Su(Hw) association. These observations led to an investigation of the role of the Su(Hw) zinc-finger domain in insulator function. Using a combination of in vitro and in vivo studies, we find that this domain makes sequence-dependent and -independent contributions to in vivo chromosome association, but is not essential for enhancer or silencer blocking. These studies extend our understanding of the properties of Su(Hw) and the endogenous genomic regions to which this protein localizes.
Collapse
|
35
|
Kalverda B, Röling MD, Fornerod M. Chromatin organization in relation to the nuclear periphery. FEBS Lett 2008; 582:2017-22. [PMID: 18435921 DOI: 10.1016/j.febslet.2008.04.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 04/11/2008] [Indexed: 11/15/2022]
Abstract
In the limited space of the nucleus, chromatin is organized in a dynamic and non-random manner. Three ways of chromatin organization are compaction, formation of loops and localization within the nucleus. To study chromatin localization it is most convenient to use the nuclear envelope as a fixed viewpoint. Peripheral chromatin has both been described as silent chromatin, interacting with the nuclear lamina, and active chromatin, interacting with nuclear pore proteins. Current data indicate that the nuclear envelope is a reader as well as a writer of chromatin state, and that its influence is not limited to the nuclear periphery.
Collapse
Affiliation(s)
- Bernike Kalverda
- Department of Tumor Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
36
|
Ciavatta D, Rogers S, Magnuson T. Drosophila CTCF is required for Fab-8 enhancer blocking activity in S2 cells. J Mol Biol 2007; 373:233-9. [PMID: 17825318 PMCID: PMC2694738 DOI: 10.1016/j.jmb.2007.07.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 07/23/2007] [Accepted: 07/25/2007] [Indexed: 10/23/2022]
Abstract
CTCF is a conserved transcriptional regulator with binding sites in DNA insulators identified in vertebrates and invertebrates. The Drosophila Abdominal-B locus contains CTCF binding sites in the Fab-8 DNA insulator. Previous reports have shown that Fab-8 has enhancer blocking activity in Drosophila transgenic assays. We now confirm the enhancer blocking capability of the Fab-8 insulator in stably transfected Drosophila S2 cells and show this activity depends on the Fab-8 CTCF binding sites. Furthermore, knockdown of Drosophila CTCF by RNAi in our stable cell lines demonstrates that CTCF itself is critical for Fab-8 enhancer blocking.
Collapse
Affiliation(s)
- Dominic Ciavatta
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
37
|
Soltani-Bejnood M, Thomas SE, Villeneuve L, Schwartz K, Hong CS, McKee BD. Role of the mod(mdg4) common region in homolog segregation in Drosophila male meiosis. Genetics 2007; 176:161-80. [PMID: 17277376 PMCID: PMC1893044 DOI: 10.1534/genetics.106.063289] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homologous chromosomes must pair and establish stable connections during prophase I of meiosis to segregate reliably from each other at anaphase I. In most organisms, the stable connections, called chiasmata, arise from crossovers. In Drosophila males, homologs pair and segregate without crossing over. Chiasmata are replaced by a homolog conjunction complex that includes the Stromalin in Meiosis (SNM) and Modifier of Mdg4 in Meiosis (MNM) proteins. MNM is one of 31 alternative splice products of mod(mdg4), all of which share a common 402-amino-acid N terminus and differ at their C termini. Previous data demonstrated that an MNM-specific exon is required for homolog conjunction, but did not address whether the N-terminal common region, which includes a BTB domain that can mediate coalescence of protein-DNA complexes, is also required. Here we describe a mutation in the common region of mod(mdg4), Z3-3401, that causes qualitatively similar phenotypes as the MNM-specific alleles but disrupts X-Y segregation much more drastically than autosomal segregation. The mutant MNM protein in Z3-3401 is expressed throughout prophase I in spermatocytes but the protein is confined to the cytoplasm, suggesting that the Z3-3401 mutation disrupts a signal required for nuclear localization or retention. Z3-3401 fails to complement a large battery of lethal and semilethal alleles in the common region for meiotic nondisjunction, including an allele containing an amino acid substitution at a conserved residue in the BTB/POZ domain, consistent with a general requirement for the mod(mdg4) common region in homolog segregation.
Collapse
Affiliation(s)
- Morvarid Soltani-Bejnood
- Genome Science and Technology Program, University of Tennessee and Oak Ridge National Laboratory, Knoxville, Tennessee 37996-0840, USA
| | | | | | | | | | | |
Collapse
|
38
|
Parnell TJ, Kuhn EJ, Gilmore BL, Helou C, Wold MS, Geyer PK. Identification of genomic sites that bind the Drosophila suppressor of Hairy-wing insulator protein. Mol Cell Biol 2006; 26:5983-93. [PMID: 16880510 PMCID: PMC1592791 DOI: 10.1128/mcb.00698-06] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic genomes are divided into independent transcriptional domains by DNA elements known as insulators. The gypsy insulator, a 350-bp element isolated from the Drosophila gypsy retrovirus, contains twelve degenerate binding sites for the Suppressor of Hairy-wing [Su(Hw)] protein. Su(Hw) associates with over 500 non-gypsy genomic sites, the functions of which are largely unknown. Using a bioinformatics approach, we identified 37 putative Su(Hw) insulators (pSIs) that represent regions containing clustered matches to the gypsy insulator Su(Hw) consensus binding sequence. The majority of these pSIs contain fewer than four Su(Hw) binding sites, with only seven showing in vivo Su(Hw) association, as demonstrated by chromatin immunoprecipitation. To understand the properties of the pSIs, these elements were tested for enhancer-blocking capabilities using a transgene assay system. In a complementary set of experiments, effects of the pSIs on transcriptional regulation of genes at the natural genomic location were determined. Our data suggest that pSIs have complex genomic functions and, in some cases, establish insulators. These studies provide the first direct evidence that the Su(Hw) protein contributes to the regulation of gene expression in the Drosophila genome through the establishment of endogenous insulators.
Collapse
Affiliation(s)
- Timothy J Parnell
- 3135E MERF, Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
39
|
Ramos E, Ghosh D, Baxter E, Corces VG. Genomic organization of gypsy chromatin insulators in Drosophila melanogaster. Genetics 2006; 172:2337-49. [PMID: 16452134 PMCID: PMC1456363 DOI: 10.1534/genetics.105.054742] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chromatin insulators have been implicated in the regulation of higher-order chromatin structure and may function to compartmentalize the eukaryotic genome into independent domains of gene expression. To test this possibility, we used biochemical and computational approaches to identify gypsy-like genomic-binding sites for the Suppressor of Hairy-wing [Su(Hw)] protein, a component of the gypsy insulator. EMSA and FISH analyses suggest that these are genuine Su(Hw)-binding sites. In addition, functional tests indicate that genomic Su(Hw)-binding sites can inhibit enhancer-promoter interactions and thus function as bona fide insulators. The insulator strength is dependent on the genomic location of the transgene and the number of Su(Hw)-binding sites, with clusters of two to three sites showing a stronger effect than individual sites. These clusters of Su(Hw)-binding sites are located mostly in intergenic regions or in introns of large genes, an arrangement that fits well with their proposed role in the formation of chromatin domains. Taken together, these data suggest that genomic gypsy-like insulators may provide a means for the compartmentalization of the genome within the nucleus.
Collapse
Affiliation(s)
- Edward Ramos
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|
40
|
Kravchenko E, Savitskaya E, Kravchuk O, Parshikov A, Georgiev P, Savitsky M. Pairing between gypsy insulators facilitates the enhancer action in trans throughout the Drosophila genome. Mol Cell Biol 2005; 25:9283-91. [PMID: 16227580 PMCID: PMC1265844 DOI: 10.1128/mcb.25.21.9283-9291.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Suppressor of the Hairy wing [Su(Hw)] binding region within the gypsy retrotransposon is the best known chromatin insulator in Drosophila melanogaster. According to previous data, two copies of the gypsy insulator inserted between an enhancer and a promoter neutralize each other's actions, which is indicative of an interaction between the protein complexes bound to the insulators. We have investigated the role of pairing between the gypsy insulators located on homologous chromosomes in trans interaction between yellow enhancers and a promoter. It has been shown that trans activation of the yellow promoter strongly depends on the site of the transposon insertion, which is evidence for a role of surrounding chromatin in homologous pairing. The presence of the gypsy insulators in both homologous chromosomes even at a distance of 9 kb downstream from the promoter dramatically improves the trans activation of yellow. Moreover, the gypsy insulators have proved to stabilize trans activation between distantly located enhancers and a promoter. These data suggest that gypsy insulator pairing is involved in communication between loci in the Drosophila genome.
Collapse
Affiliation(s)
- Elena Kravchenko
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
41
|
Mazur AM, Georgiev PG, Golovnin AK. The acid domain located at the C-terminus of the Su(Hw) protein represses transcription in the yeast two-hybrid system. DOKL BIOCHEM BIOPHYS 2005; 400:1-3. [PMID: 15846971 DOI: 10.1007/s10628-005-0018-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- A M Mazur
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 117334 Russia
| | | | | |
Collapse
|
42
|
The e(y)3 Gene Codes for SAYP, an Evolutionary Conserved Protein That Is Essential for Ontogeny. RUSS J GENET+ 2005. [DOI: 10.1007/s11177-005-0168-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Shidlovskii YV, Krasnov AN, Nikolenko YV, Georgieva SG, Nabirochkina EN. Characteristics of a Novel Activator of RNA Polymerase II Transcription. DOKL BIOCHEM BIOPHYS 2005; 402:204-6. [PMID: 16116749 DOI: 10.1007/s10628-005-0071-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yu V Shidlovskii
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, Moscow, 117334 Russia
| | | | | | | | | |
Collapse
|
44
|
Study of the novel tissue-specific RNA polymerase II transcription factor. RUSS J GENET+ 2005. [DOI: 10.1007/s11177-005-0105-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Shidlovskii YV, Krasnov AN, Nikolenko JV, Lebedeva LA, Kopantseva M, Ermolaeva MA, Ilyin YV, Nabirochkina EN, Georgiev PG, Georgieva SG. A novel multidomain transcription coactivator SAYP can also repress transcription in heterochromatin. EMBO J 2005; 24:97-107. [PMID: 15616585 PMCID: PMC544920 DOI: 10.1038/sj.emboj.7600508] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Accepted: 11/15/2004] [Indexed: 11/08/2022] Open
Abstract
Enhancers of yellow (e(y)) is a group of genetically and functionally related genes for proteins involved in transcriptional regulation. The e(y)3 gene of Drosophila considered here encodes a ubiquitous nuclear protein that has homologues in other metazoan species. The protein encoded by e(y)3, named Supporter of Activation of Yellow Protein (SAYP), contains an AT-hook, two PHD fingers, and a novel evolutionarily conserved domain with a transcriptional coactivator function. Mutants expressing a truncated SAYP devoid of the conserved domain die at a midembryonic stage, which suggests a crucial part for SAYP during early development. SAYP binds to numerous sites of transcriptionally active euchromatin on polytene chromosomes and coactivates transcription of euchromatin genes. Unexpectedly, SAYP is also abundant in the heterochromatin regions of the fourth chromosome and in the chromocenter, and represses the transcription of euchromatin genes translocated to heterochromatin; its PHD fingers are essential to heterochromatic silencing. Thus, SAYP plays a dual role in transcription regulation in euchromatic and heterochromatic regions.
Collapse
Affiliation(s)
| | - Aleksey N Krasnov
- Institute of Gene Biology, Russian Academy of Sciences, Russia
- Centre for Medical Studies, University of Oslo, Moscow, Russia
| | | | | | | | | | - Yurij V Ilyin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Russia
| | - Elena N Nabirochkina
- Institute of Gene Biology, Russian Academy of Sciences, Russia
- Centre for Medical Studies, University of Oslo, Moscow, Russia
| | | | - Sofia G Georgieva
- Institute of Gene Biology, Russian Academy of Sciences, Russia
- Centre for Medical Studies, University of Oslo, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Russia
| |
Collapse
|
46
|
Golovnin A, Melnick E, Mazur A, Georgiev P. Drosophila Su(Hw) insulator can stimulate transcription of a weakened yellow promoter over a distance. Genetics 2004; 170:1133-42. [PMID: 15520254 PMCID: PMC1451172 DOI: 10.1534/genetics.104.034587] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The insulator element from the gypsy transposon is a DNA sequence that blocks activation of a promoter by a transcriptional enhancer when placed between them. The insulator contains reiterated binding sites for the Suppressor of Hairy-wing [Su(Hw)] zinc-finger protein. A protein encoded by another gene, modifier of mdg4 [mod(mdg4)], is also required for the enhancer-blocking activity of the Su(Hw) insulator. Here we present evidence that the Su(Hw) insulator activates a weakened yellow promoter at a distance. Deletion of the upstream promoter region (UPR), located close by the TATA box, significantly reduces yellow expression. The Su(Hw) insulator placed at different positions relative to the yellow promoter partially compensates for loss of the UPR. Su(Hw) is able to stimulate yellow expression even if it is located at a 5-kb distance from the promoter. The stimulatory activity depends on the number of Su(Hw)-binding sites. Mutational analysis demonstrates that only the DNA-binding domain and adjacent regions of the Su(Hw) protein are required for stimulation of yellow transcription.
Collapse
Affiliation(s)
- Anton Golovnin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Center for Medical Studies of Oslo University, Moscow 199334, Russia
| | - Elena Melnick
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Alexander Mazur
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Pavel Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Corresponding author: Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia. E-mail:
| |
Collapse
|
47
|
Karakozova M, Savitskaya E, Melnikova L, Parshikov A, Georgiev P. The Mod(mdg4) component of the Su(Hw) insulator inserted in the P transposon can repress its mobility in Drosophila melanogaster. Genetics 2004; 167:1275-80. [PMID: 15280241 PMCID: PMC1470935 DOI: 10.1534/genetics.104.027037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transposable element P of Drosophila melanogaster is one of the best-characterized eukaryotic transposons. Successful transposition requires the interaction between transposase complexes at both termini of the P element. Here we found that insertion of one or two copies of the Su(Hw) insulator in the P transposon reduces the frequency of its transposition. Inactivation of a Mod(mdg4) component of the Su(Hw) insulator suppresses the insulator effect. Thus, the Su(Hw) insulator can modulate interactions between transposase complexes bound to the ends of the P transposon in germ cells.
Collapse
Affiliation(s)
- Marina Karakozova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | | | | | | | | |
Collapse
|
48
|
Parnell TJ, Viering MM, Skjesol A, Helou C, Kuhn EJ, Geyer PK. An endogenous suppressor of hairy-wing insulator separates regulatory domains in Drosophila. Proc Natl Acad Sci U S A 2003; 100:13436-41. [PMID: 14597701 PMCID: PMC263832 DOI: 10.1073/pnas.2333111100] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insulators define independent domains of gene function throughout the genome. The Drosophila gypsy insulator was isolated from the gypsy retrotransposon as a region that contains a cluster of binding sites for the Suppressor of Hairy-wing [Su(Hw)] protein. To study the effects of the gypsy insulator on gene expression within a single genomic domain, targeted gene replacement was used to exchange the endogenous yellow gene, located at cytological location 1A, with a set of gypsy-modified yellow genes. Replaced yellow genes carried a gypsy insulator positioned between the yellow promoter and either the upstream or the downstream tissue-specific enhancers. Whereas the gypsy insulator blocked the function of the upstream enhancers at the endogenous location, the downstream enhancers were not blocked. Investigation of the 1A region revealed two clustered Su(Hw)-binding sites downstream of the yellow gene, named 1A-2, that bind Su(Hw) in vivo and possess enhancer blocking function. We propose that interaction between 1A-2 and the gypsy insulator permits activation of yellow expression by enhancers in the neighboring achaete-scute complex, causing an apparent absence of the block of the downstream yellow enhancers. Based on these data, we suggest that 1A-2 is an endogenous Su(Hw) insulator that separates regulatory domains within the Drosophila genome.
Collapse
Affiliation(s)
- Timothy J Parnell
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
49
|
Golovnin A, Biryukova I, Birukova I, Romanova O, Silicheva M, Parshikov A, Savitskaya E, Pirrotta V, Georgiev P. An endogenous Su(Hw) insulator separates the yellow gene from the Achaete-scute gene complex in Drosophila. Development 2003; 130:3249-58. [PMID: 12783795 DOI: 10.1242/dev.00543] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The best characterized chromatin insulator in Drosophila is the Suppressor of Hairy wing binding region contained within the gypsy retrotransposon. Although cellular functions have been suggested, no role has been found yet for the multitude of endogenous Suppressor of Hairy wing binding sites. Here we show that two Suppressor of Hairy wing binding sites in the intergenic region between the yellow gene and the Achaete-scute gene complex form a functional insulator. Genetic analysis shows that at least two proteins, Suppressor of Hairy wing and Modifier of MDG4, required for the activity of this insulator, are involved in the transcriptional regulation of Achaete-scute.
Collapse
Affiliation(s)
- Anton Golovnin
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 117334, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Insulators are a class of elements that define independent domains of gene function. The Drosophila gypsy insulator is proposed to establish regulatory isolation by forming loop domains that constrain interactions between transcriptional control elements. This supposition is based upon the observation that insertion of a single gypsy insulator between an enhancer and promoter blocks enhancer function, while insertion of two gypsy insulators promotes enhancer bypass and activation of transcription. To investigate this model, we determined whether non-gypsy insulators interacted with each other and with the gypsy insulator. Pairs of scs or scs' insulators blocked enhancer function. Further, an intervening scs insulator did not block gypsy insulator interactions. Taken together, these data suggest that not all Drosophila insulators interact, with this property restricted to some insulators, such as gypsy. Three gypsy insulators inserted between an enhancer and promoter blocked enhancer function, indicating that gypsy insulator interactions may be restricted to pairs. Our studies imply that formation of loop domains may represent one of many mechanisms used by insulators to impart regulatory isolation.
Collapse
Affiliation(s)
- Emily J Kuhn
- Molecular Biology Program and Department of Biochemistry, University of Iowa, College of Medicine, Iowa City 52242, USA
| | | | | | | |
Collapse
|