1
|
Pertuzé RA, Ji Y, Chetelat RT. Transmission and recombination of homeologous Solanum sitiens chromosomes in tomato. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2003; 107:1391-1401. [PMID: 12923625 DOI: 10.1007/s00122-003-1384-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2002] [Accepted: 06/10/2003] [Indexed: 05/24/2023]
Abstract
The goal of the present experiments was to transfer the chromosomes of Solanum sitiens (syn. Solanum rickii) into cultivated tomato ( Lycopersicon esculentum). By crossing an allotetraploid L. esculentum x Solanum sitiens hybrid to sesquidiploid L. esculentum x S. lycopersicoides, a trigenomic hybrid (2n+14=38) was obtained. Analysis of the latter by GISH (genomic in situ hybridization) indicated it contained a full set of 12 S. sitiens chromosomes, plus two extras from S. lycopersicoides. This and other complex hybrids were pollinated with Lycopersicon pennellii-derived bridging lines to overcome unilateral incompatibility. A total of 40 progeny were recovered by embryo rescue, including diploids and aneuploids (up to 2n+8). In order to determine the origin of chromosomes and the location of introgressed segments, progeny were genotyped with RFLP markers. S. sitiens-specific markers on all chromosomes, except 6 and 11, were detected in the progeny. Several S. sitiens chromosomes were transmitted intact, either through chromosome addition (i.e., trisomics) or substitution (i.e., disomics). Recombination between S. sitiens and L. esculentum was detected on most chromosomes, in both diploid and aneuploid progeny. A monosomic alien addition line for S. sitiens chromosome 8 was identified, and the extra chromosome was stably transmitted to approximately 13% of the backcross progeny. This study demonstrates the feasibility of gene transfer from S. sitiens to L. esculentum through chromosome addition, substitution, and recombination in the progeny of complex aneuploid hybrids.
Collapse
Affiliation(s)
- Ricardo A Pertuzé
- C.M. Rick Tomato Genetics Resource Center, Department of Vegetable Crops, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
2
|
Grant WF, Owens ET. Lycopersicon assays of chemical/radiation genotoxicity for the study of environmental mutagens. Mutat Res 2002; 511:207-37. [PMID: 12088718 DOI: 10.1016/s1383-5742(02)00011-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
From a literature survey, 21 chemicals are tabulated that have been evaluated in 39 assays for their clastogenic effects in Lycopersicon. Nineteen of the 21 chemicals are reported as giving a positive reaction (i.e. causing chromosome aberrations). Of these, five are reported positive with a dose response. In addition, 23 assays have been recorded for six types of radiation, all of which reacted positively. The results of 102 assays with 32 chemicals and seven types of radiation tested for the induction of gene mutations are tabulated, as well as 20 chemicals and/or radiation in combined treatments. The Lycopersicon esculentum (2n=24) assay is a very good plant bioassay for assessing chromosome damage both in mitosis and meiosis and for somatic mutations induced by chemicals and radiations. The Lycopersicon bioassay has been shown to be as sensitive and as specific an assay as other plant genotoxicity assays, such as Hordeum vulgare, Vicia faba, Crepis capillaris, Pisum sativum and Allium cepa and should be considered in further studies in assessing clastogenicity. Tests using L. esculentum can be made for a spectrum of mutant phenotypes of which many are identifiable in young seedlings.
Collapse
Affiliation(s)
- William F Grant
- Department of Plant Science, P.O. Box 4000, McGill University, Macdonald Campus, Ste. Anne de Bellevue, Que., Canada H9X 3V9
| | | |
Collapse
|
3
|
The potential of somatic hybridization in crop breeding. ACTA ACUST UNITED AC 1995. [DOI: 10.1007/978-94-011-0357-2_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
4
|
Pomato: Potato Protoplast System and Somatic Hybridization Between Potato and a Wild Tomato. ACTA ACUST UNITED AC 1994. [DOI: 10.1007/978-3-642-57945-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
5
|
Lefrançois C, Chupeau Y, Bourgin JP. Sexual and somatic hybridization in the genusLycopersicon. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1993; 86:533-546. [PMID: 24193700 DOI: 10.1007/bf00838706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/1992] [Accepted: 11/11/1992] [Indexed: 06/02/2023]
Abstract
In recent years, a large number of reports have been published on the recovery of somatic hybrids in the genusLycopersicon and their potential use as a tool in plant breeding programs. Somatic hybridization as a way of enabling the incompatibility barriers which exist within the genusLycopersicon to be bypassed has attracted great interest. WildLycopersicon species harbor numerous interesting agronomic characteristics, which could be transferred to tomato by somatic hybridization. In particular, the production of asymmetric hybrids is explored as an approach to obtain the transfer of only a part of the nuclear genome of wildLycopersicon species. Considerable information is available on the fate of chloroplasts and mitochondria in fusion products inLycopersicon, and unfortunately, cybridization (transfer of chloroplasts and/or mitochondria) seems often difficult to achieve.
Collapse
Affiliation(s)
- C Lefrançois
- Laboratoire de Biologie Cellulaire, INRA, route de Saint-Cyr, F-78026, Versailles Cédex, France
| | | | | |
Collapse
|
6
|
Ratushnyak YI, Cherep NN, Zavgorodnyaya AV, Latypov SA, Borozenko IV, Rachkovskaya RI, Gleba YY. Fertile asymmetric somatic hybrids between Lycopersicon esculentum Mill. and Lycopersicon peruvianum var. dentatum Dun. MOLECULAR & GENERAL GENETICS : MGG 1993; 236:427-32. [PMID: 8437587 DOI: 10.1007/bf00277143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Thirteen nuclear asymmetric hybrids were regenerated under selective conditions following fusion of chlorophyll-deficient protoplasts from cultivated tomato (Lycopersicon esculentum Mill.) and gamma-irradiated protoplasts from the wild species Lycopersicon peruvianum var. dentatum Dun. All hybrid plants were classified as being asymmetric based on morphological traits, chromosome numbers and isozyme patterns. The majority of the hybrids inherited Lycopersicon peruvianum var. dentatum chloroplasts. Mitochondrial DNA analysis revealed mixed mitochondrial populations deriving from both parents in some of the hybrids and rearranged mitochondrial DNA in others. The asymmetric hybrids express some morphological traits that are not found in either of the parental species. Fertile F1 plants were obtained after self-pollination of the asymmetric hybrids in four cases. The results obtained confirm the potential of asymmetric hybridization as a new source of genetic variation, and as a method for transferring of a part of genetic material from donor to recipient, and demonstrate that it is possible to produce fertile somatic hybrids by this technique.
Collapse
Affiliation(s)
- Y I Ratushnyak
- Institute of Cell Biology and Genetic Engineering, Ukrainian Academy of Sciences, Kiev
| | | | | | | | | | | | | |
Collapse
|
7
|
Sakomoto K, Taguchi T. Regeneration of intergeneric somatic hybrid plants between Lycopersicon esculentum and Solanum muricatum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1991; 81:509-513. [PMID: 24221316 DOI: 10.1007/bf00219441] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/1990] [Accepted: 08/22/1990] [Indexed: 06/02/2023]
Abstract
Mesophyll protoplasts of tomato (Lycopersicon esculentum) and pepino (Solanum muricatum) were fused by using an electrofusion method and cultured in modified MS medium supplemented with naphthaleneacetic acid and kinetin, in which only pepino and somatic hybrid protoplasts could divide. Somatic hybrid plants showing intermediate characteristics in morphology were regenerated from the calli exhibiting vigorous growth in contrast with those of pepino. The hybrid nature of these plants was confirmed by cytological observation and biochemical analyses of phosphoglucomutase isozymes and the fraction-1-protein. The regenerated somatic hybrids grew to flowering stage and set fruits.
Collapse
Affiliation(s)
- K Sakomoto
- Takii Plant Breeding and Experiment Station, 1360 Hari, Kohsei, Kohka, 520-32, Shiga, Japan
| | | |
Collapse
|
8
|
Bonnema AB, Melzer JM, O'Connell MA. Tomato cybrids with mitochondrial DNA from Lycopersicon pennelli. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1991; 81:339-48. [PMID: 24221263 DOI: 10.1007/bf00228674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/1990] [Accepted: 08/22/1990] [Indexed: 05/25/2023]
Abstract
Cybrids have been regenerated following protoplast fusion of iodoacetamide-treated leaf mesophyll cells of Lycopersion esculentum cv UC82 and gamma-irradiated cell suspensions of L. pennellii, LA716. The cybrids were recovered in the regenerant population at a frequency of 19%, no selection pressure was applied for the persistence of the donor cytoplasm. The nuclear genotype of ten cybrids was characterized extensively using isozyme markers, cDNA-based restriction fragment length polymorphisms (RFLPs), and the morphology of the plants. No nuclear genetic information from L. pennellii was detected in the cybrids. The organellar genotype of the cybrids was determined using cloned probes and species-specific RFLPs. All the cybrids had inherited the tomato chloroplast genome and had varying amounts of L. pennellii mitochondrial DNA. The cybrids all had a diploid chromosome number of 24, produced pollen, and set seed.
Collapse
Affiliation(s)
- A B Bonnema
- Department of Agronomy and Horticulture and the Plant Genetic Engineering Lab, New Mexico State University, 88003, Las Cruces, NM, USA
| | | | | |
Collapse
|
9
|
San LH, Vedel F, Sihachakr D, Rémy R. Morphological and molecular characterization of fertile tetraploid somatic hybrids produced by protoplast electrofusion and PEG-induced fusion between Lycopersicon esculentum Mill. and Lycopersicon peruvianum Mill. ACTA ACUST UNITED AC 1990. [DOI: 10.1007/bf00280362] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Somatic Hybridization and Cybridization. ACTA ACUST UNITED AC 1990. [DOI: 10.1016/b978-0-444-88883-9.50018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
11
|
Jansen CE, Snel EAM, Akerboom MJE, Nijkamp HJJ, Hille J. Induction of streptomycin resistance in the wild tomato Lycopersicon peruvianum. ACTA ACUST UNITED AC 1990. [DOI: 10.1007/bf00260492] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Jourdan PS, Earle ED, Mutschler MA. Synthesis of male sterile, triazine-resistant Brassica napus by somatic hybridization between cytoplasmic male sterile B. oleracea and atrazine-resistant B. campestris. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1989; 78:445-455. [PMID: 24227255 DOI: 10.1007/bf00265310] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/1988] [Accepted: 03/29/1989] [Indexed: 06/02/2023]
Abstract
Fusion of leaf protoplasts from an inbred line of Brassica oleracea ssp. botrytis (cauliflower, n=9) carrying the Ogura (R1) male sterile cytoplasm with hypocotyl protoplasts of B. campestris ssp. oleifera (cv "Candle", n=10) carrying an atrazine-resistant (ATR) cytoplasm resulted in the production of synthetic B. napus (n=19). Thirty-four somatic hybrids were produced; they were characterized for morphology, phosphoglucose isomerase isoenzymes, ribosomal DNA hybridization patterns, chromosome numbers, and organelle composition. All somatic hybrids carried atrazine-resistant chloroplasts derived from B. campestris. The mitochondrial genomes in 19 hybrids were examined by restriction endonuclease and Southern blot analyses. Twelve of the 19 hybrids contained mitochondria showing novel DNA restriction patterns; of these 12 hybrids, 5 were male sterile and 7 were male fertile. The remaining hybrids contained mitochondrial DNA that was identical to that of the ATR parent and all were male fertile.
Collapse
Affiliation(s)
- P S Jourdan
- Department of Plant Breeding and Biometry, Cornell University, 252 Emerson Hall, 14853, Ithaca, NY, USA
| | | | | |
Collapse
|
13
|
Gleddie S, Keller WA, Poysa V. Plant regeneration from stem cortex protoplasts of a tomato hybrid. PLANT CELL REPORTS 1989; 8:21-24. [PMID: 24232588 DOI: 10.1007/bf00735770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/1989] [Revised: 03/22/1989] [Indexed: 06/02/2023]
Abstract
Longitudinal sections containing cortical cells taken from stem internodes of a hybrid betweenLycopersicon esculentum andSolanum lycopersicoides were used as tissue sources for enzymatic protoplast isolation. Greenhouse and growth room-grown plants 4-8 weeks after rooting could be used as sources of donor tissue. Protoplasts from these tissues divided within 2-4 days of culture and numerous microcalli formed within 30 days. The shoot regeneration frequency of protoplast-derived calli was in the order of 60%. More than 100 regenerated plants which appear phenotypically normal have been established in soil.
Collapse
Affiliation(s)
- S Gleddie
- Plant Research Centre, Agriculture Canada, K1A OC6, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
14
|
Ferreira DI, Zelcer A. Advances in Protoplast Research on Solanurn. ACTA ACUST UNITED AC 1989. [DOI: 10.1016/s0074-7696(08)60627-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
15
|
Symmetric Versus Asymmetric Fusion Combinations in Higher Plants. ACTA ACUST UNITED AC 1989. [DOI: 10.1007/978-3-642-73614-8_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
16
|
Gleba YY, Hinnisdaels S, Sidorov VA, Kaleda VA, Parokonny AS, Boryshuk NV, Cherep NN, Negrutiu I, Jacobs M. Intergeneric asymmetric hybrids between Nicotiana plumbaginifolia and Atropa belladonna obtained by "gamma-fusion". TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1988; 76:760-766. [PMID: 24232355 DOI: 10.1007/bf00303523] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/1988] [Accepted: 05/08/1988] [Indexed: 06/02/2023]
Abstract
Asymmetric nuclear hybrids have been obtained by fusion of cells from a nitrate-reductase deficient mutant of Nicotiana plumbaginifolia (cnx20) and gamma irradiated protoplasts of Atropa belladonna (irradiation doses tested were 10, 30, 50 and 100 krad). The hybrid formation frequency following selection for genotypic complementation in the NR function was in the range of 0.7%-3.7%. Cytogenetic studies demonstrated that all hybrid plants tested possessed multiple (generally tetra- or hexaploid) sets of N. plumbaginifolia (n = 10) chromosomes along with 6-29 Atropa chromosomes (n = 36), some of which were greatly deleted. Besides the cnxA gene (the selection marker), additional material of the irradiated partner was expressed in some of the lines, as shown by analyses of multiple molecular forms of enzymes. Surprisingly, rDNA genes of both parental species were present and amplified in the majority of the hybrids. Whenever studied, the chloroplast DNA in the hybrids was derived from the Nicotiana parent. Regenerants from some lines flowered and were partially fertile. It is concluded that irradiation of cells of the donor parent before fusion can be used to produce highly asymmetric nuclear hybrid plants, although within the dose range tested, the treatment determined the direction of the elimination but not the degree of elimination of the irradiated genome.
Collapse
Affiliation(s)
- Y Y Gleba
- Institute of Botany of the Ukrainian Academy of Science, Repina 2, SU-25260, Kiev, USSR
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Endo T, Komiya T, Mino M, Nakanishi K, Fujita S, Yamada Y. Genetic diversity among sublines originating from a single somatic hybrid cell of Duboisia hopwoodii + Nicotiana tabacum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1988; 76:641-646. [PMID: 24232339 DOI: 10.1007/bf00303507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/1988] [Accepted: 06/02/1988] [Indexed: 06/02/2023]
Abstract
The genetic instability of an intertribal hybrid cell line, Duboisia hopwoodii + Nicotiana tabacum, obtained by mechanical isolation of a single hybrid cell was studied. Ten subclones of calli derived from this hybrid cell line were cultured for 3 years, and their genetic makeup clarified as to nuclear DNA content, chromosome constitution, and peroxidase isozymes. Nuclear DNA content differed in each subclone. In most subclones, mean DNA content was lower than the mean DNA content in the original hybrid cell line determined 1 year after fusion. This decrease in DNA content is partly attributable to the elimination of tobacco chromosomes that occurred in all subclones. The extent to which tobacco chromosomes were eliminated varied among the subclones - evidence that chromosome elimination occurred slowly. Peroxidase isozyme analysis indicated the loss of a tobacco-specific isozyme, thus confirming results obtained by chromosome analysis. Shoots regenerated from two hybrid subclones after 2 years were also heterogeneous in morphology and nuclear DNA content.
Collapse
Affiliation(s)
- T Endo
- Research Center for Cell and Tissue Culture, Faculty of Agriculture, Kyoto University, Sakyo-ku, 606, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Biased organelle transmission in somatic hybrids ofLycopersicon esculentum andSolanum lycopersicoides. Curr Genet 1988. [DOI: 10.1007/bf00569342] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Morphological and molecular characterization of somatic hybrid plants between Lycopersicon esculentum and Solanum nigrum. ACTA ACUST UNITED AC 1988. [DOI: 10.1007/bf00334683] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|