1
|
Cruz-López R, Carrano CJ. Iron uptake, transport and storage in marine brown algae. Biometals 2023; 36:371-383. [PMID: 36930341 DOI: 10.1007/s10534-023-00489-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/10/2023] [Indexed: 03/18/2023]
Abstract
Iron is a vital although biologically inaccessible trace nutrient for nearly all forms of life but "free" iron can be deleterious to cells and thus iron uptake and storage must be carefully controlled. The marine environment is particularly iron poor making mechanisms for its uptake and storage even more imperative. In this brief review we explore the known and potential iron uptake and storage pathways for the biologically and economically important marine brown macroalgae (seaweeds/kelps).
Collapse
Affiliation(s)
- Ricardo Cruz-López
- Instituto de Investigaciones Oceanológicas (IIO), Universidad Autónoma de Baja California (UABC), Ensenada, Baja California, México.
| | - Carl J Carrano
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, 92182-1030, USA
| |
Collapse
|
2
|
García-Prieto A, Alonso J, Muñoz D, Marcano L, Abad Díaz de Cerio A, Fernández de Luis R, Orue I, Mathon O, Muela A, Fdez-Gubieda ML. On the mineral core of ferritin-like proteins: structural and magnetic characterization. NANOSCALE 2016; 8:1088-1099. [PMID: 26666195 DOI: 10.1039/c5nr04446d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
It is generally accepted that the mineral core synthesized by ferritin-like proteins consists of a ferric oxy-hydroxide mineral similar to ferrihydrite in the case of horse spleen ferritin (HoSF) and an oxy-hydroxide-phosphate phase in plant and prokaryotic ferritins. The structure reflects a dynamic process of deposition and dissolution, influenced by different biological, chemical and physical variables. In this work we shed light on this matter by combining a structural (High Resolution Transmission Electron Microscopy (HRTEM) and Fe K-edge X-ray Absorption Spectroscopy (XAS)) and a magnetic study of the mineral core biomineralized by horse spleen ferritin (HoSF) and three prokaryotic ferritin-like proteins: bacterial ferritin (FtnA) and bacterioferritin (Bfr) from Escherichia coli and archaeal ferritin (PfFtn) from Pyrococcus furiosus. The prokaryotic ferritin-like proteins have been studied under native conditions and inside the cells for the sake of preserving their natural attributes. They share with HoSF a nanocrystalline structure rather than an amorphous one as has been frequently reported. However, the presence of phosphorus changes drastically the short-range order and magnetic response of the prokaryotic cores with respect to HoSF. The superparamagnetism observed in HoSF is absent in the prokaryotic proteins, which show a pure atomic-like paramagnetic behaviour attributed to phosphorus breaking the Fe-Fe exchange interaction.
Collapse
Affiliation(s)
- A García-Prieto
- Dpto. de Física Aplicada I, Universidad del País Vasco - UPV/EHU, 48013 Bilbao, Spain and BCMaterials, Parque tecnológico de Zamudio, 48160 Derio, Spain.
| | - J Alonso
- BCMaterials, Parque tecnológico de Zamudio, 48160 Derio, Spain. and Department of Physics, University of South Florida, Tampa, FL 33647, USA
| | - D Muñoz
- Dpto. de Inmunología, Microbiología y Parasitologa, Universidad del País Vasco - UPV/EHU, 48940 Leioa, Spain and Dpto. de Electricidad y Electrónica, Universidad del País Vasco - UPV/EHU, 48940 Leioa, Spain
| | - L Marcano
- Dpto. de Electricidad y Electrónica, Universidad del País Vasco - UPV/EHU, 48940 Leioa, Spain
| | - A Abad Díaz de Cerio
- Dpto. de Inmunología, Microbiología y Parasitologa, Universidad del País Vasco - UPV/EHU, 48940 Leioa, Spain and Dpto. de Electricidad y Electrónica, Universidad del País Vasco - UPV/EHU, 48940 Leioa, Spain
| | | | - I Orue
- SGIker, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain
| | - O Mathon
- European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - A Muela
- BCMaterials, Parque tecnológico de Zamudio, 48160 Derio, Spain. and Dpto. de Inmunología, Microbiología y Parasitologa, Universidad del País Vasco - UPV/EHU, 48940 Leioa, Spain
| | - M L Fdez-Gubieda
- BCMaterials, Parque tecnológico de Zamudio, 48160 Derio, Spain. and Dpto. de Electricidad y Electrónica, Universidad del País Vasco - UPV/EHU, 48940 Leioa, Spain
| |
Collapse
|
3
|
Mieno A, Yamamoto Y, Yoshikawa Y, Watanabe K, Mukai T, Orino K. Binding analysis of ferritin with heme using α-casein and biotinylated-hemin: detection of heme-binding capacity of Dpr derived from heme synthesis-deficient Streptococcus mutans. J Vet Med Sci 2013; 75:1101-5. [PMID: 23545463 DOI: 10.1292/jvms.13-0095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bacterial and mammalian ferritins are known to bind heme. The use of α-casein and biotinylated hemin could be applicable to detection of protein-bound heme and of proteins with heme-binding capacity, respectively. Although commercial horse spleen ferritin and purified horse spleen ferritin (L:H subunit ratio=4) bound to an α-casein-coated plate, and this binding could be inhibited by hemin, recombinant iron-binding protein (rDpr), derived from heme-deficient Streptococcus mutans and expressed in Escherichia coli, did not bind to an α-casein-coated plate. Both horse spleen ferritins bound to α-casein-immobilized beads. Commercial horse spleen ferritin and rDpr showed direct binding to hemin-agarose beads. After preincubation of commercial horse spleen ferritin or rDpr with biotinylated hemin, they showed indirect binding to avidin-immobilized beads through biotinylated hemin. These results demonstrate that α-casein is useful for detection of heme-binding ferritin and that both hemin-agarose and the combination of biotinylated hemin and avidin-beads are useful for detection of the heme-binding capacity of ferritin. In addition, this study also revealed that Dpr, a decameric iron-binding protein, from heme-deficient cells binds heme.
Collapse
Affiliation(s)
- Ayako Mieno
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Aomori 034-8628, Japan
| | | | | | | | | | | |
Collapse
|
4
|
Briat JF, Ravet K, Arnaud N, Duc C, Boucherez J, Touraine B, Cellier F, Gaymard F. New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants. ANNALS OF BOTANY 2010; 105:811-22. [PMID: 19482877 PMCID: PMC2859905 DOI: 10.1093/aob/mcp128] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 03/30/2009] [Accepted: 04/06/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND Iron is an essential element for both plant productivity and nutritional quality. Improving plant iron content was attempted through genetic engineering of plants overexpressing ferritins. However, both the roles of these proteins in plant physiology, and the mechanisms involved in the regulation of their expression are largely unknown. Although the structure of ferritins is highly conserved between plants and animals, their cellular localization differs. Furthermore, regulation of ferritin gene expression in response to iron excess occurs at the transcriptional level in plants, in contrast to animals which regulate ferritin expression at the translational level. SCOPE In this review, an overview of our knowledge of bacterial and mammalian ferritin synthesis and functions is presented. Then the following will be reviewed: (a) the specific features of plant ferritins; (b) the regulation of their synthesis during development and in response to various environmental cues; and (c) their function in plant physiology, with special emphasis on the role that both bacterial and plant ferritins play during plant-bacteria interactions. Arabidopsis ferritins are encoded by a small nuclear gene family of four members which are differentially expressed. Recent results obtained by using this model plant enabled progress to be made in our understanding of the regulation of the synthesis and the in planta function of these various ferritins. CONCLUSIONS Studies on plant ferritin functions and regulation of their synthesis revealed strong links between these proteins and protection against oxidative stress. In contrast, their putative iron-storage function to furnish iron during various development processes is unlikely to be essential. Ferritins, by buffering iron, exert a fine tuning of the quantity of metal required for metabolic purposes, and help plants to cope with adverse situations, the deleterious effects of which would be amplified if no system had evolved to take care of free reactive iron.
Collapse
|
5
|
Nandal A, Huggins CCO, Woodhall MR, McHugh J, Rodríguez-Quiñones F, Quail MA, Guest JR, Andrews SC. Induction of the ferritin gene (ftnA) of Escherichia coli by Fe(2+)-Fur is mediated by reversal of H-NS silencing and is RyhB independent. Mol Microbiol 2009; 75:637-57. [PMID: 20015147 DOI: 10.1111/j.1365-2958.2009.06977.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
FtnA is the major iron-storage protein of Escherichia coli accounting for < or = 50% of total cellular iron. The FtnA gene (ftnA) is induced by iron in an Fe(2+)-Fur-dependent fashion. This effect is reportedly mediated by RyhB, the Fe(2+)-Fur-repressed, small, regulatory RNA. However, results presented here show that ftnA iron induction is independent of RyhB and instead involves direct interaction of Fe(2+)-Fur with an 'extended' Fur binding site (containing five tandem Fur boxes) located upstream (-83) of the ftnA promoter. In addition, H-NS acts as a direct repressor of ftnA transcription by binding at multiple sites (I-VI) within, and upstream of, the ftnA promoter. Fur directly competes with H-NS binding at upstream sites (II-IV) and consequently displaces H-NS from the ftnA promoter (sites V-VI) which in turn leads to derepression of ftnA transcription. It is proposed that H-NS binding within the ftnA promoter is facilitated by H-NS occupation of the upstream sites through H-NS oligomerization-induced DNA looping. Consequently, Fur displacement of H-NS from the upstream sites prevents cooperative H-NS binding at the downstream sites within the promoter, thus allowing access to RNA polymerase. This direct activation of ftnA transcription by Fe(2+)-Fur through H-NS antisilencing represents a new mechanism for iron-induced gene expression.
Collapse
Affiliation(s)
- Anjali Nandal
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Olczak T, Simpson W, Liu X, Genco CA. Iron and heme utilization in Porphyromonas gingivalis. FEMS Microbiol Rev 2005; 29:119-44. [PMID: 15652979 DOI: 10.1016/j.femsre.2004.09.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Revised: 06/18/2004] [Accepted: 09/02/2004] [Indexed: 11/26/2022] Open
Abstract
Porphyromonas gingivalis is a Gram-negative anaerobic bacterium associated with the initiation and progression of adult periodontal disease. Iron is utilized by this pathogen in the form of heme and has been shown to play an essential role in its growth and virulence. Recently, considerable attention has been given to the characterization of various secreted and surface-associated proteins of P. gingivalis and their contribution to virulence. In particular, the properties of proteins involved in the uptake of iron and heme have been extensively studied. Unlike other Gram-negative bacteria, P. gingivalis does not produce siderophores. Instead it employs specific outer membrane receptors, proteases (particularly gingipains), and lipoproteins to acquire iron/heme. In this review, we will focus on the diverse mechanisms of iron and heme acquisition in P. gingivalis. Specific proteins involved in iron and heme capture will be described. In addition, we will discuss new genes for iron/heme utilization identified by nucleotide sequencing of the P. gingivalis W83 genome. Putative iron- and heme-responsive gene regulation in P. gingivalis will be discussed. We will also examine the significance of heme/hemoglobin acquisition for the virulence of this pathogen.
Collapse
Affiliation(s)
- Teresa Olczak
- Institute of Biochemistry and Molecular Biology, Laboratory of Biochemistry, Wroclaw University, Tamka 2, 50-137 Wroclaw, Poland.
| | | | | | | |
Collapse
|
7
|
Abstract
Iron, as the ferrous or ferric ion, is essential for the life processes of all eukaryotes and most prokaryotes; however, the element is toxic when in excess of that needed for cellular homeostasis. Ferrous ions can react with metabolically generated hydrogen peroxide to yield toxic hydroxyl radicals that in turn degrade lipids, DNA, and other cellular biomolecules. Mechanisms have evolved in living systems for iron detoxification and for the removal of excess ferrous ions from the cytosol. These detoxification mechanisms involve the oxidation of excess ferrous ions to the ferric state and storage of the ferric ions in ferritin-like proteins. There are at least three types of ferritin-like proteins in bacteria: bacterial ferritin, bacterioferritin, and dodecameric ferritin. These bacterial proteins are related to the ferritins found in eukaryotes. The structure and physical characteristics of the ferritin-like compounds have been elucidated in several bacteria. Unfortunately, the physiological roles of the bacterial ferritin-like compounds have been less thoroughly studied. A few studies conducted with mutants indicated that ferritin-like compounds can protect bacterial cells from iron overload, serve as an iron source when iron is limited, protect the bacterial cells against oxidative stress and/or protect DNA against enzymatic or oxidative attack. There is very little information available concerning the roles that ferritin-like compounds might play in the survival of bacteria in food, water, soil, or eukaryotic host environments.
Collapse
Affiliation(s)
- James L Smith
- Agricultural Research Service, U.S. Department ofAgriculture, Wyndmoor, Pennsylvania 19038, USA.
| |
Collapse
|
8
|
Reindel S, Anemüller S, Sawaryn A, Matzanke BF. The DpsA-homologue of the archaeon Halobacterium salinarum is a ferritin. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1598:140-6. [PMID: 12147354 DOI: 10.1016/s0167-4838(02)00361-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An iron-rich protein, DpsA(Hsal), was isolated from the archaeon Halobacterium salinarum sharing a sequence identity of 35% with the starvation-induced DNA-binding protein, DpsA, of Synechecoccus sp. PCC7942. It consists of 20-kDa subunits forming a dodecameric structure. The protein exhibits a ferric iron loading of up to 100 Fe ions per mole of holoprotein. CD spectra and secondary structure calculations are consistent with an alpha-helical contribution of 60%. The UV/VIS spectrum provides no evidence for the presence of heme groups. This protein exhibits features of a non-heme type bacterial ferritin (Ftn) although it shares only little sequence homology with Ftn. Molecular modelling disclosed a high structural similarity to E. coli Dps.
Collapse
Affiliation(s)
- Sabine Reindel
- Isotopenlabor TNF, Medizinische Universität zu Lübeck, Ratzeburger Allee 160, Lübeck, Germany
| | | | | | | |
Collapse
|
9
|
Hirosue M, Kokeguchi S, Maeda H, Nishimura F, Takashiba S, Murayama Y. Characterization of two genes encoding ferritin-like protein in Actinobacillus actinomycetemcomitans. Microbiol Immunol 2002; 45:721-7. [PMID: 11762755 DOI: 10.1111/j.1348-0421.2001.tb01307.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Two genes encoding ferritin-like protein, designated afnA and afnB, were identified in the upstream region of actX on the Actinobacillus actinomycetemcomitans chromosomal DNA. The actX has been reported to be a regulatory gene homologous to the Escherichia coli fnr, which controls the growth and virulence of A. actinomycetemcomitans under anaerobic conditions. The afnB located 340 bp-upstream from the actX, and the afnA located just 15 bp-upstream from afnB. The afnA and afnB encoded 161 and 165 amino acid residues, respectively, which were similar to ferritin-like proteins of other microorganisms. Western immunoblotting using rabbit antiserum against E. coli ferritin showed these two proteins, which are reactive with the serum with 19-kDa molecular masses, are produced from A. actinomycetemcomitans. The N-terminal amino acid sequences of the two proteins were consequent with those deduced from afnA and afnB. Northern hybridization revealed that the afnA and afnB constituted a bicistronic operon and the accumulation of afnA and afnB mRNA was upregulated under aerobic conditions. These findings suggested that the operon was regulated by the presence of oxygen. The two ferritin-like proteins may have important roles in the adaptation of A. actinomycetemcomitans to oxidative environmental changes.
Collapse
Affiliation(s)
- M Hirosue
- Department of Patho-physiology, Division of Periodontal Science, Okayama University Graduate School of Medicine and Dentistry, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Stillman TJ, Hempstead PD, Artymiuk PJ, Andrews SC, Hudson AJ, Treffry A, Guest JR, Harrison PM. The high-resolution X-ray crystallographic structure of the ferritin (EcFtnA) of Escherichia coli; comparison with human H ferritin (HuHF) and the structures of the Fe(3+) and Zn(2+) derivatives. J Mol Biol 2001; 307:587-603. [PMID: 11254384 DOI: 10.1006/jmbi.2001.4475] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The high-resolution structure of the non-haem ferritin from Escherichia coli (EcFtnA) is presented together with those of its Fe(3+) and Zn(2+) derivatives, this being the first high-resolution X-ray analysis of the iron centres in any ferritin. The binding of both metals is accompanied by small changes in the amino acid ligand positions. Mean Fe(A)(3+)-Fe(B)(3+) and Zn(A)(2+)-Zn(B)(2+) distances are 3.24 A and 3.43 A, respectively. In both derivatives, metal ions at sites A and B are bridged by a glutamate side-chain (Glu50) in a syn-syn conformation. The Fe(3+) derivative alone shows a third metal site (Fe( C)( 3+)) joined to Fe(B)(3+) by a long anti-anti bidentate bridge through Glu130 (mean Fe(B)(3+)-Fe(C)(3+) distance 5.79 A). The third metal site is unique to the non-haem bacterial ferritins. The dinuclear site lies at the inner end of a hydrophobic channel connecting it to the outside surface of the protein shell, which may provide access for dioxygen and possibly for metal ions shielded by water. Models representing the possible binding mode of dioxygen to the dinuclear Fe(3+) pair suggest that a gauche micro-1,2 mode may be preferred stereochemically. Like those of other ferritins, the 24 subunits of EcFtnA are folded as four-helix bundles that assemble into hollow shells and both metals bind at dinuclear centres in the middle of the bundles. The structural similarity of EcFtnA to the human H chain ferritin (HuHF) is remarkable (r.m.s. deviation of main-chain atoms 0.66 A) given the low amino acid sequence identity (22 %). Many of the conserved residues are clustered at the dinuclear centre but there is very little conservation of residues making inter-subunit interactions.
Collapse
Affiliation(s)
- T J Stillman
- The Krebs Institute Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, UK
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ratnayake DB, Wai SN, Shi Y, Amako K, Nakayama H, Nakayama K. Ferritin from the obligate anaerobe Porphyromonas gingivalis: purification, gene cloning and mutant studies. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 5):1119-1127. [PMID: 10832639 DOI: 10.1099/00221287-146-5-1119] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Porphyromonas gingivalis is an obligate anaerobe that utilizes haem, transferrin and haemoglobin efficiently as sources of iron for growth, and has the ability to store haem on its cell surface, resulting in black pigmentation of colonies on blood agar plates. However, little is known about intracellular iron storage in this organism. Ferritin is one of the intracellular iron-storage proteins and may also contribute to the protection of organisms against oxidative stresses generated by intracellular free iron. A ferritin-like protein was purified from P. gingivalis and the encoding gene (ftn) was cloned from chromosomal DNA using information on its amino-terminal amino acid sequence. Comparison of the amino acid sequence deduced from the nucleotide sequence of ftn with those of known ferritins and bacterioferritins identified the protein as a ferritin and positioned it between proteins from the Proteobacteria and Thermotogales. The P. gingivalis ferritin was found to contain non-haem iron, thus confirming its identity. Construction and characterization of a P. gingivalis ferritin-deficient mutant revealed that the ferritin was particularly important for the bacterium to survive under iron-depleted conditions (both haemin and transferrin starvation), indicating that intracellular iron is stored in ferritin regardless of the iron source and that the iron stored in ferritin is utilized under iron-restricted conditions. However, the ferritin appeared not to contribute to protection against oxidative stresses caused by peroxides and atmospheric oxygen.
Collapse
Affiliation(s)
- Dinath B Ratnayake
- Department of Microbiology, Faculty of Dentistry1 and Department of Bacteriology, Faculty of Medicine2, Kyushu University, Fukuoka 812-8582, Japan
| | - Sun Nyunt Wai
- Department of Microbiology, Faculty of Dentistry1 and Department of Bacteriology, Faculty of Medicine2, Kyushu University, Fukuoka 812-8582, Japan
| | - Yixin Shi
- Department of Microbiology, Faculty of Dentistry1 and Department of Bacteriology, Faculty of Medicine2, Kyushu University, Fukuoka 812-8582, Japan
| | - Kazunobu Amako
- Department of Microbiology, Faculty of Dentistry1 and Department of Bacteriology, Faculty of Medicine2, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroaki Nakayama
- Department of Microbiology, Faculty of Dentistry1 and Department of Bacteriology, Faculty of Medicine2, Kyushu University, Fukuoka 812-8582, Japan
| | - Koji Nakayama
- Department of Microbiology, Faculty of Dentistry1 and Department of Bacteriology, Faculty of Medicine2, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
12
|
Chen CY, Morse SA. Neisseria gonorrhoeae bacterioferritin: structural heterogeneity, involvement in iron storage and protection against oxidative stress. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 10):2967-75. [PMID: 10537219 DOI: 10.1099/00221287-145-10-2967] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The iron-storage protein bacterioferritin (Bfr) from Neisseria gonorrhoeae strain F62 was identified in cell-free extracts and subsequently purified by column chromatography. Gonococcal Bfr had an estimated molecular mass of 400 kDa by gel filtration; however, analysis by SDS-PAGE revealed that it was composed of 18 kDa (BfrA) and 22 kDa (BfrB) subunits. DNA encoding BfrB was amplified by PCR using degenerate primers derived from the N-terminal amino acid sequence of BfrB and from a C-terminal amino acid sequence of Escherichia coli Bfr. The DNA sequence of bfrA was subsequently obtained by genome walking using single-specific-primer PCR. The two Bfr genes were located in tandem with an intervening gap of 27 bp. A potential Fur-binding sequence (12 of 19 bp identical to the consensus neisserial fur sequence) was located within the 5' flanking region of bfrA in front of a putative -35 hexamer. The homology between the DNA sequences of bfrA and bfrB was 55.7%; the deduced amino acid sequences of BfrA (154 residues) and BfrB (157 residues) showed 39.7% identity, and showed 41.3% and 56.1% identity, respectively, to E. coli Bfr. Expression of recombinant BfrA and BfrB in E. coli strain DH5alpha was detected on Western blots probed with polyclonal anti-E. coli Bfr antiserum. Most Bfrs are homopolymers with identical subunits; however, the evidence presented here suggests that gonococcal Bfr was composed of two similar but not identical subunits, both of which appear to be required for the formation of a functional Bfr. A Bfr-deficient mutant was constructed by inserting the omega fragment into the BfrB gene. The growth of the BfrB-deficient mutant in complex medium was reduced under iron-limited conditions. The BfrB-deficient mutant was also more sensitive to killing by H2O2 and paraquat than the isogenic parent strain. These results demonstrate that gonococcal Bfr plays an important role in iron storage and protection from iron-mediated oxidative stress.
Collapse
Affiliation(s)
- C Y Chen
- Division of AIDS, Sexually Transmitted Diseases and Tuberculosis Laboratory Research, National Centers for Infectious Disease, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | |
Collapse
|
13
|
Abdul-Tehrani H, Hudson AJ, Chang YS, Timms AR, Hawkins C, Williams JM, Harrison PM, Guest JR, Andrews SC. Ferritin mutants of Escherichia coli are iron deficient and growth impaired, and fur mutants are iron deficient. J Bacteriol 1999; 181:1415-28. [PMID: 10049371 PMCID: PMC93529 DOI: 10.1128/jb.181.5.1415-1428.1999] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli contains at least two iron storage proteins, a ferritin (FtnA) and a bacterioferritin (Bfr). To investigate their specific functions, the corresponding genes (ftnA and bfr) were inactivated by replacing the chromosomal ftnA and bfr genes with disrupted derivatives containing antibiotic resistance cassettes in place of internal segments of the corresponding coding regions. Single mutants (ftnA::spc and bfr::kan) and a double mutant (ftnA::spc bfr::kan) were generated and confirmed by Western and Southern blot analyses. The iron contents of the parental strain (W3110) and the bfr mutant increased by 1.5- to 2-fold during the transition from logarithmic to stationary phase in iron-rich media, whereas the iron contents of the ftnA and ftnA bfr mutants remained unchanged. The ftnA and ftnA bfr mutants were growth impaired in iron-deficient media, but this was apparent only after the mutant and parental strains had been precultured in iron-rich media. Surprisingly, ferric iron uptake regulation (fur) mutants also had very low iron contents (2.5-fold less iron than Fur+ strains) despite constitutive expression of the iron acquisition systems. The iron deficiencies of the ftnA and fur mutants were confirmed by Mössbauer spectroscopy, which further showed that the low iron contents of ftnA mutants are due to a lack of magnetically ordered ferric iron clusters likely to correspond to FtnA iron cores. In combination with the fur mutation, ftnA and bfr mutations produced an enhanced sensitivity to hydroperoxides, presumably due to an increase in production of "reactive ferrous iron." It is concluded that FtnA acts as an iron store accommodating up to 50% of the cellular iron during postexponential growth in iron-rich media and providing a source of iron that partially compensates for iron deficiency during iron-restricted growth. In addition to repressing the iron acquisition systems, Fur appears to regulate the demand for iron, probably by controlling the expression of iron-containing proteins. The role of Bfr remains unclear.
Collapse
Affiliation(s)
- H Abdul-Tehrani
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Iron is an essential nutrient for nearly all organisms but presents problems of toxicity, poor solubility and low availability. These problems are alleviated through the use of iron-storage proteins. Bacteria possess two types of iron-storage protein, the haem-containing bacterioferritins and the haem-free ferritins. These proteins are widespread in bacteria, with at least 39 examples known so far in eubacteria and archaebacteria. The bacterioferritins and ferritins are distantly related but retain similar structural and functional properties. Both are composed of 24 identical or similar subunits (approximately 19 kDa) that form a roughly spherical protein (approximately 450 kDa, approximately 120 A diameter) containing a large hollow centre (approximately 80 A diameter). The hollow centre acts as an iron-storage cavity with the capacity to accommodate at least 2000 iron atoms in the form of a ferric-hydroxyphosphate core. Each subunit contains a four-helix bundle which carries the active site or ferroxidase centre of the protein. The ferroxidase centres endow ferrous-iron-oxidizing activity and are able to form a di-iron species that is an intermediate in the iron uptake, oxidation and core formation process. Bacterioferritins contain up to 12 protoporphyrin IX haem groups located at the two-fold interfaces between pairs of two-fold related subunits. The role of the haem is unknown, although it may be involved in mediating iron-core reduction and iron release. Some bacterioferritins are composed of two subunit types, one conferring haem-binding ability (alpha) and the other (beta) bestowing ferroxidase activity. Bacterioferritin genes are often adjacent to genes encoding a small [2Fe-2S]-ferredoxin (bacterioferritin-associated ferredoxin or Bfd). Bfd may directly interact with bacterioferritin and could be involved in releasing iron from (or delivering iron to) bacterioferritin or other iron complexes. Some bacteria contain two bacterioferritin subunits, or two ferritin subunits, that in most cases co-assemble. Others possess both a bacterioferritin and a ferritin, while some appear to lack any type of iron-storage protein. The reason for these differences is not understood. Studies on ferritin mutants have shown that ferritin enhances growth during iron starvation and is also involved in iron accumulation in the stationary phase of growth. The ferritin of Campylobacter jejuni is involved in redox stress resistance, although this does not appear to be the case for Escherichia coli ferritin (FtnA). No phenotype has been determined for E. coli bacterioferritin mutants and the precise role of bacterioferritin in E. coli remains uncertain.
Collapse
Affiliation(s)
- S C Andrews
- School of Animal and Microbial Sciences, University of Reading, UK
| |
Collapse
|
15
|
Garbe TR, Hibler NS, Deretic V. Response to reactive nitrogen intermediates in Mycobacterium tuberculosis: induction of the 16-kilodalton alpha-crystallin homolog by exposure to nitric oxide donors. Infect Immun 1999; 67:460-5. [PMID: 9864257 PMCID: PMC96338 DOI: 10.1128/iai.67.1.460-465.1999] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In contrast to the apparent paucity of Mycobacterium tuberculosis response to reactive oxygen intermediates, this organism has evolved a specific response to nitric oxide challenge. Exposure of M. tuberculosis to NO donors induces the synthesis of a set of polypeptides that have been collectively termed Nox. In this work, the most prominent Nox polypeptide, Nox16, was identified by immunoblotting and by N-terminal sequencing as the alpha-crystallin-related, 16-kDa small heat shock protein, sHsp16. A panel of chemically diverse donors of nitric oxide, with the exception of nitroprusside, induced sHsp16 (Nox16). Nitroprusside, a coordination complex of Fe2+ with a nitrosonium (NO+) ion, induced a 19-kDa polypeptide (Nox19) homologous to the nonheme bacterial ferritins. We conclude that the NO response in M. tuberculosis is dominated by increased synthesis of the alpha-crystallin homolog sHsp16, previously implicated in stationary-phase processes and found in this study to be a major M. tuberculosis protein induced upon exposure to reactive nitrogen intermediates.
Collapse
Affiliation(s)
- T R Garbe
- Department of Microbiology and Immunology, University of Texas Health Science Center San Antonio 78284, USA
| | | | | |
Collapse
|
16
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
17
|
Bereswill S, Waidner U, Odenbreit S, Lichte F, Fassbinder F, Bode GN, Kist M. Structural, functional and mutational analysis of the pfr gene encoding a ferritin from Helicobacter pylori. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 9):2505-2516. [PMID: 9782498 DOI: 10.1099/00221287-144-9-2505] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The function of the pfr gene encoding the ferritin from Helicobacter pylori was investigated using the Fur titration assay (FURTA) in Escherichia coli, and by characterization of a pfr-deficient mutant strain of H. pylori. Nucleotide sequence analysis revealed that the pfr region is conserved among strains (> 95% nucleotide identity). Two transcriptional start sites, at least one of them preceded by a sigma 70-dependent promoter, were identified. Provision of the H. pylori pfr gene on a multicopy plasmid resulted in reversal of the Fur-mediated repression of the fhuF gene in E. coli, thus enabling the use of the FURTA for cloning of the ferritin gene. Inactivation of the pfr gene, either by insertion of a resistance cassette or by deletion of the up- and downstream segments, abolished this function. Immunoblot analysis with a Pfr-specific antiserum detected the Pfr protein in H. pylori and in E. coli carrying the pfr gene on a plasmid. Pfr-deficient mutants of H. pylori were generated by marker-exchange mutagenesis. These were more susceptible than the parental strain to killing by various metal ions including irons, copper and manganese, whereas conditions of oxidative stress or iron deprivation were not discriminative. Analysis by element-specific electron microscopy revealed that growth of H. pylori in the presence of iron induces the formation of two kinds of cytoplasmic aggregates: large vacuole-like bodies and smaller granules containing iron in association with oxygen or phosphorus. Neither of these structures was detected in the pfr-deficient mutant strain. Furthermore, the ferritin accumulated under iron overload and the pfr-deficient mutant strains lacked expression of a 12 kDa protein which was negatively regulated by iron in the parental strain. The results indicate that the nonhaem-iron ferritin is involved in the formation of iron-containing subcellular structures and contributes to metal resistance of H. pylori. Further evidence for an interaction of ferritin with iron-dependent regulation mechanisms is provided.
Collapse
Affiliation(s)
- Stefan Bereswill
- University of Freiburg, Institute of Medical Microbiology and Hygiene, Department of Microbiology and Hygiene,Hermann-Herder-Str. 11, D-79104 Freiburg,Germany
| | - Uta Waidner
- University of Freiburg, Institute of Medical Microbiology and Hygiene, Department of Microbiology and Hygiene,Hermann-Herder-Str. 11, D-79104 Freiburg,Germany
| | - Stefan Odenbreit
- Max-von-Pettenkofer-Institute of Hygiene and Medical Microbiology, Department of Bacteriology,Pettenkoferstr. 9a, D-80336 Munich,Germany
| | - Flavia Lichte
- University of Freiburg, Institute of Medical Microbiology and Hygiene, Department of Microbiology and Hygiene,Hermann-Herder-Str. 11, D-79104 Freiburg,Germany
| | - Frank Fassbinder
- University of Freiburg, Institute of Medical Microbiology and Hygiene, Department of Microbiology and Hygiene,Hermann-Herder-Str. 11, D-79104 Freiburg,Germany
| | - G Nter Bode
- University of Ulm, Department of Internal Medicine I,Robert Koch-Str. 8, D-89081 Ulm,Germany
| | - Manfred Kist
- University of Freiburg, Institute of Medical Microbiology and Hygiene, Department of Microbiology and Hygiene,Hermann-Herder-Str. 11, D-79104 Freiburg,Germany
| |
Collapse
|
18
|
Bertani LE, Huang JS, Weir BA, Kirschvink JL. Evidence for two types of subunits in the bacterioferritin of Magnetospirillum magnetotacticum. Gene X 1997; 201:31-6. [PMID: 9409768 DOI: 10.1016/s0378-1119(97)00424-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In order to investigate the role of bacterioferritin (Bfr) in the biomineralization of magnetite by microorganisms, we have cloned and sequenced the bfr genes from M. magnetotacticum. The organism has two bfr genes that overlap by one nucleotide. Both encode putative protein products of 18 kDa, the expected size for Bfr subunits, and show a strong similarity to other Bfr subunit proteins. By scanning the DNA sequence databases, we found that a limited number of other organisms, including N. gonorrhea, P. aeruginosa, and Synechocystis PCC6803, also have two bfr genes. When the sequences of a number of microbial Bfrs are compared with each other, they fall into two distinct types with the organisms mentioned above having one of each type. Differences in heme- and metal-binding sites and ferroxidase activities of the two types of subunits are discussed.
Collapse
Affiliation(s)
- L E Bertani
- Division of Biology, California Institute of Technology, Pasadena 91125, USA.
| | | | | | | |
Collapse
|
19
|
Denoel PA, Crawford RM, Zygmunt MS, Tibor A, Weynants VE, Godfroid F, Hoover DL, Letesson JJ. Survival of a bacterioferritin deletion mutant of Brucella melitensis 16M in human monocyte-derived macrophages. Infect Immun 1997; 65:4337-40. [PMID: 9317046 PMCID: PMC175622 DOI: 10.1128/iai.65.10.4337-4340.1997] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A bacterioferritin (BFR) deletion mutant of Brucella melitensis 16M was generated by gene replacement. The deletion was complemented with a broad-host-range vector carrying the wild-type bfr gene, pBBR-bfr. The survival and growth of the mutant, B. melitensis PAD 2-78, were similar to those of its parental strain in human monocyte-derived macrophages (MDM). These results suggest that BFR is not essential for the intracellular survival of B. melitensis in human MDM.
Collapse
Affiliation(s)
- P A Denoel
- U. R. Biologie Moléculaire, Laboratoire de Microbiologie et d'Immunologie, Facultés Universitaires Notre Dame de la Paix, Namur, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Bozzi M, Mignogna G, Stefanini S, Barra D, Longhi C, Valenti P, Chiancone E. A novel non-heme iron-binding ferritin related to the DNA-binding proteins of the Dps family in Listeria innocua. J Biol Chem 1997; 272:3259-65. [PMID: 9013563 DOI: 10.1074/jbc.272.6.3259] [Citation(s) in RCA: 184] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A multimeric protein that behaves functionally as an authentic ferritin has been isolated from the Gram-positive bacterium Listeria innocua. The purified protein has a molecular mass of about 240,000 Da and is composed of a single type of subunit (18,000 Da). L. innocua ferritin is able to oxidize and sequester about 500 iron atoms inside the protein cage. The primary structure reveals a high similarity to the DNA-binding proteins designated Dps. Among the proven ferritins, the most similar sequences are those of mammalian L chains that appear to share with L. innocua ferritin the negatively charged amino acids corresponding to the iron nucleation site. In L. innocua ferritin, an additional aspartyl residue may provide a strong complexing capacity that renders the iron oxidation and incorporation processes extremely efficient. This study provides the first experimental evidence for the existence of a non-heme bacterial ferritin that is related to Dps proteins, a finding that lends support to the recent suggestion of a common evolutionary origin of these two protein families.
Collapse
Affiliation(s)
- M Bozzi
- Centro Biologia Molecolare, Consiglio Nazionale delle Ricerche, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Università la Sapienza, 00185 Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
21
|
Wai SN, Nakayama K, Takade A, Amako K. Overproduction of Campylobacter ferritin in Escherichia coli and induction of paracrystalline inclusion by ferrous compound. Microbiol Immunol 1997; 41:461-7. [PMID: 9251057 DOI: 10.1111/j.1348-0421.1997.tb01879.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The ferritin gene (cft) of Campylobacter jejuni was overexpressed in cells of Escherichia coli using a T7 RNA polymerase expression system. Many round particles which were the same size as the ferritin particles purified from C. jejuni were observed in the lysate of the cft-overexpressed E. coli cells. Since most of them were devoid of a central electron dense core consisting of ferric irons, the Campylobacter ferritins over-produced in E. coli seemed to be apoferritin. When large amounts of ferrous iron (supplied as FeSO4) were added to culture medium, the cft-overexpressed cells formed large inclusion bodies of paracrystalline arrays comprised of ferritin particles with central electron dense cores. The addition of ferric irons did not produce paracrystalline inclusion.
Collapse
Affiliation(s)
- S N Wai
- Department of Bacteriology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
22
|
Hickey EK, Cianciotto NP. An iron- and fur-repressed Legionella pneumophila gene that promotes intracellular infection and encodes a protein with similarity to the Escherichia coli aerobactin synthetases. Infect Immun 1997; 65:133-43. [PMID: 8975903 PMCID: PMC174567 DOI: 10.1128/iai.65.1.133-143.1997] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Legionella pneumophila, a parasite of alveolar macrophages, requires iron for intra- and extracellular growth. Although its mechanisms for iron assimilation are poorly understood, this bacterium produces Fur, a protein that can repress gene transcription in response to iron concentration. Because iron- and Fur-regulated genes are important for infection in other bacteria, the identification of similar genes in L. pneumophila was undertaken. A wild-type strain of L. pneumophila was randomly mutated with a mini-Tn10' lacZ transposon, and the resulting gene fusions were tested for iron regulation by assessing beta-galactosidase production in the presence and absence of iron chelators. Of the initial six mutants with iron-repressed lacZ fusions, two strains, NU229 and NU232, possessed fusions that were stably iron regulated. To assay for Fur regulation, the levels of beta-galactosidase were measured in strains no longer producing Fur. As in a number of pathogenic bacteria, L. pneumophila fur could not be insertionally inactivated, but spontaneous Fur- derivatives were generated by selecting for manganese resistance. Strain NU229 contained a Fur-repressed fusion based on derepression of lacZ expression in its manganese-resistant derivative. Extracellular growth of NU229 in bacteriological media was similar to that of wild-type strain 130b. To assess the role of an iron- and Fur-regulated (frgA) gene in intracellular infection, the ability of NU229 to grow within U937 cell monolayers was tested. Quantitative infection assays demonstrated that intracellular growth of NU229 was impaired as much as 80-fold. Reconstruction of the mutant by allelic exchange proved that the infectivity defect in NU229 was due to the inactivation of frgA and not to a second-site mutation. Subsequently, complementation of the interrupted gene by an intact plasmid-encoded gene demonstrated that the infectivity defect was due to the loss of frgA and not to a polar effect. Nucleotide sequence analysis revealed that the 63-kDa FrgA protein has homology with the aerobactin synthetases IucA and IucC of Escherichia coli, raising the possibility that L. pneumophila encodes a siderophore which is required for optimal intracellular replication. Southern hybridization analysis determined that frgA is specific to L. pneumophila.
Collapse
Affiliation(s)
- E K Hickey
- Department of Microbiology-Immunology, Northwestern University, Chicago, Illinois 60611, USA
| | | |
Collapse
|
23
|
Harrison PM, Arosio P. The ferritins: molecular properties, iron storage function and cellular regulation. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1275:161-203. [PMID: 8695634 DOI: 10.1016/0005-2728(96)00022-9] [Citation(s) in RCA: 1820] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The iron storage protein, ferritin, plays a key role in iron metabolism. Its ability to sequester the element gives ferritin the dual functions of iron detoxification and iron reserve. The importance of these functions is emphasised by ferritin's ubiquitous distribution among living species. Ferritin's three-dimensional structure is highly conserved. All ferritins have 24 protein subunits arranged in 432 symmetry to give a hollow shell with an 80 A diameter cavity capable of storing up to 4500 Fe(III) atoms as an inorganic complex. Subunits are folded as 4-helix bundles each having a fifth short helix at roughly 60 degrees to the bundle axis. Structural features of ferritins from humans, horse, bullfrog and bacteria are described: all have essentially the same architecture in spite of large variations in primary structure (amino acid sequence identities can be as low as 14%) and the presence in some bacterial ferritins of haem groups. Ferritin molecules isolated from vertebrates are composed of two types of subunit (H and L), whereas those from plants and bacteria contain only H-type chains, where 'H-type' is associated with the presence of centres catalysing the oxidation of two Fe(II) atoms. The similarity between the dinuclear iron centres of ferritin H-chains and those of ribonucleotide reductase and other proteins suggests a possible wider evolutionary linkage. A great deal of research effort is now concentrated on two aspects of ferritin: its functional mechanisms and its regulation. These form the major part of the review. Steps in iron storage within ferritin molecules consist of Fe(II) oxidation, Fe(III) migration and the nucleation and growth of the iron core mineral. H-chains are important for Fe(II) oxidation and L-chains assist in core formation. Iron mobilisation, relevant to ferritin's role as iron reserve, is also discussed. Translational regulation of mammalian ferritin synthesis in response to iron and the apparent links between iron and citrate metabolism through a single molecule with dual function are described. The molecule, when binding a [4Fe-4S] cluster, is a functioning (cytoplasmic) aconitase. When cellular iron is low, loss of the [4Fe-4S] cluster allows the molecule to bind to the 5'-untranslated region (5'-UTR) of the ferritin m-RNA and thus to repress translation. In this form it is known as the iron regulatory protein (IRP) and the stem-loop RNA structure to which it binds is the iron regulatory element (IRE). IREs are found in the 3'-UTR of the transferrin receptor and in the 5'-UTR of erythroid aminolaevulinic acid synthase, enabling tight co-ordination between cellular iron uptake and the synthesis of ferritin and haem. Degradation of ferritin could potentially lead to an increase in toxicity due to uncontrolled release of iron. Degradation within membrane-encapsulated "secondary lysosomes' may avoid this problem and this seems to be the origin of another form of storage iron known as haemosiderin. However, in certain pathological states, massive deposits of "haemosiderin' are found which do not arise directly from ferritin breakdown. Understanding the numerous inter-relationships between the various intracellular iron complexes presents a major challenge.
Collapse
Affiliation(s)
- P M Harrison
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, UK
| | | |
Collapse
|
24
|
Carrano CJ, Böhnke R, Matzanke BF. Fungal ferritins: the ferritin from mycelia of Absidia spinosa is a bacterioferritin. FEBS Lett 1996; 390:261-4. [PMID: 8706873 DOI: 10.1016/0014-5793(96)00667-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Two distinct ferritin like iron containing proteins have been identified and isolated from the fungus Absidia spinosa; one from the spores and another from the mycelia. The mycelial protein has been purified and consists of two subunits of approx. 20 kDa. The N-terminal sequences of both subunits have been determined. The holoprotein as isolated contains approx. 750 iron atoms/molecule and exhibits a heme-like UV-Vis spectrum. Based on the heme spectrum and the high degree of sequence homology found, it has been established that the mycelial protein is a bacterioferritin. This is the first example demonstrating the presence of a bacterioferritin in a eukaryotic organism.
Collapse
|
25
|
Penfold CN, Ringeling PL, Davy SL, Moore GR, McEwan AG, Spiro S. Isolation, characterisation and expression of the bacterioferritin gene of Rhodobacter capsulatus. FEMS Microbiol Lett 1996; 139:143-8. [PMID: 8674981 DOI: 10.1111/j.1574-6968.1996.tb08194.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The nucleotide sequence of the Rhodobacter capsulatus bacterioferritin gene (bfr) was determined and found to encode a protein of 161 amino acids with a predicted molecular mass of 18,174 Da. The molecular mass of the purified protein was estimated to be 18,176. +/ 0.80 Da by electrospray mass spectrometry. The bfr was introduced into an expression vector, and bacterioferritin was produced to a high level in Escherichia coli. The amino acids which are involved in haem ligation, and those provide ligands in the binuclear metal centre in bacterioferritin from E. coli are conversed in the R. capsulatus protein. The sequences of bacterioferritins, ferritin-like proteins, and proteins similar to Dps of E. coli are compared, and membership of the bacterioferritin family re-evaluated.
Collapse
Affiliation(s)
- C N Penfold
- Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norwich, UK
| | | | | | | | | | | |
Collapse
|
26
|
Wai SN, Nakayama K, Umene K, Moriya T, Amako K. Construction of a ferritin-deficient mutant of Campylobacter jejuni: contribution of ferritin to iron storage and protection against oxidative stress. Mol Microbiol 1996; 20:1127-34. [PMID: 8809765 DOI: 10.1111/j.1365-2958.1996.tb02633.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The ferritin-encoding gene (cft) of Campylobacter jejuni was cloned and sequenced. The nucleotide sequence of cft had a 501 bp open reading frame for a protein with 167 amino acids and a predicted molecular mass of 19 180 Da, and showed a high similarity to that of Helicobacter pylori and Escherichia coli ferritin genes. To determine the biological function of ferritin in C. jejuni, a ferritin-deficient mutant was constructed. The growth of ferritin-deficient strain SNA 1 was clearly inhibited under iron deprivation. The ferritin-deficient mutant was more sensitive to killing by H2O2 and paraquat than the isogenic parent strain. These findings demonstrate that ferritin in C. jejuni makes a significant contribution to both iron storage and protection from intracellular iron overload, and resulting iron-mediated oxidative stress.
Collapse
Affiliation(s)
- S N Wai
- Department of Bacteriology, Faculty of Medicine, Kyushu University, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
27
|
Wai SN, Takata T, Takade A, Hamasaki N, Amako K. Purification and characterization of ferritin from Campylobacter jejuni. Arch Microbiol 1995; 164:1-6. [PMID: 7646314 DOI: 10.1007/bf02568727] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We purified an iron-containing protein from Campylobacter jejuni using ultracentrifugation and ion-exchange chromatography. Electron microscopy of this protein revealed circular particles with a diameter of 11.5 nm and a central core with a diameter of 5.5 nm. The protein was composed of a single peptide of 21 kDa and did not serologically cross-react with horse spleen ferritin. The UV-visible spectrum of the protein showed no absorption peaks in the visible region, indicating that little or no heme is bound. The ratio of Fe:phosphate of C. jejuni ferritin was 1.5:1. From these morphological and chemical examinations, we concluded that the C. jejuni purified protein is a ferritin of the same class as that of Helicobacter pylori and Bacteroides fragilis and differs from the heme-containing bacterioferritin of Escherichia coli. The 30 N-terminal amino acids were sequenced and were found to resemble the sequences of other ferritins strongly (H. pylori ferritin, 73% identity; B. fragilis ferritin, 50% identity; E. coli gene-165 product, 50% identity), and to a lesser degree, bacterioferritins (E. coli bacterioferritin, 26% identity; Azotobacter vinelandii, 26% identity; horse spleen ferritin 30% identity). Proteins that cross-reacted with antiserum against the ferritin of C. jejuni were found in other Campylobacter species and in H. pylori, but not in Vibrio, E. coli, or Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- S N Wai
- Department of Bacteriology, Faculty of Medicine, Kyushu University, Eukuoka, Japan
| | | | | | | | | |
Collapse
|
28
|
Touati D, Jacques M, Tardat B, Bouchard L, Despied S. Lethal oxidative damage and mutagenesis are generated by iron in delta fur mutants of Escherichia coli: protective role of superoxide dismutase. J Bacteriol 1995; 177:2305-14. [PMID: 7730258 PMCID: PMC176885 DOI: 10.1128/jb.177.9.2305-2314.1995] [Citation(s) in RCA: 362] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Escherichia coli Fur protein, with its iron(II) cofactor, represses iron assimilation and manganese superoxide dismutase (MnSOD) genes, thus coupling iron metabolism to protection against oxygen toxicity. Iron assimilation is triggered by iron starvation in wild-type cells and is constitutive in fur mutants. We show that iron metabolism deregulation in fur mutants produces an iron overload, leading to oxidative stress and DNA damage including lethal and mutagenic lesions. fur recA mutants were not viable under aerobic conditions and died after a shift from anaerobiosis to aerobiosis. Reduction of the intracellular iron concentration by an iron chelator (ferrozine), by inhibition of ferric iron transport (tonB mutants), or by overexpression of the iron storage ferritin H-like (FTN) protein eliminated oxygen sensitivity. Hydroxyl radical scavengers dimethyl sulfoxide and thiourea also provided protection. Functional recombinational repair was necessary for protection, but SOS induction was not involved. Oxygen-dependent spontaneous mutagenesis was significantly increased in fur mutants. Similarly, SOD deficiency rendered sodA sodB recA mutants nonviable under aerobic conditions. Lethality was suppressed by tonB mutations but not by iron chelation or overexpression of FTN. Thus, superoxide-mediated iron reduction was responsible for oxygen sensitivity. Furthermore, overexpression of SOD partially protected fur recA mutants. We propose that a transient iron overload, which could potentially generate oxidative stress, occurs in wild-type cells on return to normal growth conditions following iron starvation, with the coupling between iron and MnSOD regulation helping the cells cope.
Collapse
Affiliation(s)
- D Touati
- Institut Jacques Monod, Centre National de la Recherche Scientifique, Université Paris 7, France
| | | | | | | | | |
Collapse
|
29
|
Evans DJ, Evans DG, Lampert HC, Nakano H. Identification of four new prokaryotic bacterioferritins, from Helicobacter pylori, Anabaena variabilis, Bacillus subtilis and Treponema pallidum, by analysis of gene sequences. Gene 1995; 153:123-7. [PMID: 7883175 DOI: 10.1016/0378-1119(94)00774-m] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The nucleotide (nt) sequence of the Helicobacter pylori (Hp) napA gene, encoding neutrophil-activating protein A (HPNAP) was determined. Alignment of this sequence with those of known bacterioferritins (Bfr) revealed sequence homology and conservation of a 7-amino-acid (aa) motif constituting the ferroxidase (Frx) center of Bfr in the HPNAP. The N-terminal aa sequence deduced from the iron-regulated mrgC gene of Bacillus subtilis [Chen et al., J. Bacteriol. 175 (1993) 5428-5437] is highly similar to that of HPNAP and contains five Frx center aa residues. The deduced aa sequences for proteins of unknown function in Treponema pallidum [Walfield et al., Infect. Immun. 57 (1989) 633-635] and in the cyanobacterium Anabaena variabilis [Sato, GenBank accession No. JU0384 (1991)] identify these two proteins as Bfr. Although the DNA-binding protein from starved cells of Escherichia coli [Almiron et al., Genes Dev. 6 (1992) 2646-2654] is clearly a HPNAP/Bfr homologue, a significant part of its Frx center is missing. It is unlikely that the intracellular function of HPNAP is related to its ability to activate neutrophils.
Collapse
Affiliation(s)
- D J Evans
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | | | | | | |
Collapse
|
30
|
van Wuytswinkel O, Briat JF. Conformational changes and in vitro core-formation modifications induced by site-directed mutagenesis of the specific N-terminus of pea seed ferritin. Biochem J 1995; 305 ( Pt 3):959-65. [PMID: 7848297 PMCID: PMC1136351 DOI: 10.1042/bj3050959] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Plant ferritin has a three-dimensional structure predicted to be very similar to that of animal ferritin. It has, however, an additional specific sequence of 24 amino acids at its N-terminus named extension peptide (EP). In order to determine precisely the interactions between EP and other domains of the pea seed ferritin subunit, three point mutations were performed. The mutated residues were chosen by three-dimensional computer modelling of the pea seed ferritin subunit structure [Lobréaux, Yewdall, Briat and Harrison (1992) Biochem. J. 228, 931-939]. The mutant recombinant proteins were expressed in Escherichia coli and purified to homogeneity; all the mutants were found to be assembled as 24-mers. When Ala-13 was replaced by His, as in mammalian ferritins, ferroxidase activity was significantly reduced. Moreover, in vitro iron-core formation in Pro-X-->Ala, Lys-R-->Glu and Ala-13-->His mutants was increased after denaturation by urea followed by renaturation; this was also observed with the EP deletion mutant (r delta TP/EP). The recombinant ferritins were also analysed using tryptophan fluorescence spectra. The r delta TP/EP, Pro-X-->Ala and Lys-R-->Glu mutants were found to be more susceptible to denaturation by urea than the native r delta TP pea seed ferritin.
Collapse
Affiliation(s)
- O van Wuytswinkel
- Laboratoire de Biologie Moléculaire Végétale, Centre National de la Recherche Scientifique (Unité de Recherche 1178), Grenoble, France
| | | |
Collapse
|
31
|
Ringeling PL, Davy SL, Monkara FA, Hunt C, Dickson DP, McEwan AG, Moore GR. Iron metabolism in Rhodobacter capsulatus. Characterisation of bacterioferritin and formation of non-haem iron particles in intact cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 223:847-55. [PMID: 8055962 DOI: 10.1111/j.1432-1033.1994.tb19061.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The water-soluble cytochrome b557 from the photosynthetic bacterium Rhodobacter capsulatus was purified and shown to have the properties of the iron-storage protein bacterioferritin. The molecular mass of R. capsulatus bacterioferritin is 428 kDa and it is composed of a single type of 18-kDa subunit. The N-terminal amino acid sequence of the bacterioferritin subunit shows 70% identity to the sequence of bacterioferritin subunits from Escherichia coli, Nitrobacter winogradskyi, Azotobacter vinelandii and Synechocystis PCC 6803. The absorbance spectrum of reduced bacterioferritin shows absorbance maxima at 557 nm (alpha band), 526 nm (beta band) and 417 nm (Soret band) from the six haem groups/molecule. Antibody assays reveal that bacterioferritin is located in the cytoplasm of R. capsulatus, and its levels stay relatively constant during batch growth under aerobic conditions when the iron concentration in the medium is kept constant. Iron deficiency leads to a decrease in bacterioferritin and iron overload leads to an increase. Bacterioferritin from R. capsulatus has an amorphous iron-oxide core with a high phosphate content (900-1000 Fe atoms and approximately 600 phosphates/bacterioferritin molecule). Mössbauer spectroscopy indicates that in both aerobically and anaerobically (phototrophically) grown cells bacterioferritin with an Fe3+ core is formed, suggesting that iron-core formation in vivo may not always require molecular oxygen.
Collapse
Affiliation(s)
- P L Ringeling
- School of Chemical Sciences, Centre for Metalloprotein Spectroscopy and Biology, University of East Anglia, Norwich, England
| | | | | | | | | | | | | |
Collapse
|
32
|
Stiefel EI, Grossman MJ, Hinton SM, Minak-Bernero V, George GN, Prince RC, Bare RE, Watt GD. Bacterioferritin: a hemoprotein member of the ferritin family. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1994; 356:157-64. [PMID: 7887220 DOI: 10.1007/978-1-4615-2554-7_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- E I Stiefel
- Exxon Research and Engineering Co., Annandale, New Jersey 08801
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Hudson AJ, Andrews SC, Hawkins C, Williams JM, Izuhara M, Meldrum FC, Mann S, Harrison PM, Guest JR. Overproduction, purification and characterization of the Escherichia coli ferritin. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 218:985-95. [PMID: 8281950 DOI: 10.1111/j.1432-1033.1993.tb18457.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recent studies have indicated that Escherichia coli possesses at least two iron-storage proteins, the haem-containing bacterioferritin and ferritin. The ferritin protein has been amplified 600-fold to 11-14% of total cell protein in a bfr mutant and purified to homogeneity with an overall yield of 13%. The cellular ferritin content remained relatively constant throughout the growth cycle and amplification was accompanied by a 2.5-fold increase in cellular iron content. The isolated ferritin contained 5-20 non-haem iron atoms/holomer and resembled the eukaryotic ferritins rather than the prokaryotic bacterioferritins in containing no haem. The 24 subunits of this ferritin (M(r) 19,400) assemble into a spherical protein shell (12 +/- 1 nm diameter, M(r) 465,000) which sequesters at least 2000 iron atoms in vitro to form an electron-dense iron core of 7.9 +/- 1 nm diameter. Electron-microscopic and Mössbauer spectroscopic studies with iron-loaded ferritin showed that the core can be either crystalline (ferrihydrite) or amorphous, depending on the absence or presence of phosphate, respectively. Mössbauer spectroscopy with intact E. coli revealed a novel-high spin Fe(II) component which is enhanced in bacteria amplified for ferritin but not in the parental strain. Western blotting showed that ferritin and bacterioferritin are immunologically distinct proteins. E. coli is thus an organism containing both a ferritin and a bacterioferritin and the relative roles of the two iron-storage proteins are discussed in this study.
Collapse
Affiliation(s)
- A J Hudson
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, England
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cheesman MR, le Brun NE, Kadir FH, Thomson AJ, Moore GR, Andrews SC, Guest JR, Harrison PM, Smith JM, Yewdall SJ. Haem and non-haem iron sites in Escherichia coli bacterioferritin: spectroscopic and model building studies. Biochem J 1993; 292 ( Pt 1):47-56. [PMID: 8389131 PMCID: PMC1134267 DOI: 10.1042/bj2920047] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The bacterioferritin (BFR) of Escherichia coli is an iron-storage protein containing 24 identical subunits and between three and 11 protohaem IX groups per molecule. Titration with additional haem gave a maximum loading of 12-14 haems per molecule. The e.p.r. spectra and magnetic c.d. spectra of the protein-bound haem show it to be low-spin Fe(III), and coordinated by two methionine residues as previously reported for BFRs isolated from Pseudomonas aeruginosa and Azotobacter vinelandii [Cheesman, Thomson, Greenwood, Moore and Kadir, Nature (London) (1990) 346, 771-773]. A recent sequence alignment indicated that BFR may be structurally related to ferritin. The molecular model proposed for E. coli BFR has a four-alpha-helix-bundle subunit conformation and a quaternary structure similar to those of mammalian ferritins. In this model there are two types of hydrophobic pocket within which two methionine residues are correctly disposed to bind haem. The e.p.r. spectra also reveal a monomeric non-haem Fe(III) species with spin, S = 5/2. On the basis of sequence comparisons, a ferroxidase centre has recently been proposed to be present in BFR [Andrews, Smith, Yewdall, Guest and Harrison (1991) FEBS Lett. 293, 164-168] and the possibility that this Fe(III) ion may reside at or near the ferroxidase centre is discussed.
Collapse
Affiliation(s)
- M R Cheesman
- Centre for Metalloprotein Spectroscopy and Biology, School of Chemical Sciences, University of East Anglia, Norwich, U.K
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Andrews SC, Smith JM, Hawkins C, Williams JM, Harrison PM, Guest JR. Overproduction, purification and characterization of the bacterioferritin of Escherichia coli and a C-terminally extended variant. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 213:329-38. [PMID: 8477705 DOI: 10.1111/j.1432-1033.1993.tb17766.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The bacterioferritin (BFR) of Escherichia coli is an iron-sequestering haemoprotein composed of 24 identical polypeptide chains forming an approximately spherical protein shell with a central iron-storage cavity. BFR and BFR-lambda, a variant with a 14-residue C-terminal extension, have been amplified (120-fold and 50-fold, respectively), purified by a new procedure and characterized. The overproduced BFR exhibited properties similar to those of natural BFR, but the iron content (25-75 non-haem Fe atoms/molecule) was 13-39-fold lower. Two major assembly states of BFR were detected, a 24-subunit protein (tetracosamer) and a novel haem-containing subunit dimer. BFR-lambda subunits assembled into tetracosamers having the same external-surface properties as BFR, presumably because their C-terminal extensions project into and occupy about 60% of the central cavity. As a result, BFR-lambda failed totake up iron under conditions that allowed incorporation into BFR in vitro. The haem content of BFR-lambda (1-2 haems/tetracosamer) was lower than that of BFR (3.5-10.5 haems/tetracosamer) and this, together with a difference in the visible spectra of the two haemoproteins, suggested that the C-terminal extensions in BFR-lambda perturb the haem-binding pockets. A subunit dimer form of BFR-lambda was not detected. A combination of Mössbauer spectroscopy and electron diffraction showed that the BFR loaded with iron in vitro has a ferrihydrite-like iron core, whereas the in-vivo loaded protein has an amorphous core.
Collapse
Affiliation(s)
- S C Andrews
- Krebs Institute of Biomolecular Research, Department of Molecular Biology & Biotechnology, University of Sheffield, England
| | | | | | | | | | | |
Collapse
|
36
|
Frazier BA, Pfeifer JD, Russell DG, Falk P, Olsén AN, Hammar M, Westblom TU, Normark SJ. Paracrystalline inclusions of a novel ferritin containing nonheme iron, produced by the human gastric pathogen Helicobacter pylori: evidence for a third class of ferritins. J Bacteriol 1993; 175:966-72. [PMID: 8432720 PMCID: PMC193008 DOI: 10.1128/jb.175.4.966-972.1993] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
An abundant 19.3-kDa Helicobacter pylori protein has been cloned, and the sequence is homologous with a ferritin-like protein produced by Escherichia coli K-12. Homologies are also present with a number of eucaryotic ferritins, as well as with the heme group-containing bacterioferritins. All amino acids involved in chelation of inorganic iron by ferritins from humans and other higher species are conserved in the H. pylori protein. Consistent with the structural data indicating an iron-binding function, E. coli overexpressing the H. pylori ferritin-like protein accumulates almost 10 times more nonheme iron than vector controls, and the iron-binding activity copurifies with the 19.3-kDa protein. Immunoelectron microscopy of H. pylori, as well as of E. coli overexpressing the H. pylori gene, demonstrates that the gene product has a cytoplasmic location where it forms paracrystalline inclusions. On the basis of these structural and functional data, we propose that the H. pylori gene product (termed Pfr) forms the basis for a second class of bacterial ferritins designed to store nonheme iron.
Collapse
Affiliation(s)
- B A Frazier
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Andrews SC, Arosio P, Bottke W, Briat JF, von Darl M, Harrison PM, Laulhère JP, Levi S, Lobreaux S, Yewdall SJ. Structure, function, and evolution of ferritins. J Inorg Biochem 1992; 47:161-74. [PMID: 1431878 DOI: 10.1016/0162-0134(92)84062-r] [Citation(s) in RCA: 251] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The ferritins of animals and plants and the bacterioferritins (BFRs) have a common iron-storage function in spite of differences in cytological location and biosynthetic regulation. The plant ferritins and BFRs are more similar to the H chains of mammals than to mammalian L chains, with respect to primary structure and conservation of ferroxidase center residues. Hence they probably arose from a common H-type ancestor. The recent discovery in E. coli of a second type of iron-storage protein (FTN) resembling ferritin H chains raises the question of what the relative roles of these two proteins are in this organism. Mammalian L ferritins lack ferroxidase centers and form a distinct group. Comparison of the three-dimensional structures of mammalian and invertebrate ferritins, as well as computer modeling of plant ferritins and of BFR, indicate a well conserved molecular framework. The characterisation of numerous ferritin homopolymer variants has allowed the identification of some of the residues involved in iron uptake and an investigation of some of the functional differences between mammalian H and L chains.
Collapse
Affiliation(s)
- S C Andrews
- Department of Molecular Biology and Biotechnology, University of Sheffield, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rocha ER, Andrews SC, Keen JN, Brock JH. Isolation of a ferritin fromBacteroides fragilis. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05367.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
39
|
Affiliation(s)
- W Hendrickson
- Department of Microbiology/Immunology, University of Illinois, Chicago 60612
| | | |
Collapse
|
40
|
Andrews SC, Smith JM, Yewdall SJ, Guest JR, Harrison PM. Bacterioferritins and ferritins are distantly related in evolution. Conservation of ferroxidase-centre residues. FEBS Lett 1991; 293:164-8. [PMID: 1959654 DOI: 10.1016/0014-5793(91)81177-a] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Iron-storage proteins can be divided into two classes; the bacterioferritins and ferritins. In spite of many apparent structural and functional analogies, no significant amino acid sequence similarity has been detected previously. This report now reveals a distant evolutionary relationship between bacterioferritins and ferritins derived by 'Profile Analysis'. Optimum alignment of bacterioferritin and ferritin sequences suggests that key residues of the ferroxidase centres of ferritins are conserved in bacterioferritins.
Collapse
Affiliation(s)
- S C Andrews
- Krebs Institute for Biomolecular Research, University of Sheffield, Western Bank, UK
| | | | | | | | | |
Collapse
|