1
|
Best W, Ferrell M, Boris A, Heydarian N, Panlilio H, Rice CV. Acquisition of Resistance to PEGylated Branched Polyethylenimine Increases Pseudomonas Aeruginosa Susceptibility to Aminoglycosides. ChemMedChem 2024; 19:e202300689. [PMID: 38806411 PMCID: PMC11368615 DOI: 10.1002/cmdc.202300689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
PEGylated branched polyethylenimine (PEG-BPEI) has antibacterial and antibiofilm properties. Exposure to PEG-BPEI through serial passage leads to resistant P. aeruginosa strains. The minimum inhibitory concentration (MIC) of 600 Da BPEI and PEGylated 600 Da BPEI (PEG-BPEI) in the wild-type PAO1 strain is 16 μg/ml while, after 15 serial passages, the MIC increased to 1024 μg/mL. An additional 15 rounds of serial passage in the absence of BPEI or PEG-BPEI did not change the 1024 μg/mL MIC. Gentamicin, Neomycin, and Tobramycin, cationic antibiotics that inhibit protein synthesis, have a 16-32 fold reduction of MIC values in PEG350-BPEI resistant strains, suggesting increased permeation. The influx of these antibiotics occurs using a self-mediated uptake mechanism, suggesting changes to the outer membrane Data show that resistance causes changes in genes related to outer membrane lipopolysaccharide (LPS) assembly. Mutations were noted in the gene coding for the polymerase Wzy that participates in the assembly of the O-antigen region. Other mutations were noted with wbpE and wbpI of the Wbp pathway responsible for the enzymatic synthesis of ManNAc(3NAc)A in the LPS of P. aeruginosa. These changes suggest that an altered gene product could lead to PEG-BPEI resistance. Nevertheless, the increased susceptibility to aminoglycosides could prevent the emergence of PEG-BPEI resistant bacterial populations.
Collapse
Affiliation(s)
- William Best
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73069
| | - Maya Ferrell
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73069
| | - Andrew Boris
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73069
| | - Neda Heydarian
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73069
| | - Hannah Panlilio
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73069
| | - Charles V. Rice
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73069
| |
Collapse
|
2
|
Panlilio H, Neel A, Heydarian N, Best W, Atkins I, Boris A, Bui M, Dick C, Ferrell M, Gu T, Haight T, Roedl CC, Rice CV. Antibiofilm Activity of PEGylated Branched Polyethylenimine. ACS OMEGA 2022; 7:44825-44835. [PMID: 36530285 PMCID: PMC9753512 DOI: 10.1021/acsomega.2c04911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Biofilm formation is an adaptive resistance mechanism that pathogens employ to survive in the presence of antimicrobials. Pseudomonas aeruginosa is an infectious Gram-negative bacterium whose biofilm allows it to withstand antimicrobial attack and threaten human health. Chronic wound healing is often impeded by P. aeruginosa infections and the associated biofilms. Previous findings demonstrate that 600 Da branched polyethylenimine (BPEI) can restore β-lactam potency against P. aeruginosa and disrupt its biofilms. Toxicity concerns of 600 Da BPEI are mitigated by covalent linkage with low-molecular-weight polyethylene glycol (PEG), and, in this study, PEGylated BPEI (PEG350-BPEI) was found exhibit superior antibiofilm activity against P. aeruginosa. The antibiofilm activity of both 600 Da BPEI and its PEG derivative was characterized with fluorescence studies and microscopy imaging. We also describe a variation of the colony biofilm model that was employed to evaluate the biofilm disruption activity of BPEI and PEG-BPEI.
Collapse
Affiliation(s)
- Hannah Panlilio
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73069, United States
| | - Andrew Neel
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73069, United States
| | - Neda Heydarian
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73069, United States
| | - William Best
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73069, United States
| | - Isaac Atkins
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73069, United States
| | - Andrew Boris
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73069, United States
| | - Maggie Bui
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73069, United States
| | - Catherine Dick
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73069, United States
| | - Maya Ferrell
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73069, United States
| | - Tingting Gu
- Department
of Biology, University of Oklahoma, 730 Van Vleet Oval, Room 314, Norman, Oklahoma 73019, United States
| | - Tristan Haight
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73069, United States
| | - Chase C. Roedl
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73069, United States
| | - Charles V. Rice
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73069, United States
| |
Collapse
|
3
|
Leonhardt SD, Peters B, Keller A. Do amino and fatty acid profiles of pollen provisions correlate with bacterial microbiomes in the mason bee Osmia bicornis? Philos Trans R Soc Lond B Biol Sci 2022; 377:20210171. [PMID: 35491605 DOI: 10.1098/rstb.2021.0171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bee performance and well-being strongly depend on access to sufficient and appropriate resources, in particular pollen and nectar of flowers, which constitute the major basis of bee nutrition. Pollen-derived microbes appear to play an important but still little explored role in the plant pollen-bee interaction dynamics, e.g. through affecting quantities and ratios of important nutrients. To better understand how microbes in pollen collected by bees may affect larval health through nutrition, we investigated correlations between the floral, bacterial and nutritional composition of larval provisions and the gut bacterial communities of the solitary megachilid bee Osmia bicornis. Our study reveals correlations between the nutritional quality of pollen provisions and the complete bacterial community as well as individual members of both pollen provisions and bee guts. In particular pollen fatty acid profiles appear to interact with specific members of the pollen bacterial community, indicating that pollen-derived bacteria may play an important role in fatty acid provisioning. As increasing evidence suggests a strong effect of dietary fatty acids on bee performance, future work should address how the observed interactions between specific fatty acids and the bacterial community in larval provisions relate to health in O. bicornis. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Collapse
Affiliation(s)
- Sara Diana Leonhardt
- Plant-Insect Interactions, TUM School of Life Science Systems, Technical University of Munich, Freising, Germany
| | - Birte Peters
- Department for Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.,Center for Computational and Theoretical Biology, University of Würzburg, Emil Fischer Strasse, 97074 Würzburg, Germany
| | - Alexander Keller
- Cellular and Organismic Networks, Faculty of Biology, Ludwig-Maximilians-Universität Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
4
|
Dutta S, Lee YH. High-throughput identification of genes influencing the competitive ability to obtain nutrients and performance of biocontrol in Pseudomonas putida JBC17. Sci Rep 2022; 12:872. [PMID: 35042886 PMCID: PMC8766522 DOI: 10.1038/s41598-022-04858-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/11/2021] [Indexed: 11/22/2022] Open
Abstract
Elucidating underlying mechanisms of biocontrol agents (BCAs) could aid in selecting potent BCAs and increasing their biocontrol efficacy. Nutrient competition is an important biocontrol mechanism; however, essential nutrient sources, and contributing genes for nutrient competition still remain to be explored. Pseudomonas putida JBC17 (JBC17WT) suppressed green mold in satsuma mandarins by inhibiting conidial germination of Penicillium digitatum via nutrient competition. To analyze genes essential for biocontrol performance of JBC17WT, we generated a transposon (Tn)-mediated mutant library and selected mutants with the ability to suppress conidial germination. Several mutants in the genes of flagella-formation, including fliR, fliH, and flgG, increased biocontrol performance and enhanced inhibition of conidial germination. They lost swimming motility, exhibited increased growth and rapid carbon and nitrogen utilization than the wild type under nutrient-poor conditions. The nutrient competition assay using polytetrafluoroethylene cylinders revealed that conidial germination was inhibited by nutrient absorption under nutrient-poor conditions. In addition, genes, including amidohydrolase (ytcJ), tonB-dependent receptor (cirA), argininosuccinate synthase (argG), D-3-phosphoglycerate dehydrogenase (serA), and chaperone protein (dnaJ), were involved in the inhibition of conidial germination. The results of this study indicate that rapid and continuous absorption of nutrients by JBC17WT restrict nutrient availability for conidial germination on nutrient-limited fruit surfaces, thereby decreasing the chances of fungal spores infecting fruits. The high-throughput analysis of Tn mutants of this study highlighted the importance of nutrient competition and the genes that influence biocontrol ability, which contributes to the development of biocontrol applications.
Collapse
Affiliation(s)
- Swarnalee Dutta
- Division of Biotechnology, Jeonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do, 54596, Republic of Korea
| | - Yong Hoon Lee
- Division of Biotechnology, Jeonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do, 54596, Republic of Korea.
- Advanced Institute of Environment and Bioscience, Plant Medical Research Center, and Institute of Bio-Industry, Jeonbuk National University, Jeonju-si, Republic of Korea.
| |
Collapse
|
5
|
Citrulline supplementation attenuates the development of non-alcoholic steatohepatitis in female mice through mechanisms involving intestinal arginase. Redox Biol 2021; 41:101879. [PMID: 33550112 PMCID: PMC7868995 DOI: 10.1016/j.redox.2021.101879] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is by now the most prevalent liver disease worldwide. The non-proteogenic amino acid l-citrulline (L-Cit) has been shown to protect mice from the development of NAFLD. Here, we aimed to further assess if L-Cit also attenuates the progression of a pre-existing diet-induced NAFLD and to determine molecular mechanisms involved. Female C57BL/6J mice were either fed a liquid fat-, fructose- and cholesterol-rich diet (FFC) or control diet (C) for 8 weeks to induce early stages of NASH followed by 5 more weeks with either FFC-feeding +/- 2.5 g L-Cit/kg bw or C-feeding. In addition, female C57BL/6J mice were either pair-fed a FFC +/- 2.5 g L-Cit/kg bw +/- 0.01 g/kg bw i.p. N(ω)-hydroxy-nor-l-arginine (NOHA) or C diet for 8 weeks. The protective effects of supplementing L-Cit on the progression of a pre-existing NAFLD were associated with an attenuation of 1) the increased translocation of bacterial endotoxin and 2) the loss of tight junction proteins as well as 3) arginase activity in small intestinal tissue, while no marked changes in intestinal microbiota composition were prevalent in small intestine. Treatment of mice with the arginase inhibitor NOHA abolished the protective effects of L-Cit on diet-induced NAFLD. Our results suggest that the protective effects of L-Cit on the development and progression of NAFLD are related to alterations of intestinal arginase activity and intestinal permeability. l-citrulline diminished progression of non-alcoholic fatty liver disease (NAFLD). l-citrulline protects from fructose-induced small intestinal barrier dysfunction. NASH development is associated with a loss of arginase activity in small intestine. l-citrulline improves intestinal arginase activity in diet-induced NAFLD. Arginase inhibitor attenuates effects of l-citrulline on NAFLD development.
Collapse
|
6
|
Carriel D, Simon Garcia P, Castelli F, Lamourette P, Fenaille F, Brochier-Armanet C, Elsen S, Gutsche I. A Novel Subfamily of Bacterial AAT-Fold Basic Amino Acid Decarboxylases and Functional Characterization of Its First Representative: Pseudomonas aeruginosa LdcA. Genome Biol Evol 2018; 10:3058-3075. [PMID: 30321344 PMCID: PMC6257575 DOI: 10.1093/gbe/evy228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2018] [Indexed: 12/30/2022] Open
Abstract
Polyamines are small amino-acid derived polycations capable of binding negatively charged macromolecules. Bacterial polyamines are structurally and functionally diverse, and are mainly produced biosynthetically by pyridoxal-5-phosphate-dependent amino acid decarboxylases referred to as Lysine-Arginine-Ornithine decarboxylases (LAOdcs). In a phylogenetically limited group of bacteria, LAOdcs are also induced in response to acid stress. Here, we performed an exhaustive phylogenetic analysis of the AAT-fold LAOdcs which showcased the ancient nature of their short forms in Cyanobacteria and Firmicutes, and emergence of distinct subfamilies of long LAOdcs in Proteobacteria. We identified a novel subfamily of lysine decarboxylases, LdcA, ancestral in Betaproteobacteria and Pseudomonadaceae. We analyzed the expression of LdcA from Pseudomonas aeruginosa, and uncovered its role, intimately linked to cadaverine (Cad) production, in promoting growth and reducing persistence of this multidrug resistant human pathogen during carbenicillin treatment. Finally, we documented a certain redundancy in the function of the three main polyamines—Cad, putrescine (Put), and spermidine (Spd)—in P. aeruginosa by demonstrating the link between their intracellular level, as well as the capacity of Put and Spd to complement the growth phenotype of the ldcA mutant.
Collapse
Affiliation(s)
- Diego Carriel
- University of Grenoble Alpes, CNRS, CEA, CNRS, IBS, France.,University of Grenoble Alpes, INSERM, CEA, ERL5261 CNRS, BIG BCI, France
| | - Pierre Simon Garcia
- Laboratoire de Biométrie et Biologie Évolutive, Université Lyon 1, CNRS, UMR5558, Villeurbanne, France.,MMSB Molecular Microbiology and Structural Biochemistry, Institut de Biologie et de Chimie des Protéines, Lyon, France
| | - Florence Castelli
- Service de Pharmacologie et Immuno-Analyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, France
| | - Patricia Lamourette
- Service de Pharmacologie et Immuno-Analyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, France
| | - François Fenaille
- Service de Pharmacologie et Immuno-Analyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, France
| | - Céline Brochier-Armanet
- Laboratoire de Biométrie et Biologie Évolutive, Université Lyon 1, CNRS, UMR5558, Villeurbanne, France.,MMSB Molecular Microbiology and Structural Biochemistry, Institut de Biologie et de Chimie des Protéines, Lyon, France
| | - Sylvie Elsen
- University of Grenoble Alpes, INSERM, CEA, ERL5261 CNRS, BIG BCI, France
| | - Irina Gutsche
- University of Grenoble Alpes, CNRS, CEA, CNRS, IBS, France
| |
Collapse
|
7
|
Zheng R, Feng X, Wei X, Pan X, Liu C, Song R, Jin Y, Bai F, Jin S, Wu W, Cheng Z. PutA Is Required for Virulence and Regulated by PruR in Pseudomonas aeruginosa. Front Microbiol 2018; 9:548. [PMID: 29632523 PMCID: PMC5879082 DOI: 10.3389/fmicb.2018.00548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/09/2018] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas aeruginosa, a Gram-negative opportunistic pathogenic bacterium, causes acute and chronic infections. Upon entering the host, P. aeruginosa alters global gene expression to adapt to host environment and avoid clearance by the host immune system. Proline utilization A (PutA) is a bifunctional enzyme, which converts proline to glutamate. Here we report that PutA was required for the virulence of P. aeruginosa in a murine acute pneumonia model. A putA mutant was more susceptible to oxidative stress compared to the wild type strain. An AraC/XylS family protein, PruR, directly bound to the upstream of −35 box in the putA promoter and activated putA expression. High concentration of proline in bacteria up-regulated pruR expression, which led to the activation of putA expression. As a feedback regulation, glutamate produced by PutA released PruR from the putA promoter and turned off the putA expression. PruR affected bacterial virulence through the regulation of the putA expression. Altogether, these data are the first to reveal that PutA plays an important role in the pathogenesis of P. aeruginosa, as well as to describe the genetic regulation of PutA in P. aeruginosa.
Collapse
Affiliation(s)
- Ruiping Zheng
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xuemei Feng
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xueying Wei
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaolei Pan
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chang Liu
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Ruopu Song
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongxin Jin
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Fang Bai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Shouguang Jin
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China.,Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Weihui Wu
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhihui Cheng
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
8
|
Li G, Lu CD. Molecular characterization and regulation of operons for asparagine and aspartate uptake and utilization in Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2018; 164:205-216. [PMID: 29293081 DOI: 10.1099/mic.0.000594] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa can utilize proteogenic amino acids as the sole source of carbon and nitrogen. In particular, utilization of l-Asp and l-Asn is insensitive to carbon catabolite repression as strong growth remains in the mutants devoid of the essential CbrAB activators of most catabolic genes. Transcriptome analysis was conducted to identify genes for the catabolism, uptake and regulation of these two amino acids. Gene inactivation and growth phenotype analysis established two asparaginases AsnA and AsnB for the degradation of l-Asn to l-Asp, whereas only AnsB is required for the deamidation of d-Asn to d-Asp. While d-Asp is a dead-end product, conversion of l-Asp to fumarate is catalysed by an aspartase AspA as further evidenced by enzyme kinetics. The results of measuring promoter-lacZ expression in vivo and mobility shift assays in vitro demonstrated that asnR and aspR encode two transcriptional regulators in response to l-Asn and l-Asp, respectively, for the induction of the ansPA operon and the aspA gene. Exogenous l-Glu also caused induction of the aspA gene, most likely due to its conversion to l-Asp by the aspartate transaminase AspC. Expression of several transporters were found inducible by l-Asn and/or l-Asp, including AatJQMP for acid amino acids, DctA and DctPQM for C4-dicarboxylates, and PA5530 for C5-dicarboxylates. In summary, a complete pathway and regulation for l-Asn and l-Asp catabolism was established in this study. Cross induction of three transport systems for dicarboxylic acids may provide a physiological explanation for the insensitivity of l-Asn and l-Asp utilization to carbon catabolite repression.
Collapse
Affiliation(s)
- Guoqing Li
- Department of Biomedical and Nutritional Sciences, University of Massachusetts at Lowell, Lowell, MA 01854, USA.,Institute of Medical Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Chung-Dar Lu
- Department of Biomedical and Nutritional Sciences, University of Massachusetts at Lowell, Lowell, MA 01854, USA
| |
Collapse
|
9
|
Joshi V, Fernie AR. Citrulline metabolism in plants. Amino Acids 2017; 49:1543-1559. [PMID: 28741223 DOI: 10.1007/s00726-017-2468-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/17/2017] [Indexed: 11/28/2022]
Abstract
Citrulline was chemically isolated more than 100 years ago and is ubiquitous in animals, plants, bacteria, and fungi. Most of the research on plant citrulline metabolism and transport has been carried out in Arabidopsis thaliana and the Cucurbitaceae family, particularly in watermelon which accumulates this non-proteinogenic amino acid to very high levels. Industrially, citrulline is produced via specially optimized microbial strains; however, the amounts present in watermelon render it an economically viable source providing that other high-value compounds can be co-extracted. In this review, we provide an overview of our current understanding of citrulline biosynthesis, transport, and catabolism in plants additionally pointing out significant gaps in our knowledge which need to be closed by future experimentation. This includes the identification of further potential enzymes of citrulline metabolism as well as obtaining a far better spatial resolution of both sub-cellular and long-distance partitioning of citrulline. We further discuss what is known concerning the biological function of citrulline in plants paying particular attention to the proposed roles in scavenging of excess NH4+ and as a compatible solute.
Collapse
Affiliation(s)
- Vijay Joshi
- Texas A&M AgriLife Research and Extension Center, Texas A&M University, Uvalde, TX, 78801, USA.
| | - Alisdair R Fernie
- Max-Planck-Institute for Molecular Plant Physiology, Wissenschaftspark Golm, 14476, Potsdam-Golm, Germany
| |
Collapse
|
10
|
Butcher BG, Chakravarthy S, D'Amico K, Stoos KB, Filiatrault MJ. Disruption of the carA gene in Pseudomonas syringae results in reduced fitness and alters motility. BMC Microbiol 2016; 16:194. [PMID: 27558694 PMCID: PMC4997734 DOI: 10.1186/s12866-016-0819-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/19/2016] [Indexed: 02/05/2023] Open
Abstract
Background Pseudomonas syringae infects diverse plant species and is widely used in the study of effector function and the molecular basis of disease. Although the relationship between bacterial metabolism, nutrient acquisition and virulence has attracted increasing attention in bacterial pathology, there is limited knowledge regarding these studies in Pseudomonas syringae. The aim of this study was to investigate the function of the carA gene and the small RNA P32, and characterize the regulation of these transcripts. Results Disruption of the carA gene (ΔcarA) which encodes the predicted small chain of carbamoylphosphate synthetase, resulted in arginine and pyrimidine auxotrophy in Pseudomonas syringae pv. tomato DC3000. Complementation with the wild type carA gene was able to restore growth to wild-type levels in minimal medium. Deletion of the small RNA P32, which resides immediately upstream of carA, did not result in arginine or pyrimidine auxotrophy. The expression of carA was influenced by the concentrations of both arginine and uracil in the medium. When tested for pathogenicity, ΔcarA showed reduced fitness in tomato as well as Arabidopsis when compared to the wild-type strain. In contrast, mutation of the region encoding P32 had minimal effect in planta. ΔcarA also exhibited reduced motility and increased biofilm formation, whereas disruption of P32 had no impact on motility or biofilm formation. Conclusions Our data show that carA plays an important role in providing arginine and uracil for growth of the bacteria and also influences other factors that are potentially important for growth and survival during infection. Although we find that the small RNA P32 and carA are co-transcribed, P32 does not play a role in the phenotypes that carA is required for, such as motility, cell attachment, and virulence. Additionally, our data suggests that pyrimidines may be limited in the apoplastic space of the plant host tomato. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0819-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bronwyn G Butcher
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA.,Present Address: Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Rd, Ithaca, NY, USA
| | - Suma Chakravarthy
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA
| | - Katherine D'Amico
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA.,Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY, USA
| | - Kari Brossard Stoos
- Department of Health Promotion and Physical Education, School of Health Sciences and Human Performance, Ithaca College, Ithaca, NY, USA
| | - Melanie J Filiatrault
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA. .,Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY, USA.
| |
Collapse
|
11
|
Li G, Lu CD. Molecular characterization of LhpR in control of hydroxyproline catabolism and transport in Pseudomonas aeruginosa PAO1. MICROBIOLOGY-SGM 2016; 162:1232-1242. [PMID: 27145750 DOI: 10.1099/mic.0.000300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Utilization of hydroxy-l-proline (l-Hyp) in Pseudomonas aeruginosa requires conversion of l-Hyp to d-Hyp followed by the d-Hyp dehydrogenase pathway; however, the molecular mechanism in control of l-Hyp catabolism and transport was not clear. DNA microarray analysis revealed twelve genes in two adjacent loci that were induced by exogenous l-Hyp and d-Hyp. The first locus includes lhpABFE encoding a Hyp epimerase (LhpA) and d-Hyp dehydrogenase (LhpBEF), while the second locus codes for a putative ABC transporter (LhpPMNO), a protein of unknown function (LhpH), Hyp/Pro racemase (LhpK) and two enzymes in l-Hyp catabolism (LhpC and LhpG). Proximal to these two loci, lhpR encodes a transcriptional regulator of the AraC family. The importance of these genes on l-Hyp catabolism was supported by growth phenotype analysis on knockout mutants. Induction of the lhpA and lhpP promoters by exogenous l-Hyp and d-Hyp was demonstrated by the measurement of β-galactosidase activities from promoter-lacZ fusions in PAO1, and no induction could be detected in the ΔlhpR mutant. Induction of the lhpA promoter by d-Hyp was completely abolished in the lhpA lhpK double mutant devoid of two epimerases, while the induction effect of l-Hyp remained unchanged. The purified His-tagged LhpR binds specifically to the lhp promoter regions, and formation of nucleoprotein complexes is affected by the presence of l-Hyp but not d-Hyp. Putative LhpR binding sites were deduced from serial deletions and comparative genomic sequence analysis. In summary, expression of lhp genes for Hyp catabolism and uptake requires the transcriptional activator LhpR and l-Hyp as the signalling compound.
Collapse
Affiliation(s)
- Guoqing Li
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA.,Laboratory of Pharmacology, Institute of Medical Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chung-Dar Lu
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA.,Department of Clinical Laboratory and Nutritional Sciences, UMass Lowell, MA, USA
| |
Collapse
|
12
|
Madhuri Indurthi S, Chou HT, Lu CD. Molecular characterization of lysR-lysXE, gcdR-gcdHG and amaR-amaAB operons for lysine export and catabolism: a comprehensive lysine catabolic network in Pseudomonas aeruginosa PAO1. MICROBIOLOGY-SGM 2016; 162:876-888. [PMID: 26967762 DOI: 10.1099/mic.0.000277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Among multiple interconnected pathways for l-Lysine catabolism in pseudomonads, it has been reported that Pseudomonas aeruginosa PAO1 employs the decarboxylase and the transaminase pathways. However, up until now, knowledge of several genes involved in operation and regulation of these pathways was still missing. Transcriptome analyses coupled with promoter activity measurements and growth phenotype analyses led us to identify new members in l-Lys and d-Lys catabolism and regulation, including gcdR-gcdHG for glutarate utilization, dpkA, amaR-amaAB and PA2035 for d-Lys catabolism, lysR-lysXE for putative l-Lys efflux and lysP for putative l-Lys uptake. The gcdHG operon encodes an acyl-CoA transferase (gcdG) and glutaryl-CoA dehydrogenase (gcdH) and is under the control of the transcriptional activator GcdR. Growth on l-Lys was enhanced in the mutants of lysX and lysE, supporting the operation of l-Lys efflux. The transcriptional activator LysR is responsible for l-Lys specific induction of lysXE and the PA4181-82 operon of unknown function. The putative operator sites of GcdR and LysR were deduced from serial deletions and comparative genomic sequence analyses, and the formation of nucleoprotein complexes was demonstrated with purified His-tagged GcdR and LysR. The amaAB operon encodes two enzymes to convert pipecolate to 2-aminoadipate. Induction of the amaAB operon by l-Lys, d-Lys and pipecolate requires a functional AmaR, supporting convergence of Lys catabolic pathways to pipecolate. Growth on pipecolate was retarded in the gcdG and gcdH mutants, suggesting the importance of glutarate in pipecolate and 2-aminoadipate utilization. Furthermore, this study indicated links in the control of interconnected networks of lysine and arginine catabolism in P. aeruginosa.
Collapse
Affiliation(s)
| | - Han-Ting Chou
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Chung-Dar Lu
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
- Department of Clinical Laboratory and Nutritional Sciences, UMass Lowell, Lowell, MA 01854, USA
| |
Collapse
|
13
|
The Cryptic dsdA Gene Encodes a Functional D-Serine Dehydratase in Pseudomonas aeruginosa PAO1. Curr Microbiol 2016; 72:788-94. [PMID: 26957519 DOI: 10.1007/s00284-016-1021-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/27/2016] [Indexed: 02/02/2023]
Abstract
D-Serine, an important neurotransmitter, also contributes to bacterial adaptation and virulence in humans. It was reported that Pseudomonas aeruginosa PAO1 can grow on D-serine as the sole nitrogen source, and growth was severely reduced in the dadA mutant devoid of the D-alanine dehydrogenase with broad substrate specificity. In this study, the dsdA gene (PA3357) encoding a putative D-serine dehydratase was subjected to further characterization. Growth on D-serine as the sole source of nitrogen was retained in the ∆dsdA mutant and was abolished completely in the ∆dadA and ∆dadA-∆dsdA mutants. However, when complemented by dsdA on a plasmid, the double mutant was able to grow on D-serine as the sole source of carbon and nitrogen, supporting the proposed biochemical function of DsdA in the conversion of D-serine into pyruvate and ammonia. Among D- and L-amino acids tested, only D-serine and D-threonine could serve as the substrates of DsdA, and the Km of DsdA with D-serine was calculated to be 330 μM. Comparative genomics revealed that this cryptic dsdA gene was highly conserved in strains of P. aeruginosa, and that most strains of Pseudomonas putida possess putative dsdCAX genes encoding a transcriptional regulator DsdC and a D-serine transporter DsdX as in enteric bacteria. In conclusion, this study supports the presence of a cryptic dsdA gene encoding a functional D-serine dehydratase in P. aeruginosa, and the absence of dsdA expression in response to exogenous D-serine might be due to the loss of regulatory elements for gene activation during evolution.
Collapse
|
14
|
Cabeen MT, Leiman SA, Losick R. Colony-morphology screening uncovers a role for the Pseudomonas aeruginosa nitrogen-related phosphotransferase system in biofilm formation. Mol Microbiol 2016; 99:557-70. [PMID: 26483285 PMCID: PMC5130288 DOI: 10.1111/mmi.13250] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2015] [Indexed: 11/30/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen whose survival is aided by forming communities known as biofilms, in which cells are encased in a self-produced matrix. We devised a mutant screen based on colony morphology to identify additional genes with previously unappreciated roles in biofilm formation. Our screen, which identified most known biofilm-related genes, also uncovered PA14_16550 and PA14_69700, deletions of which abrogated and augmented biofilm formation respectively. We also identified ptsP, which encodes enzyme I of the nitrogen-regulated phosphotransferase (PTS(Ntr)) system, as being important for cyclic-di-GMP production and for biofilm formation. Further experiments showed that biofilm formation is hindered in the absence of phosphotransfer through the PTS(Ntr), but only in the presence of enzyme II (PtsN), the putative regulatory module of the PTS(Ntr). These results implicate unphosphorylated PtsN as a negative regulator of biofilm formation and establish one of the first known roles of the PTS(Ntr) in P. aeruginosa.
Collapse
Affiliation(s)
- Matthew T Cabeen
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Sara A Leiman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Richard Losick
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
15
|
Design, synthesis and biological evaluation of monobactams as antibacterial agents against gram-negative bacteria. Eur J Med Chem 2016; 110:151-63. [PMID: 26827160 DOI: 10.1016/j.ejmech.2016.01.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 12/15/2015] [Accepted: 01/15/2016] [Indexed: 01/20/2023]
Abstract
A series of monobactam derivatives were prepared and evaluated for their antibacterial activities against susceptible and resistant Gram-negative strains, taking Aztreonam and BAL30072 as the leads. Six conjugates (12a-f) bearing PIH-like siderophore moieties were created to enhance the bactericidal activities against Gram-negative bacteria based on Trojan Horse strategy, and all of them displayed potencies against susceptible Gram-negative strains with MIC ≤ 8 μg/mL. SAR revealed that the polar substituents on the oxime side chain were beneficial for activities against resistant Gram-negative bacteria. Compounds 19c and 33a-b exhibited the promising potencies against ESBLs-producing E. coli and Klebsiella pneumoniae with MICs ranging from 2 μg/mL to 8 μg/mL. These results offered powerful information for further strategic optimization in search of the antibacterial candidates against MDR Gram-negative bacteria.
Collapse
|
16
|
Shi D, Allewell NM, Tuchman M. From Genome to Structure and Back Again: A Family Portrait of the Transcarbamylases. Int J Mol Sci 2015; 16:18836-64. [PMID: 26274952 PMCID: PMC4581275 DOI: 10.3390/ijms160818836] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 11/18/2022] Open
Abstract
Enzymes in the transcarbamylase family catalyze the transfer of a carbamyl group from carbamyl phosphate (CP) to an amino group of a second substrate. The two best-characterized members, aspartate transcarbamylase (ATCase) and ornithine transcarbamylase (OTCase), are present in most organisms from bacteria to humans. Recently, structures of four new transcarbamylase members, N-acetyl-l-ornithine transcarbamylase (AOTCase), N-succinyl-l-ornithine transcarbamylase (SOTCase), ygeW encoded transcarbamylase (YTCase) and putrescine transcarbamylase (PTCase) have also been determined. Crystal structures of these enzymes have shown that they have a common overall fold with a trimer as their basic biological unit. The monomer structures share a common CP binding site in their N-terminal domain, but have different second substrate binding sites in their C-terminal domain. The discovery of three new transcarbamylases, l-2,3-diaminopropionate transcarbamylase (DPTCase), l-2,4-diaminobutyrate transcarbamylase (DBTCase) and ureidoglycine transcarbamylase (UGTCase), demonstrates that our knowledge and understanding of the spectrum of the transcarbamylase family is still incomplete. In this review, we summarize studies on the structures and function of transcarbamylases demonstrating how structural information helps to define biological function and how small structural differences govern enzyme specificity. Such information is important for correctly annotating transcarbamylase sequences in the genome databases and for identifying new members of the transcarbamylase family.
Collapse
Affiliation(s)
- Dashuang Shi
- Center for Genetic Medicine Research, Children's National Medical Center, the George Washington University, Washington, DC 20010, USA.
- Department of Integrative Systems Biology, Children's National Medical Center, the George Washington University, Washington, DC 20010, USA.
| | - Norma M Allewell
- Department of Cell Biology and Molecular Genetics, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD 20742, USA.
- Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD 20742, USA.
| | - Mendel Tuchman
- Center for Genetic Medicine Research, Children's National Medical Center, the George Washington University, Washington, DC 20010, USA.
- Department of Integrative Systems Biology, Children's National Medical Center, the George Washington University, Washington, DC 20010, USA.
| |
Collapse
|
17
|
Jakubovics NS, Robinson JC, Samarian DS, Kolderman E, Yassin SA, Bettampadi D, Bashton M, Rickard AH. Critical roles of arginine in growth and biofilm development by Streptococcus gordonii. Mol Microbiol 2015; 97:281-300. [PMID: 25855127 DOI: 10.1111/mmi.13023] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2015] [Indexed: 01/13/2023]
Abstract
Streptococcus gordonii is an oral commensal and an early coloniser of dental plaque. In vitro, S. gordonii is conditionally auxotrophic for arginine in monoculture but biosynthesises arginine when coaggregated with Actinomyces oris. Here, we investigated the arginine-responsive regulatory network of S. gordonii and the basis for conditional arginine auxotrophy. ArcB, the catabolic ornithine carbamoyltransferase involved in arginine degradation, was also essential for arginine biosynthesis. However, arcB was poorly expressed following arginine depletion, indicating that arcB levels may limit S. gordonii arginine biosynthesis. Arginine metabolism gene expression was tightly co-ordinated by three ArgR/AhrC family regulators, encoded by argR, ahrC and arcR genes. Microarray analysis revealed that > 450 genes were regulated in response to rapid shifts in arginine concentration, including many genes involved in adhesion and biofilm formation. In a microfluidic salivary biofilm model, low concentrations of arginine promoted S. gordonii growth, whereas high concentrations (> 5 mM arginine) resulted in dramatic reductions in biofilm biomass and changes to biofilm architecture. Collectively, these data indicate that arginine metabolism is tightly regulated in S. gordonii and that arginine is critical for gene regulation, cellular growth and biofilm formation. Manipulating exogenous arginine concentrations may be an attractive approach for oral biofilm control.
Collapse
Affiliation(s)
| | - Jill C Robinson
- School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Derek S Samarian
- School of Public Health, Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Ethan Kolderman
- School of Public Health, Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Sufian A Yassin
- School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Deepti Bettampadi
- School of Public Health, Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Matthew Bashton
- Bioinformatics Support Unit, Newcastle University, Newcastle upon Tyne, UK
| | - Alexander H Rickard
- School of Public Health, Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Katoh H, Miyata SI, Inoue H, Iwanami T. Unique features of a Japanese 'Candidatus Liberibacter asiaticus' strain revealed by whole genome sequencing. PLoS One 2014; 9:e106109. [PMID: 25180586 PMCID: PMC4152171 DOI: 10.1371/journal.pone.0106109] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/30/2014] [Indexed: 12/05/2022] Open
Abstract
Citrus greening (huanglongbing) is the most destructive disease of citrus worldwide. It is spread by citrus psyllids and is associated with phloem-limited bacteria of three species of α-Proteobacteria, namely, 'Candidatus Liberibacter asiaticus', 'Ca. L. americanus', and 'Ca. L. africanus'. Recent findings suggested that some Japanese strains lack the bacteriophage-type DNA polymerase region (DNA pol), in contrast to the Floridian psy62 strain. The whole genome sequence of the pol-negative 'Ca. L. asiaticus' Japanese isolate Ishi-1 was determined by metagenomic analysis of DNA extracted from 'Ca. L. asiaticus'-infected psyllids and leaf midribs. The 1.19-Mb genome has an average 36.32% GC content. Annotation revealed 13 operons encoding rRNA and 44 tRNA genes, but no typical bacterial pathogenesis-related genes were located within the genome, similar to the Floridian psy62 and Chinese gxpsy. In contrast to other 'Ca. L. asiaticus' strains, the genome of the Japanese Ishi-1 strain lacks a prophage-related region.
Collapse
Affiliation(s)
- Hiroshi Katoh
- NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki, Japan
| | | | - Hiromitsu Inoue
- Kuchinotsu Citrus Research Station, NARO Institute of Fruit Tree Science, Minami-shimabara, Nagasaki, Japan
| | - Toru Iwanami
- NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki, Japan
| |
Collapse
|
19
|
He W, Li G, Yang CK, Lu CD. Functional characterization of the dguRABC locus for D-Glu and d-Gln utilization in Pseudomonas aeruginosa PAO1. MICROBIOLOGY-SGM 2014; 160:2331-2340. [PMID: 25082951 DOI: 10.1099/mic.0.081141-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
D-Glu, an essential component of peptidoglycans, can be utilized as a carbon and nitrogen source by Pseudomonas aeruginosa. DNA microarrays were employed to identify genes involved in D-Glu catabolism. Through gene knockout and growth phenotype analysis, the divergent dguR-dguABC (D-Glu utilization) gene cluster was shown to participate in D-Glu and D-Gln catabolism and regulation. Growth of the dguR and dguA mutants was abolished completely on D-Glu or retarded on D-Gln as the sole source of carbon and/or nitrogen. The dguA gene encoded a FAD-dependent D-amino acid dehydrogenase with d-Glu as its preferred substrate, and its promoter was specifically induced by exogenous D-Glu and D-Gln. The function of DguR as a transcriptional activator of the dguABC operon was demonstrated by promoter activity measurements in vivo and by mobility shift assays with purified His-tagged DguR in vitro. Although the DNA-binding activity of DguR did not require D-Glu, the presence of D-Glu, but not D-Gln, in the binding reaction was found to stabilize a preferred nucleoprotein complex. The presence of a putative DguR operator was revealed by in silica analysis of the dguR-dguA intergenic regions among Pseudomonas spp. and binding of DguR to a highly conserved 19 bp sequence motif was further demonstrated. The dguB gene encodes a putative enamine/imine deaminase of the RidA family, but its role in D-Glu catabolism remains to be determined. Whilst a lesion in dguC encoding a periplasmic solute binding protein only affected growth on D-Glu slightly, expression of the previously characterized AatJMQP transporter for acidic l-amino acid uptake was found inducible by D-Glu and essential for D-Glu utilization. In summary, the findings of this study supported DguA as a new member of the FAD-dependent d-amino acid dehydrogenase family, and DguR as a D-Glu sensor and transcriptional activator of the dguA promoter.
Collapse
Affiliation(s)
- Weiqing He
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.,Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Guoqing Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.,Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Chun-Kai Yang
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Chung-Dar Lu
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
20
|
Wenner N, Maes A, Cotado-Sampayo M, Lapouge K. NrsZ: a novel, processed, nitrogen-dependent, small non-coding RNA that regulates Pseudomonas aeruginosa PAO1 virulence. Environ Microbiol 2014; 16:1053-68. [PMID: 24308329 PMCID: PMC4253122 DOI: 10.1111/1462-2920.12272] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/26/2013] [Accepted: 08/28/2013] [Indexed: 12/11/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa PAO1 has a remarkable capacity to adapt to various environments and to survive with limited nutrients. Here, we report the discovery and characterization of a novel small non-coding RNA: NrsZ (nitrogen-regulated sRNA). We show that under nitrogen limitation, NrsZ is induced by the NtrB/C two component system, an important regulator of nitrogen assimilation and P. aeruginosa's swarming motility, in concert with the alternative sigma factor RpoN. Furthermore, we demonstrate that NrsZ modulates P. aeruginosa motility by controlling the production of rhamnolipid surfactants, virulence factors notably needed for swarming motility. This regulation takes place through the post-transcriptional control of rhlA, a gene essential for rhamnolipids synthesis. Interestingly, we also observed that NrsZ is processed in three similar short modules, and that the first short module encompassing the first 60 nucleotides is sufficient for NrsZ regulatory functions.
Collapse
Affiliation(s)
- Nicolas Wenner
- Department of Fundamental Microbiology, University of LausanneLausanne, CH-1015, Switzerland
| | - Alexandre Maes
- Department of Fundamental Microbiology, University of LausanneLausanne, CH-1015, Switzerland
| | - Marta Cotado-Sampayo
- Fasteris SACh. du Pont-du-Centenaire 109, Case postale 28, Plan-les-Ouates, CH-1228, Switzerland
| | - Karine Lapouge
- Department of Fundamental Microbiology, University of LausanneLausanne, CH-1015, Switzerland
- *For correspondence. E-mail ; Tel. (+41) (0) 21 692 5601; Fax (+41) (0) 21 692 5605
| |
Collapse
|
21
|
Abstract
Bacteriophages able to propagate on Pseudomonas strains are very common and can be easily isolated from natural environments or lysogenic strains. The development of transducing systems has allowed bacterial geneticists to perform chromosome analyses and mutation mapping. Moreover, these systems have also been proved to be a successful tool for molecular microbiologists to introduce a foreign gene or a mutation into the chromosome of a bacterial cell. This chapter provides a description of the phage methodology illustrated by Adams in 1959 and applicable to strain PAO1 derivatives.
Collapse
Affiliation(s)
- Emanuela Frangipani
- Department of Science, University Roma Tre, V. le Marconi 446, 00146, Rome, Italy,
| |
Collapse
|
22
|
Molecular characterization of PauR and its role in control of putrescine and cadaverine catabolism through the γ-glutamylation pathway in Pseudomonas aeruginosa PAO1. J Bacteriol 2013; 195:3906-13. [PMID: 23794626 DOI: 10.1128/jb.00275-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pseudomonas aeruginosa PAO1 grows on a variety of polyamines as the sole source of carbon and nitrogen. Catabolism of polyamines is mediated by the γ-glutamylation pathway, which is complicated by the existence of multiple homologous enzymes with redundant specificities toward different polyamines for a more diverse metabolic capacity in this organism. Through a series of markerless gene knockout mutants and complementation tests, specific combinations of pauABCD (polyamine utilization) genes were deciphered for catabolism of different polyamines. Among six pauA genes, expression of pauA1, pauA2, pauA4, and pauA5 was found to be inducible by diamines putrescine (PUT) and cadaverine (CAD) but not by diaminopropane. Activation of these promoters was regulated by the PauR repressor, as evidenced by constitutively active promoters in the pauR mutant. The activities of these promoters were further enhanced by exogenous PUT or CAD in the mutant devoid of all six pauA genes. The recombinant PauR protein with a hexahistidine tag at its N terminus was purified, and specific bindings of PauR to the promoter regions of most pau operons were demonstrated by electromobility shift assays. Potential interactions of PUT and CAD with PauR were also suggested by chemical cross-linkage analysis with glutaraldehyde. In comparison, growth on PUT was more proficient than that on CAD, and this observed growth phenotype was reflected in a strong catabolite repression of pauA promoter activation by CAD but was completely absent as reflected by activation by PUT. In summary, this study clearly establishes the function of PauR in control of pau promoters in response to PUT and CAD for their catabolism through the γ-glutamylation pathway.
Collapse
|
23
|
Functional characterization of seven γ-Glutamylpolyamine synthetase genes and the bauRABCD locus for polyamine and β-Alanine utilization in Pseudomonas aeruginosa PAO1. J Bacteriol 2011; 193:3923-30. [PMID: 21622750 DOI: 10.1128/jb.05105-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa and many other bacteria can utilize biogenic polyamines, including diaminopropane (DAP), putrescine (Put), cadaverine (Cad), and spermidine (Spd), as carbon and/or nitrogen sources. Transcriptome analysis in response to exogenous Put and Spd led to the identification of a list of genes encoding putative enzymes for the catabolism of polyamines. Among them, pauA1 to pauA6, pauB1 to pauB4, pauC, and pauD1 and pauD2 (polyamine utilization) encode enzymes homologous to Escherichia coli PuuABCD of the γ-glutamylation pathway in converting Put into GABA. A series of unmarked pauA mutants was constructed for growth phenotype analysis. The results revealed that it requires specific combinations of pauA knockouts to abolish utilization of different polyamines and support the importance of γ-glutamylation for polyamine catabolism in P. aeruginosa. Another finding was that the list of Spd-inducible genes overlaps almost completely with that of Put-inducible ones except the pauA3B2 operon and the bauABCD operon (β-alanine utilization). Mutation analysis led to the conclusion that pauA3B2 participate in catabolism of DAP, which is related to the aminopropyl moiety of Spd, and that bauABCD are essential for growth on β-alanine derived from DAP (or Spd) catabolism via the γ-glutamylation pathway. Measurements of the pauA3-lacZ and bauA-lacZ expression indicated that these two promoters were differentially induced by Spd, DAP, and β-alanine but showed no apparent response to Put, Cad, and GABA. Induction of the pauA3 and bauA promoters was abolished in the bauR mutant. The recombinant BauR protein was purified to demonstrate its interactions with the pauA3 and bauA regulatory regions in vitro. In summary, the present study support that the γ-glutamylation pathway for polyamine utilization is evolutionarily conserved in E. coli and Pseudomonas spp. and is further expanded in Pseudomonas to accommodate a more diverse metabolic capacity in this group of microorganisms.
Collapse
|
24
|
Purification and characterization of an arginine regulatory protein, ArgR, in Corynebacterium glutamicum. J Ind Microbiol Biotechnol 2011; 38:1911-20. [DOI: 10.1007/s10295-011-0977-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 04/16/2011] [Indexed: 11/25/2022]
|
25
|
Lin H, Lou B, Glynn JM, Doddapaneni H, Civerolo EL, Chen C, Duan Y, Zhou L, Vahling CM. The complete genome sequence of 'Candidatus Liberibacter solanacearum', the bacterium associated with potato zebra chip disease. PLoS One 2011; 6:e19135. [PMID: 21552483 PMCID: PMC3084294 DOI: 10.1371/journal.pone.0019135] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 03/17/2011] [Indexed: 12/21/2022] Open
Abstract
Zebra Chip (ZC) is an emerging plant disease that causes aboveground decline of potato shoots and generally results in unusable tubers. This disease has led to multi-million dollar losses for growers in the central and western United States over the past decade and impacts the livelihood of potato farmers in Mexico and New Zealand. ZC is associated with 'Candidatus Liberibacter solanacearum', a fastidious alpha-proteobacterium that is transmitted by a phloem-feeding psyllid vector, Bactericera cockerelli Sulc. Research on this disease has been hampered by a lack of robust culture methods and paucity of genome sequence information for 'Ca. L. solanacearum'. Here we present the sequence of the 1.26 Mbp metagenome of 'Ca. L. solanacearum', based on DNA isolated from potato psyllids. The coding inventory of the 'Ca. L. solanacearum' genome was analyzed and compared to related Rhizobiaceae to better understand 'Ca. L. solanacearum' physiology and identify potential targets to develop improved treatment strategies. This analysis revealed a number of unique transporters and pathways, all potentially contributing to ZC pathogenesis. Some of these factors may have been acquired through horizontal gene transfer. Taxonomically, 'Ca. L. solanacearum' is related to 'Ca. L. asiaticus', a suspected causative agent of citrus huanglongbing, yet many genome rearrangements and several gene gains/losses are evident when comparing these two Liberibacter. species. Relative to 'Ca. L. asiaticus', 'Ca. L. solanacearum' probably has reduced capacity for nucleic acid modification, increased amino acid and vitamin biosynthesis functionalities, and gained a high-affinity iron transport system characteristic of several pathogenic microbes.
Collapse
Affiliation(s)
- Hong Lin
- United States Department of Agriculture-Agricultural Research Service, CDPG, San Joaquin Valley Agricultural Sciences Center, Parlier, California, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Regulation and characterization of the dadRAX locus for D-amino acid catabolism in Pseudomonas aeruginosa PAO1. J Bacteriol 2011; 193:2107-15. [PMID: 21378189 DOI: 10.1128/jb.00036-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
D-amino acids are essential components for bacterial peptidoglycan, and these natural compounds are also involved in cell wall remodeling and biofilm disassembling. In Pseudomonas aeruginosa, the dadAX operon, encoding the D-amino acid dehydrogenase DadA and the amino acid racemase DadX, is essential for D- and L-Ala catabolism, and its expression requires a transcriptional regulator, DadR. In this study, purified recombinant DadA alone was sufficient to demonstrate the proposed enzymatic activity with very broad substrate specificity; it utilizes all D-amino acids tested as substrates except D-Glu and D-Gln. DadA also showed comparable k(cat) and K(m) values on D-Ala and several D-amino acids. dadRAX knockout mutants were constructed and subjected to analysis of their growth phenotypes on amino acids. The results revealed that utilization of L-Ala, L-Trp, D-Ala, and a specific set of D-amino acids as sole nitrogen sources was abolished in the dadA mutant and/or severely hampered in the dadR mutant while growth yield on D-amino acids was surprisingly improved in the dadX mutant. The dadA promoter was induced by several L-amino acids, most strongly by Ala, and only by D-Ala among all tested D-amino acids. Enhanced growth of the dadX mutant on D-amino acids is consistent with the finding that the dadA promoter was constitutively induced in the dadX mutant, where exogenous D-Ala but not L-Ala reduced the expression. Binding of DadR to the dadA regulatory region was demonstrated by electromobility shift assays, and the presence of L-Ala but not D-Ala increased affinity by 3-fold. The presence of multiple DadR-DNA complexes in the dadA regulatory region was demonstrated in vitro, and the formation of these nucleoprotein complexes exerted a complicated impact on promoter activation in vivo. In summary, the results from this study clearly demonstrate DadA to be the enzyme solely responsible for the proposed D-amino acid dehydrogenase activity of broad substrate specificity and the physiological functions of DadRAX in catabolism of several D-amino acids and support L-Ala as the signal molecule for induction of the dadAX genes through DadR binding to several putative operator sites.
Collapse
|
27
|
L-lysine catabolism is controlled by L-arginine and ArgR in Pseudomonas aeruginosa PAO1. J Bacteriol 2010; 192:5874-80. [PMID: 20833801 DOI: 10.1128/jb.00673-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In comparison to other pseudomonads, Pseudomonas aeruginosa grows poorly in L-lysine as a sole source of nutrient. In this study, the ldcA gene (lysine decarboxylase A; PA1818), previously identified as a member of the ArgR regulon of L-arginine metabolism, was found essential for L-lysine catabolism in this organism. LdcA was purified to homogeneity from a recombinant strain of Escherichia coli, and the results of enzyme characterization revealed that this pyridoxal-5-phosphate-dependent decarboxylase takes L-lysine, but not L-arginine, as a substrate. At an optimal pH of 8.5, cooperative substrate activation by L-lysine was depicted from kinetics studies, with calculated K(m) and V(max) values of 0.73 mM and 2.2 μmole/mg/min, respectively. Contrarily, the ldcA promoter was induced by exogenous L-arginine but not by L-lysine in the wild-type strain PAO1, and the binding of ArgR to this promoter region was demonstrated by electromobility shift assays. This peculiar arginine control on lysine utilization was also noted from uptake experiments in which incorporation of radioactively labeled L-lysine was enhanced in cells grown in the presence of L-arginine but not L-lysine. Rapid growth on L-lysine was detected in a mutant devoid of the main arginine catabolic pathway and with a higher basal level of the intracellular L-arginine pool and hence elevated ArgR-responsive regulons, including ldcA. Growth on L-lysine as a nitrogen source can also be enhanced when the aruH gene encoding an arginine/lysine:pyruvate transaminase was expressed constitutively from plasmids; however, no growth of the ldcA mutant on L-lysine suggests a minor role of this transaminase in L-lysine catabolism. In summary, this study reveals a tight connection of lysine catabolism to the arginine regulatory network, and the lack of lysine-responsive control on lysine uptake and decarboxylation provides an explanation of L-lysine as a poor nutrient for P. aeruginosa.
Collapse
|
28
|
Troxler J, Azelvandre P, Zala M, Defago G, Haas D. Conjugative Transfer of Chromosomal Genes between Fluorescent Pseudomonads in the Rhizosphere of Wheat. Appl Environ Microbiol 2010; 63:213-9. [PMID: 16535486 PMCID: PMC1389100 DOI: 10.1128/aem.63.1.213-219.1997] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria released in large numbers for biocontrol or bioremediation purposes might exchange genes with other microorganisms. Two model systems were designed to investigate the likelihood of such an exchange and some factors which govern the conjugative exchange of chromosomal genes between root-colonizing pseudomonads in the rhizosphere of wheat. The first model consisted of the biocontrol strain CHA0 of Pseudomonas fluorescens and transposon-facilitated recombination (Tfr). A conjugative IncP plasmid loaded with transposon Tn5, in a CHA0 derivative carrying a chromosomal Tn5 insertion, promoted chromosome transfer to auxotrophic CHA0 recipients in vitro. A chromosomal marker (pro) was transferred at a frequency of about 10(sup-6) per donor on wheat roots under gnotobiotic conditions, provided that the Tfr donor and recipient populations each contained 10(sup6) to 10(sup7) CFU per g of root. In contrast, no conjugative gene transfer was detected in soil, illustrating that the root surface stimulates conjugation. The second model system was based on the genetically well-characterized strain PAO of Pseudomonas aeruginosa and the chromosome mobilizing IncP plasmid R68.45. Although originally isolated from a human wound, strain PAO1 was found to be an excellent root colonizer, even under natural, nonsterile conditions. Matings between an auxotrophic R68.45 donor and auxotrophic recipients produced prototrophic chromosomal recombinants at 10(sup-4) to 10(sup-5) per donor on wheat roots in artificial soil under gnotobiotic conditions and at about 10(sup-6) per donor on wheat roots in natural, nonsterile soil microcosms after 2 weeks of incubation. The frequencies of chromosomal recombinants were as high as or higher than the frequencies of R68.45 transconjugants, reflecting mainly the selective growth advantage of the prototrophic recombinants over the auxotrophic parental strains in the rhizosphere. Although under field conditions the formation of chromosomal recombinants is expected to be reduced by several factors, we conclude that chromosomal genes, whether present naturally or introduced by genetic modification, may be transmissible between rhizosphere bacteria.
Collapse
|
29
|
Li C, Yao X, Lu CD. Regulation of the dauBAR operon and characterization of d-amino acid dehydrogenase DauA in arginine and lysine catabolism of Pseudomonas aeruginosa PAO1. Microbiology (Reading) 2010; 156:60-71. [DOI: 10.1099/mic.0.033282-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A unique d-to-l racemization of arginine by coupled arginine dehydrogenases DauA and DauB encoded by the dauBAR operon has been recently reported as a prerequisite for d-arginine utilization as the sole source of carbon and nitrogen through l-arginine catabolic pathways in P. aeruginosa. In this study, enzymic properties of the catabolic FAD-dependent d-amino acid dehydrogenase DauA and the physiological functions of the dauBAR operon were further characterized with other d-amino acids. These results establish DauA as a d-amino acid dehydrogenase of broad substrate specificity, with d-Arg and d-Lys as the two most effective substrates, based on the kinetic parameters. In addition, expression of dauBAR is specifically induced by exogenous d-Arg and d-Lys, and mutations in the dauBAR operon affect utilization of these two amino acids alone. The function of DauR as a repressor in the control of the dauBAR operon was demonstrated by dauB promoter activity measurements in vivo and mobility shift assays with purified His-tagged protein in vitro. The potential effect of 2-ketoarginine (2-KA) derived from d-Arg deamination by DauA as a signal molecule in dauBAR induction was first revealed by mutation analysis and further supported by its in vitro effect on alleviation of DauR–DNA interactions. Through sequence analysis, putative DauR operators were identified and confirmed by mutation analysis. Induction of the dauBAR operon to the maximal level was found to require the l-arginine-responsive regulator ArgR, as supported by the loss of inductive effect by l-Arg on dauBAR expression in the argR mutant and binding of purified ArgR to the dauB regulatory region in vitro. In summary, this study establishes that optimal induction of the dauBAR operon requires relief of DauR repression by 2-KA and activation of ArgR by l-Arg as a result of d-Arg racemization by the encoded DauA and DauB.
Collapse
Affiliation(s)
- Congran Li
- Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Xiangyu Yao
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Chung-Dar Lu
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
30
|
The multifaceted proteins MvaT and MvaU, members of the H-NS family, control arginine metabolism, pyocyanin synthesis, and prophage activation in Pseudomonas aeruginosa PAO1. J Bacteriol 2009; 191:6211-8. [PMID: 19684136 DOI: 10.1128/jb.00888-09] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The MvaT and MvaU proteins belonging to the H-NS family were identified as DNA-binding proteins that interact with the regulatory region of the aotJQMOP-argR operon for arginine uptake and regulation. Recombinant MvaT and MvaU proteins were purified, and binding of these purified proteins to the aotJ regulatory region was demonstrated using electromobility shift assays. Polyclonal antibodies against purified MvaT and MvaU were prepared and employed in supershift assays to support these observations. Knockout mutations resulting in a single lesion in mvaT or mvaU, as well as knockout mutations resulting in double lesions, were constructed using biparental conjugation, and the absence of MvaT and MvaU in the resulting mutants was confirmed by immunoblot analysis. Using measurements of the beta-galactosidase activities from aotJ::lacZ fusions in the mutants and the parental strain, it was found that MvaT and MvaU serve as repressors in control of aotJ expression. The effects of MvaT and MvaU on pyocyanin synthesis and CupA fimbrial expression in these mutants were also analyzed. Pyocyanin synthesis was induced in the single mutants but was completely abolished in the double mutant, suggesting that there is a complicated regulatory scheme in which MvaT and MvaU are essential elements. In comparison, MvaT had a more profound role than MvaU as a repressor of cupA expression; however, a combination of MvaT depletion and MvaU depletion had a strong synergistic effect on cupA. Moreover, prophage Pf4 integrated into the chromosome of Pseudomonas aeruginosa PAO1 was activated in an mvaT mvaU double mutant but not in a single mutant. These results were supported by purification and nucleotide sequencing of replicative-form DNA and by the release of phage particles in plaque assays. In summary, the mvaT mvaU double mutant was viable, and depletion of MvaT and MvaU had serious effects on a variety of physiological functions in P. aeruginosa.
Collapse
|
31
|
Li C, Lu CD. Unconventional integration of the bla gene from plasmid pIT2 during ISlacZ/hah transposon mutagenesis in Pseudomonas aeruginosa PAO1. Curr Microbiol 2009; 58:472-7. [PMID: 19189184 DOI: 10.1007/s00284-008-9348-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 12/08/2008] [Accepted: 12/15/2008] [Indexed: 12/01/2022]
Abstract
The ISlacZ/hah transposon carried by pIT2 and derived originally from Tn5 has been a popular system in the generation of random insertion mutants of Pseudomonas aeruginosa. Using this system in the current study, two transconjugants were identified as conferring high levels of carbenicillin resistance. Analyses by gene complementation tests and site-specific gene knockout experiments support the conclusion that carbenicillin resistance in these two mutants is not due to the insertion of ISlacZ/hah transposon into the affected genes. Instead, the production of a TEM beta-lactamase was detected, and integration of the bla gene from pIT2 to the chromosome of the recipient strain was confirmed by polymerase chain reaction. This surprising event was reproducible, with an estimated frequency among the transconjugants of 4% to 10%, and it may cause a potential complication in the interpretation of mutant phenotypes without notice.
Collapse
Affiliation(s)
- Congran Li
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | | |
Collapse
|
32
|
Arginine racemization by coupled catabolic and anabolic dehydrogenases. Proc Natl Acad Sci U S A 2009; 106:906-11. [PMID: 19139398 DOI: 10.1073/pnas.0808269106] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
D-amino acids exist in living organisms as specialized components of many different machineries. Biosynthesis of D-amino acids from racemization of predominant L-enantiomers is catalyzed by a single enzyme. Here, we report the finding of a novel 2-component amino acid racemase for D-to-L inversion in D-arginine metabolism of Pseudomonas aeruginosa. From DNA microarray analysis, the putative dauBAR operon (for D-arginine utilization) of unknown functions was found to be highly induced by D-arginine. The importance of the dau operon in D-arginine metabolism was demonstrated by the findings that strains with a lesion at dauA or dauB failed to use D-arginine as sole carbon source. Two lines of evidence suggest that DauA and DauB are required for D-to-L racemization of arginine. First, growth complementation of an L-arginine auxotroph by D-arginine was abolished by a lesion at dauA or dauB. Second, D-arginine induced L-arginine-specific genes in the parental strain PAO1 but not in its dauA or dauB mutants. This hypothesis was further supported by activity measurements of the purified enzymes: DauA catalyzes oxidative deamination of D-arginine into 2-ketoarginine and ammonia, and DauB is able to use 2-ketoarginine and ammonia as substrates and convert them into L-arginine in the presence of NADPH or NADH. Thus, we propose that DauA and DauB are coupled catabolic and anabolic dehydrogenases to perform D-to-L racemization of arginine, which serves as prerequisite of D-arginine utilization through L-arginine catabolic pathways.
Collapse
|
33
|
Transcriptome analysis of agmatine and putrescine catabolism in Pseudomonas aeruginosa PAO1. J Bacteriol 2008; 190:1966-75. [PMID: 18192388 DOI: 10.1128/jb.01804-07] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polyamines (putrescine, spermidine, and spermine) are major organic polycations essential for a wide spectrum of cellular processes. The cells require mechanisms to maintain homeostasis of intracellular polyamines to prevent otherwise severe adverse effects. We performed a detailed transcriptome profile analysis of Pseudomonas aeruginosa in response to agmatine and putrescine with an emphasis in polyamine catabolism. Agmatine serves as the precursor compound for putrescine (and hence spermidine and spermine), which was proposed to convert into 4-aminobutyrate (GABA) and succinate before entering the tricarboxylic acid cycle in support of cell growth, as the sole source of carbon and nitrogen. Two acetylpolyamine amidohydrolases, AphA and AphB, were found to be involved in the conversion of agmatine into putrescine. Enzymatic products of AphA were confirmed by mass spectrometry analysis. Interestingly, the alanine-pyruvate cycle was shown to be indispensable for polyamine utilization. The newly identified dadRAX locus encoding the regulator alanine transaminase and racemase coupled with SpuC, the major putrescine-pyruvate transaminase, were key components to maintaining alanine homeostasis. Corresponding mutant strains were severely hampered in polyamine utilization. On the other hand, an alternative gamma-glutamylation pathway for the conversion of putrescine into GABA is present in some organisms. Subsequently, GabD, GabT, and PA5313 were identified for GABA utilization. The growth defect of the PA5313 gabT double mutant in GABA suggested the importance of these two transaminases. The succinic-semialdehyde dehydrogenase activity of GabD and its induction by GABA were also demonstrated in vitro. Polyamine utilization in general was proven to be independent of the PhoPQ two-component system, even though a modest induction of this operon was induced by polyamines. Multiple potent catabolic pathways, as depicted in this study, could serve pivotal roles in the control of intracellular polyamine levels.
Collapse
|
34
|
Transcriptome analysis of agmatine and putrescine catabolism in Pseudomonas aeruginosa PAO1. J Bacteriol 2008; 192:4317-26. [PMID: 18192388 DOI: 10.1128/jb.00335-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Polyamines (putrescine, spermidine, and spermine) are major organic polycations essential for a wide spectrum of cellular processes. The cells require mechanisms to maintain homeostasis of intracellular polyamines to prevent otherwise severe adverse effects. We performed a detailed transcriptome profile analysis of Pseudomonas aeruginosa in response to agmatine and putrescine with an emphasis in polyamine catabolism. Agmatine serves as the precursor compound for putrescine (and hence spermidine and spermine), which was proposed to convert into 4-aminobutyrate (GABA) and succinate before entering the tricarboxylic acid cycle in support of cell growth, as the sole source of carbon and nitrogen. Two acetylpolyamine amidohydrolases, AphA and AphB, were found to be involved in the conversion of agmatine into putrescine. Enzymatic products of AphA were confirmed by mass spectrometry analysis. Interestingly, the alanine-pyruvate cycle was shown to be indispensable for polyamine utilization. The newly identified dadRAX locus encoding the regulator alanine transaminase and racemase coupled with SpuC, the major putrescine-pyruvate transaminase, were key components to maintaining alanine homeostasis. Corresponding mutant strains were severely hampered in polyamine utilization. On the other hand, an alternative gamma-glutamylation pathway for the conversion of putrescine into GABA is present in some organisms. Subsequently, GabD, GabT, and PA5313 were identified for GABA utilization. The growth defect of the PA5313 gabT double mutant in GABA suggested the importance of these two transaminases. The succinic-semialdehyde dehydrogenase activity of GabD and its induction by GABA were also demonstrated in vitro. Polyamine utilization in general was proven to be independent of the PhoPQ two-component system, even though a modest induction of this operon was induced by polyamines. Multiple potent catabolic pathways, as depicted in this study, could serve pivotal roles in the control of intracellular polyamine levels.
Collapse
|
35
|
Li W, Lu CD. Regulation of carbon and nitrogen utilization by CbrAB and NtrBC two-component systems in Pseudomonas aeruginosa. J Bacteriol 2007; 189:5413-20. [PMID: 17545289 PMCID: PMC1951800 DOI: 10.1128/jb.00432-07] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The global effect of the CbrAB and NtrBC two-component systems on the control of carbon and nitrogen utilization in Pseudomonas aeruginosa was characterized by phenotype microarray analyses with single and double mutants and the isogenic parent strain. The tested compounds were clustered based on the growth phenotypes of these strains, and the results clearly demonstrated the pivotal roles of CbrAB and NtrBC in carbon and nitrogen utilization, respectively. Growth of the cbrAB deletion mutant on arginine, histidine, and polyamines used as the sole carbon source was abolished, while growth on the tricarboxylic acid (TCA) cycle intermediates was sustained. In this study, suppressors of the cbr mutant were selected from minimal medium containing l-arginine as the sole carbon and nitrogen source. These mutants fell into two groups according to the ability to utilize histidine. The genomic library of a histidine-positive suppressor mutant was constructed, and the corresponding suppressor gene was identified by complementation as an ntrB allele. Similar results were obtained from four additional suppressor mutants, and point mutations of these ntrB alleles resulting in the following changes in residues were identified, with implications for reduced phosphatase activities: L126W, D227A, P228L, and S229I. The Ntr systems of these ntrB mutants became constitutively active, as revealed by the activity profiles of glutamate dehydrogenase, glutamate synthase, and glutamine synthetase. As a result, these mutants not only regain the substrate-specific induction on catabolic arginine and histidine operons but are also expressed to higher levels than the wild type. While the DeltacbrAB ntrB(Con) mutant restored growth on many N-containing compounds used as the carbon sources, its capability to grow on TCA cycle intermediates and glucose was compromised when ammonium served as the sole nitrogen source, mostly due to an extreme imbalance of carbon and nitrogen regulatory systems. In summary, this study supports the notion that CbrAB and NtrBC form a network to control the C/N balance in P. aeruginosa. Possible molecular mechanisms of these two regulatory elements in the control of arginine and histidine operons used as the model systems are discussed.
Collapse
Affiliation(s)
- Wei Li
- Department of Biology, Georgia State University, 24 Peachtree Center Ave., Atlanta, GA 30303, USA
| | | |
Collapse
|
36
|
Yang Z, Lu CD. Functional genomics enables identification of genes of the arginine transaminase pathway in Pseudomonas aeruginosa. J Bacteriol 2007; 189:3945-53. [PMID: 17416670 PMCID: PMC1913404 DOI: 10.1128/jb.00261-07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Arginine utilization in Pseudomonas aeruginosa with multiple catabolic pathways represents one of the best examples of the metabolic versatility of this organism. To identify genes involved in arginine catabolism, we have employed DNA microarrays to analyze the transcriptional profiles of this organism in response to L-arginine. While most of the genes involved in arginine uptake, regulation, and metabolism have been identified as members of the ArgR (arginine-responsive regulatory protein) regulon in our previous study, they did not include any genes of the arginine dehydrogenase (ADH) pathway. In this study, 18 putative transcriptional units of 38 genes, including the two known genes of the ADH pathway, kauB and gbuA, were found to be inducible by exogenous L-arginine in the absence of ArgR. To identify the missing genes that encode enzymes for the initial steps of the ADH pathway, the potential physiological functions of those candidate genes in arginine utilization were studied by growth phenotype analysis of knockout mutants. Expression of these genes was induced by L-arginine in an aruF mutant strain devoid of a functional arginine succinyltransferase pathway, the major route of arginine utilization. Disruption of dadA, a putative catabolic alanine dehydrogenase-encoding gene, in the aruF mutant produced no growth on L-arginine, suggesting the involvement of L-alanine in arginine catabolism. This hypothesis was further supported by the detection of an L-arginine-inducible arginine:pyruvate transaminase activity in the aruF mutant. Knockout of aruH and aruI, which encode an arginine:pyruvate transaminase and a 2-ketoarginine decarboxylase in an operon, also abolished the ability of the aruF mutant to grow on L-arginine. The results of high-performance liquid chromatography analysis demonstrated consumption of 2-ketoarginine and suggested that generation of 4-guanidinobutyraldehyde occurred in the aruF mutant but not in the aruF aruI mutant. These results led us to propose the arginine transaminase pathway that removes the alpha-amino group of L-arginine via transamination instead of oxidative deamination by dehydrogenase or oxidase as originally proposed. In the same genetic locus, we also identified a two-component system, AruRS, for the regulation of arginine-responsive induction of the arginine transaminase pathway. This work depicted a wider network of arginine metabolism than we previously recognized.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | | |
Collapse
|
37
|
Kanack KJ, Runyen-Janecky LJ, Ferrell EP, Suh SJ, West SEH. Characterization of DNA-binding specificity and analysis of binding sites of the Pseudomonas aeruginosa global regulator, Vfr, a homologue of the Escherichia coli cAMP receptor protein. MICROBIOLOGY (READING, ENGLAND) 2006; 152:3485-3496. [PMID: 17159200 DOI: 10.1099/mic.0.29008-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vfr, a global regulator of Pseudomonas aeruginosa virulence factors, is a homologue of the Escherichia coli cAMP receptor protein, CRP. Vfr is 91% similar to CRP and maintains many residues important for CRP to bind cAMP, bind DNA, and interact with RNA polymerase at target promoters. While vfr can complement an E. coli crp mutant in beta-galactosidase production, tryptophanase production and catabolite repression, crp can only complement a subset of Vfr-dependent phenotypes in P. aeruginosa. Using specific CRP binding site mutations, it is shown that Vfr requires the same nucleotides as CRP for optimal transcriptional activity from the E. coli lac promoter. In contrast, CRP did not bind Vfr target sequences in the promoters of the toxA and regA genes. Footprinting analysis revealed Vfr protected sequences upstream of toxA, regA, and the quorum sensing regulator lasR, that are similar to but significantly divergent from the CRP consensus binding sequence, and Vfr causes similar DNA bending to CRP in bound target sequences. Using a preliminary Vfr consensus binding sequence deduced from the Vfr-protected sites, Vfr target sequences were identified upstream of the virulence-associated genes plcN, plcHR, pbpG, prpL and algD, and in the vfr/orfX, argH/fimS, pilM/ponA intergenic regions. From these sequences the Vfr consensus binding sequence, 5'-ANWWTGNGAWNY : AGWTCACAT-3', was formulated. This study suggests that Vfr shares many of the same functions as CRP, but has specialized functions, at least in terms of DNA target sequence binding, required for regulation of a subset of genes in its regulon.
Collapse
Affiliation(s)
- Kristen J Kanack
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - Laura J Runyen-Janecky
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - Evan P Ferrell
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - Sang-Jin Suh
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - Susan E H West
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
38
|
Dasu VV, Nakada Y, Ohnishi-Kameyama M, Kimura K, Itoh Y. Characterization and a role of Pseudomonas aeruginosa spermidine dehydrogenase in polyamine catabolism. Microbiology (Reading) 2006; 152:2265-2272. [PMID: 16849793 DOI: 10.1099/mic.0.28920-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosaPAO1 has two possible catabolic pathways of spermidine and spermine; one includes thespuAandspuBproducts with unknown functions and the other involves spermidine dehydrogenase (SpdH; EC 1.5.99.6) encoded by an unknown gene. The properties of SpdH inP. aeruginosaPAO1 were characterized and the correspondingspdHgene in this strain identified. The deduced SpdH (620 residues, calculatedMrof 68 861) had a signal sequence of 28 amino acids at the amino terminal and a potential transmembrane segment between residues 76 and 92, in accordance with membrane location of the enzyme. Purified SpdH oxidatively cleaved spermidine into 1,3-diaminopropane and 4-aminobutyraldehyde with a specific activity of 37 units (mg protein)−1and aKmvalue of 36 μM. The enzyme also hydrolysed spermine into spermidine and 3-aminopropanaldehyde with a specific activity of 25 units (mg protein)−1and aKmof 18 μM. Knockout ofspdHhad no apparent effect on the utilization of both polyamines, suggesting that this gene is minimally involved in polyamine catabolism. However, whenspdHwas fused to the polyamine-inducible promoter ofspuA, it fully restored the ability of aspuAmutant to utilize spermidine. It is concluded that SpdH can perform a catabolic rolein vivo, butP. aeruginosaPAO1 does not produce sufficient amounts of the enzyme to execute this function.
Collapse
Affiliation(s)
- Veeranki Venkata Dasu
- National Food Research Institute, Kannondai 2-1-12, Tsukuba, Ibaraki 305-8642, Japan
| | - Yuji Nakada
- National Food Research Institute, Kannondai 2-1-12, Tsukuba, Ibaraki 305-8642, Japan
| | | | - Keitarou Kimura
- National Food Research Institute, Kannondai 2-1-12, Tsukuba, Ibaraki 305-8642, Japan
| | - Yoshifumi Itoh
- Akita Research Institute for Food and Brewing, Sanuki 4-26, Araya-machi, Akita 010-1623, Japan
- National Food Research Institute, Kannondai 2-1-12, Tsukuba, Ibaraki 305-8642, Japan
| |
Collapse
|
39
|
Kwon DH, Lu CD. Polyamines induce resistance to cationic peptide, aminoglycoside, and quinolone antibiotics in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother 2006; 50:1615-22. [PMID: 16641426 PMCID: PMC1472189 DOI: 10.1128/aac.50.5.1615-1622.2006] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa, a gram-negative bacterium of human pathogens, is noted for its environmental versatility, enormous metabolic capacity, and resistance to antibiotics. Overexpression of the outer membrane protein OprH and increased resistance to polycationic peptide antibiotics (e.g., polymyxin B) mediated by the PhoPQ two-component system on induction of a putative lipopolysaccharide (LPS) modification operon (PA3552-PA3559) have been reported as part of the adaptive responses to magnesium limitation in P. aeruginosa. Induction of the oprH-phoPQ operon and the LPS modification operon by exogenous spermidine was revealed from GeneChip analysis during studies of polyamine metabolism and was confirmed by the lacZ fusions of affected promoters. From the results of MIC measurements, it was found that addition of spermidine or other polyamines to the growth medium increased the MIC values of multiple antibiotics, including polycationic antibiotics, aminoglycosides, quinolones, and fluorescent dyes. MIC values of these compounds in the transposon insertion mutants of oprH, phoP, phoQ, and pmrB were also determined in the presence and absence of spermidine. The results showed that the spermidine effect on cationic peptide antibiotic and quinolone resistance was diminished in the phoP mutant only. The spermidine effect on antibiotics was not influenced by magnesium concentrations, as demonstrated by MICs and oprH::lacZ fusion studies in the presence of 20 muM or 2 mM magnesium. Furthermore, in spermidine uptake mutants, MICs of cationic peptide antibiotics and fluorescent dyes, but not of aminoglycosides and quinolones, were increased by spermidine. These results suggested the presence of a complicated molecular mechanism for polyamine-mediated resistance to multiple antibiotics in P. aeruginosa.
Collapse
Affiliation(s)
- Dong H Kwon
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue, Atlanta, GA 30303, USA
| | | |
Collapse
|
40
|
Nakada Y, Itoh Y. Pseudomonas aeruginosa PAO1 genes for 3-guanidinopropionate and 4-guanidinobutyrate utilization may be derived from a common ancestor. Microbiology (Reading) 2005; 151:4055-4062. [PMID: 16339950 DOI: 10.1099/mic.0.28258-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosaPAO1 utilizes 3-guanidinopropionate (3-GP) and 4-guanidinobutyrate (4-GB), which differ in one methylene group only, via distinct enzymes: guanidinopropionase (EC 3.5.3.17; thegpuAproduct) and guanidinobutyrase (EC 3.5.3.7; thegbuAproduct). The authors cloned and characterized the contiguousgpuPARgenes (in that order) responsible for 3-GP utilization, and compared the deduced sequences of their putative protein products, and the potential regulatory mechanisms ofgpuPA, with those of the correspondinggbugenes encoding the 4-GB catabolic system. GpuA and GpuR have similarity to GbuA (49 % identity) and GbuR (a transcription activator ofgbuA; 37 % identity), respectively. GpuP resembles PA1418 (58 % identity), which is a putative membrane protein encoded by a potential gene downstream ofgbuA. These features of the GpuR and GpuP sequences, and the impaired growth ofgpuRandgpuPknockout mutants on 3-GP, support the notion that GpuR and GpuP direct the 3-GP-inducible expression ofgpuA, and the uptake of 3-GP, respectively. Northern blots of mRNA from 3-GP-induced PAO1 cells revealed three transcripts ofgpuA,gpuP, andgpuPandgpuAtogether, suggesting thatgpuPandgpuAeach have a 3-GP-responsible promoter, and that some transcription from thegpuPpromoter is terminated aftergpuP, or proceeds intogpuA. Knockout ofgpuRabolished 3-GP-dependent synthesis of the transcripts, confirming that GpuR activates transcription from these promoters, with 3-GP as a specific co-inducer. The sequence conservation between the three functional pairs of the Gpu and Gbu proteins, and the absence ofgpuAPRin closely related species, imply that the triadgpugenes have co-ordinately evolved from origins common to thegbucounterparts, to establish an independent catabolic system of 3-GP inP. aeruginosa.
Collapse
Affiliation(s)
- Yuji Nakada
- Department of Nursing, Faculty of Nursing and Rehabilitation, Aino University, Higashiohda 4-5-4, Ibaraki, Osaka 567-0012, Japan
| | - Yoshifumi Itoh
- Akita Research Institute of Food and Brewing, Sanuki 4-26, Akita 010-1623, Japan
| |
Collapse
|
41
|
Slocum RD. Genes, enzymes and regulation of arginine biosynthesis in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2005; 43:729-45. [PMID: 16122935 DOI: 10.1016/j.plaphy.2005.06.007] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 06/17/2005] [Indexed: 05/04/2023]
Abstract
Arabidopsis genes encoding enzymes for each of the eight steps in L-arginine (Arg) synthesis were identified, based upon sequence homologies with orthologs from other organisms. Except for N-acetylglutamate synthase (NAGS; EC 2.3.1.1), which is encoded by two genes, all remaining enzymes are encoded by single genes. Targeting predictions for these enzymes, based upon their deduced sequences, and subcellular fractionation studies, suggest that most enzymes of Arg synthesis reside within the plastid. Synthesis of the L-ornthine (Orn) intermediate in this pathway from L-glutamate occurs as a series of acetylated intermediates, as in most other organisms. An N-acetylornithine:glutamate acetyltransferase (NAOGAcT; EC 2.3.1.35) facilitates recycling of the acetyl moiety during Orn formation (cyclic pathway). A putative N-acetylornithine deacetylase (NAOD; EC 3.5.1.16), which participates in the "linear" pathway for Orn synthesis in some organisms, was also identified. Previous biochemical studies have indicated that allosteric regulation of the first and, especially, the second steps in Orn synthesis (NAGS; N-acetylglutamate kinase (NAGK), EC 2.7.2.8) by the Arg end-product are the major sites of metabolic control of the pathway in organisms using the cyclic pathway. Gene expression profiling for pathway enzymes further suggests that NAGS, NAGK, NAOGAcT and NAOD are coordinately regulated in response to changes in Arg demand during plant growth and development. Synthesis of Arg from Orn is further coordinated with pyrimidine nucleotide synthesis, at the level of allocation of the common carbamoyl-P intermediate.
Collapse
Affiliation(s)
- Robert D Slocum
- Department of Biological Sciences, Goucher College, Baltimore, MD 21204-2794, USA.
| |
Collapse
|
42
|
Abstract
The Mycobacterium tuberculosis gene Rv2747 encodes a novel 19-kDa ArgA that catalyzes the initial step in L-arginine biosynthesis, namely the conversion of L-glutamate to alpha-N-acetyl-L-glutamate. Initial velocity studies reveal that Rv2747 proceeds through a sequential kinetic mechanism, with K(m) values of 280 mM for L-glutamine and 150 microM for acetyl-coenzyme A and with a k(cat) value of 200 min(-1). Initial velocity studies with L-glutamate showed that even at concentrations of 600 mM, saturation was not observed. Therefore, only a k(cat)/K(m) value of 125 M(-1) min(-1) can be calculated. Inhibition studies reveal that the enzyme is strongly regulated by L-arginine, the end product of the pathway (50% inhibitory concentration, 26 microM). The enzyme was completely inhibited by 500 microM arginine, with a Hill coefficient of 0.60, indicating negatively cooperative binding of L-arginine.
Collapse
Affiliation(s)
- James C Errey
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
43
|
|
44
|
Hashim S, Kwon DH, Abdelal A, Lu CD. The arginine regulatory protein mediates repression by arginine of the operons encoding glutamate synthase and anabolic glutamate dehydrogenase in Pseudomonas aeruginosa. J Bacteriol 2004; 186:3848-54. [PMID: 15175298 PMCID: PMC419967 DOI: 10.1128/jb.186.12.3848-3854.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The arginine regulatory protein of Pseudomonas aeruginosa, ArgR, is essential for induction of operons that encode enzymes of the arginine succinyltransferase (AST) pathway, which is the primary route for arginine utilization by this organism under aerobic conditions. ArgR also induces the operon that encodes a catabolic NAD(+)-dependent glutamate dehydrogenase (GDH), which converts l-glutamate, the product of the AST pathway, in alpha-ketoglutarate. The studies reported here show that ArgR also participates in the regulation of other enzymes of glutamate metabolism. Exogenous arginine repressed the specific activities of glutamate synthase (GltBD) and anabolic NADP-dependent GDH (GdhA) in cell extracts of strain PAO1, and this repression was abolished in an argR mutant. The promoter regions of the gltBD operon, which encodes GltBD, and the gdhA gene, which encodes GdhA, were identified by primer extension experiments. Measurements of beta-galactosidase expression from gltB::lacZ and gdhA::lacZ translational fusions confirmed the role of ArgR in mediating arginine repression. Gel retardation assays demonstrated the binding of homogeneous ArgR to DNA fragments carrying the regulatory regions for the gltBD and gdhA genes. DNase I footprinting experiments showed that ArgR protects DNA sequences in the control regions for these genes that are homologous to the consensus sequence of the ArgR binding site. In silica analysis of genomic information for P. fluorescens, P. putida, and P. stutzeri suggests that the findings reported here regarding ArgR regulation of operons that encode enzymes of glutamate biosynthesis in P. aeruginosa likely apply to other pseudomonads.
Collapse
Affiliation(s)
- Shehab Hashim
- Department of Biology, Georgia State University, 24 Peachtree Center Ave., Atlanta, GA 30303, USA
| | | | | | | |
Collapse
|
45
|
Lu CD, Yang Z, Li W. Transcriptome analysis of the ArgR regulon in Pseudomonas aeruginosa. J Bacteriol 2004; 186:3855-61. [PMID: 15175299 PMCID: PMC419968 DOI: 10.1128/jb.186.12.3855-3861.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Accepted: 03/05/2004] [Indexed: 11/20/2022] Open
Abstract
Arginine metabolism in pseudomonads with multiple catabolic pathways for its utilization as carbon and nitrogen sources is of particular interest as the model system to study control of metabolic integration. We performed transcriptome analyses to identify genes controlled by the arginine regulatory protein ArgR and to better understand arginine metabolic pathways of P. aeruginosa. We compared gene expression in wild-type strain PAO1 with that in argR mutant strain PAO501 grown in glutamate minimal medium in the presence and absence of arginine. Ten putative transcriptional units of 28 genes were inducible by ArgR and arginine, including all known ArgR-regulated operons under aerobic conditions. The newly identified genes include the putative adcAB operon, which encodes a catabolic arginine decarboxylase and an antiporter protein, and PA0328, which encodes a hypothetical fusion protein of a peptidase and a type IV autotransporter. Also identified as members of the arginine network are the following solute transport systems: PA1971 (braZ) for branched-chain amino acids permease; PA2042 for a putative sodium:serine symporter; PA3934, which belongs to the family of small oligopeptide transporters; and PA5152-5155, which encodes components of an ABC transporter for a putative opine uptake system. The effect of arginine on the expression of these genes was confirmed by lacZ fusion studies and by DNA binding studies with purified ArgR. Only five transcriptional units of nine genes were qualified as repressible by ArgR and arginine, with three operons (argF, carAB, and argG) in arginine biosynthesis and two operons (gltBD and gdhA) in glutamate biosynthesis. These results indicate that ArgR is important in control of arginine and glutamate metabolism and that arginine and ArgR may have a redundant effect in inducing the uptake systems of certain compounds.
Collapse
Affiliation(s)
- Chung-Dar Lu
- Department of Biology, Georgia State University, 24 Peachtree Center Ave., Atlanta, GA 30303, USA.
| | | | | |
Collapse
|
46
|
Lu SE, Soule JD, Gross DC. Characterization of the argA gene required for arginine biosynthesis and syringomycin production by Pseudomonas syringae pv. syringae. Appl Environ Microbiol 2004; 69:7273-80. [PMID: 14660376 PMCID: PMC309951 DOI: 10.1128/aem.69.12.7273-7280.2003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two types of necrosis-inducing lipodepsipeptide toxins, called syringomycin and syringopeptin, are major virulence factors of Pseudomonas syringae pv. syringae strain B301D. A previous study showed that a locus, called syrA, was required for both syringomycin production and plant pathogenicity, and the syrA locus was speculated to encode a regulator of toxin production. In this study, sequence analysis of the 8-kb genomic DNA fragment that complements the syrA phenotype revealed high conservation among a broad spectrum of fluorescent pseudomonads. The putative protein encoded by open reading frame 4 (ORF4) (1,299 bp) in the syrA locus region exhibited 85% identity to ArgA, which is involved in arginine biosynthesis in Pseudomonas aeruginosa. Growth of strain W4S2545, the syrA mutant, required supplementation of N minimal medium with arginine. Similarly, syringomycin production of syrA mutant W4S2545 was restored by the addition of arginine to culture media. Furthermore, the insertion of Tn5 in the genome of the syrA mutant W4S2545 was localized between nucleotides 146 and 147 in ORF4, and syringomycin production was complemented in trans with the wild-type DNA fragment containing intact ORF4. These results demonstrate that the syrA locus is the argA gene of P. syringae pv. syringae and that argA is directly involved in arginine biosynthesis and therefore indirectly affects syringomycin production because of arginine deficiency.
Collapse
Affiliation(s)
- Shi-En Lu
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843, USA
| | | | | |
Collapse
|
47
|
Heurlier K, Dénervaud V, Pessi G, Reimmann C, Haas D. Negative control of quorum sensing by RpoN (sigma54) in Pseudomonas aeruginosa PAO1. J Bacteriol 2003; 185:2227-35. [PMID: 12644493 PMCID: PMC151487 DOI: 10.1128/jb.185.7.2227-2235.2003] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Pseudomonas aeruginosa PAO1, the expression of several virulence factors such as elastase, rhamnolipids, and hydrogen cyanide depends on quorum-sensing regulation, which involves the lasRI and rhlRI systems controlled by N-(3-oxododecanoyl)-L-homoserine lactone and N-butyryl-L-homoserine lactone, respectively, as signal molecules. In rpoN mutants lacking the transcription factor sigma(54), the expression of the lasR and lasI genes was elevated at low cell densities, whereas expression of the rhlR and rhlI genes was markedly enhanced throughout growth by comparison with the wild type and the complemented mutant strains. As a consequence, the rpoN mutants had elevated levels of both signal molecules and overexpressed the biosynthetic genes for elastase, rhamnolipids, and hydrogen cyanide. The quorum-sensing regulatory protein QscR was not involved in the negative control exerted by RpoN. By contrast, in an rpoN mutant, the expression of the gacA global regulatory gene was significantly increased during the entire growth cycle, whereas another global regulatory gene, vfr, was downregulated at high cell densities. In conclusion, it appears that GacA levels play an important role, probably indirectly, in the RpoN-dependent modulation of the quorum-sensing machinery of P. aeruginosa.
Collapse
Affiliation(s)
- Karin Heurlier
- Laboratoire de Biologie Microbienne, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
48
|
Nakada Y, Nishijyo T, Itoh Y. Divergent structure and regulatory mechanism of proline catabolic systems: characterization of the putAP proline catabolic operon of Pseudomonas aeruginosa PAO1 and its regulation by PruR, an AraC/XylS family protein. J Bacteriol 2002; 184:5633-40. [PMID: 12270821 PMCID: PMC139622 DOI: 10.1128/jb.184.20.5633-5640.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa PAO1 utilizes proline as the sole source of carbon and nitrogen via a bifunctional enzyme (the putA gene product) that has both proline dehydrogenase (EC 1.5.99.8) and pyrroline 5-carboxylate dehydrogenase (EC 1.5.1.12) activities. We characterized the pruR-putAP loci encoding the proline catabolic system of this strain. In contrast to the putA and putP (encoding proline permease) genes of other gram- negative bacteria, which are located at divergent or separate loci, Northern blotting demonstrated that the two genes form an operon in strain PAO1. While the phylogenetic lineage of the PutP protein of strain PAO1 was related to that of the origin (80% identity to the P. putida counterpart), PutA of PAO1 (PutA(PAO)) was rather distantly related (47% identity) to the P. putida counterpart. Moreover, unlike the PutA proteins of P. putida and enteric bacteria, PutA(PAO) appeared to lack a regulatory function. Upstream of the putAP operon, the divergent PA0781 gene specified a hypothetical outer membrane protein with a molecular weight of 74,202. This gene appeared to be dispensable for proline utilization as indicated by the normal growth of a knockout mutant of PA0781 on medium containing proline. The pruR (proline utilization regulator) gene immediately upstream of PA0781 encoded a transcriptional activator of the AraC/XylS protein family and mediated the proline-responsive expression of putAP. Primer extension studies identified a PruR-dependent promoter responsive to proline in the 5'-flanking region of putA. Thus, the proline utilization system of P. aeruginosa differs from that of P. putida with respect to putA structure, the organization of the putAP genes, and the regulatory mechanism of putA expression.
Collapse
Affiliation(s)
- Yuji Nakada
- Division of Applied Microbiology, National Food Research Institute, Tsukuba 305-8642, Ibaraki, Japan
| | | | | |
Collapse
|
49
|
Vickrey JF, Herve G, Evans DR. Pseudomonas aeruginosa aspartate transcarbamoylase. Characterization of its catalytic and regulatory properties. J Biol Chem 2002; 277:24490-8. [PMID: 11959858 DOI: 10.1074/jbc.m200009200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aspartate transcarbamoylase from Pseudomonadaceae is a class A enzyme consisting of six copies of a 36-kDa catalytic chain and six copies of a 45-kDa polypeptide of unknown function. The 45-kDa polypeptide is homologous to dihydroorotase but lacks catalytic activity. Pseudomonas aeruginosa aspartate transcarbamoylase was overexpressed in Escherichia coli. The homogeneous His-tagged protein isolated in high yield, 30 mg/liter of culture, by affinity chromatography and crystallized. Attempts to dissociate the catalytic and pseudo-dihydroorotase (pDHO) subunits or to express catalytic subunits only were unsuccessful suggesting that the pDHO subunits are required for the proper folding and assembly of the complex. As reported previously, the enzyme was inhibited by micromolar concentrations of all nucleotide triphosphates. In the absence of effectors, the aspartate saturation curves were hyperbolic but became strongly sigmoidal in the presence of low concentrations of nucleotide triphosphates. The inhibition was unusual in that only free ATP, not MgATP, inhibits the enzyme. Moreover, kinetic and binding studies with a fluorescent ATP analog suggested that ATP induces a conformational change that interferes with the binding of carbamoyl phosphate but has little effect once carbamoyl phosphate is bound. The peculiar allosteric properties suggest that the enzyme may be a potential target for novel chemotherapeutic agents designed to combat Pseudomonas infection.
Collapse
Affiliation(s)
- John F Vickrey
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michiagan 48201, USA
| | | | | |
Collapse
|
50
|
Lu CD, Itoh Y, Nakada Y, Jiang Y. Functional analysis and regulation of the divergent spuABCDEFGH-spuI operons for polyamine uptake and utilization in Pseudomonas aeruginosa PAO1. J Bacteriol 2002; 184:3765-73. [PMID: 12081945 PMCID: PMC135167 DOI: 10.1128/jb.184.14.3765-3773.2002] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A multiple-gene locus for polyamine uptake and utilization was discovered in Pseudomonas aeruginosa PAO1. This locus contained nine genes designated spuABCDEFGHI (spu for spermidine and putrescine utilization). The physiological functions of the spu genes in utilization of two polyamines (putrescine and spermidine) were analyzed by using Tn5 transposon-mediated spu knockout mutants. Growth and uptake experiments support that the spuDEFGH genes specify components of a major ABC-type transport system for spermidine uptake, and enzymatic measurements indicated that spuC encodes putrescine aminotransferase with pyruvate as the amino group receptor. Although spuA and spuB mutants showed an apparent defect in spermidine utilization, the biochemical functions of the gene products have yet to be elucidated. Assays of lacZ fusions demonstrated the presence of agmatine-, putrescine-, and spermidine-inducible promoters for the spuABCDEFGH operon and the divergently transcribed spuI gene of unknown function. Since the observed induction effect of agmatine was abolished in an aguA mutant where conversion of agmatine into putrescine was blocked, putrescine or spermidine, but not agmatine, serves as the inducer molecule of the spuA-spuI divergent promoters. S1 nuclease mappings confirmed further the induction effects of the polyamines on transcription of the divergent promoters and localized the transcription initiation sites. Gel retardation assays with extracts from the cells grown on putrescine or spermidine demonstrated the presence of a polyamine-responsive regulatory protein interacting with the divergent promoter region. Finally, the absence of the putrescine-inducible spuA expression and putrescine aminotransferase (spuC) formation in the cbrB mutant indicated that the spu operons are regulated by the global CbrAB two-component system perhaps via the putative polyamine-responsive transcriptional activator.
Collapse
Affiliation(s)
- Chung-Dar Lu
- Department of Biology, Georgia State University, Atlanta 30303, USA
| | | | | | | |
Collapse
|