Graham MY, Tal M, Schlessinger D. lac Transcription in Escherichia coli cells treated with chloramphenicol.
J Bacteriol 1982;
151:251-61. [PMID:
7045075 PMCID:
PMC220234 DOI:
10.1128/jb.151.1.251-261.1982]
[Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
When protein synthesis was blocked by chloramphenicol in vivo, transcription initiation of lac mRNA was severely inhibited. In a promoter mutant (L8-UV5) or in wild-type cells supplemented with adenosine 3',5'-phosphate (greater than or equal to 5 mM), nearly normal initiation could be achieved, and when the mRNA chains formed were extracted, they coded for the 5'-terminal alpha-peptide of the lacZ gene in vitro. However, even under such conditions, only a fraction of RNA polymerases proceeded to the end of the Z gene in the presence of chloramphenicol; as a consequence, a wide range of sizes of mRNA was produced, and very few transcripts were formed all the way to the natural termination site of the operon. In other words, premature transcription termination occurred in chloramphenicol-treated cells, as current models predict, but terminations occurred to variable extents at several intragenic sites and apparently at least one intergenic site. Termination at intragenic sites occurred far less in cells bearing a mutation in the transcription termination factor rho.
Collapse