1
|
Potapenko EY, Kashko ND, Knorre DA. Spontaneous Mutations in Saccharomyces cerevisiae mtDNA Increase Cell-to-Cell Variation in mtDNA Amount. Int J Mol Sci 2023; 24:17413. [PMID: 38139242 PMCID: PMC10743915 DOI: 10.3390/ijms242417413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
In a eukaryotic cell, the ratio of mitochondrial DNA (mtDNA) to nuclear DNA (nDNA) is usually maintained within a specific range. This suggests the presence of a negative feedback loop mechanism preventing extensive mtDNA replication and depletion. However, the experimental data on this hypothetical mechanism are limited. In this study, we suggested that deletions in mtDNA, known to increase mtDNA abundance, can disrupt this mechanism, and thus, increase cell-to-cell variance in the mtDNA copy numbers. To test this, we generated Saccharomyces cerevisiae rho- strains with large deletions in the mtDNA and rho0 strains depleted of mtDNA. Given that mtDNA contributes to the total DNA content of exponentially growing yeast cells, we showed that it can be quantified in individual cells by flow cytometry using the DNA-intercalating fluorescent dye SYTOX green. We found that the rho- mutations increased both the levels and cell-to-cell heterogeneity in the total DNA content of G1 and G2/M yeast cells, with no association with the cell size. Furthermore, the depletion of mtDNA in both the rho+ and rho- strains significantly decreased the SYTOX green signal variance. The high cell-to-cell heterogeneity of the mtDNA amount in the rho- strains suggests that mtDNA copy number regulation relies on full-length mtDNA, whereas the rho- mtDNAs partially escape this regulation.
Collapse
Affiliation(s)
- Elena Yu. Potapenko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Nataliia D. Kashko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Dmitry A. Knorre
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
2
|
Galeota-Sprung B, Fernandez A, Sniegowski P. Changes to the mtDNA copy number during yeast culture growth. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211842. [PMID: 35814911 PMCID: PMC9257595 DOI: 10.1098/rsos.211842] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
We show that the mitochondrial DNA (mtDNA) copy number in growing cultures of the yeast Saccharomyces cerevisiae increases by a factor of up to 4, being lowest (approx. 10 per haploid genome) and stable during rapid fermentative growth, and highest at the end of the respiratory phase. When yeast are grown on glucose, the onset of the mtDNA copy number increase coincides with the early stages of the diauxic shift, and the increase continues through respiration. A lesser yet still substantial copy number increase occurs when yeast are grown on a nonfermentable carbon source, i.e. when there is no diauxic shift. The mtDNA copy number increase during and for some time after the diauxic shift is not driven by an increase in cell size. The copy number increase occurs in both haploid and diploid strains but is markedly attenuated in a diploid wild isolate that is a ready sporulator. Strain-to-strain differences in mtDNA copy number are least apparent in fermentation and most apparent in late respiration or stationary phase. While changes in mitochondrial morphology and function were previously known to accompany changes in physiological state, it had not been previously shown that the mtDNA copy number changes substantially over time in a clonal growing culture. The mtDNA copy number in yeast is therefore a highly dynamic phenotype.
Collapse
Affiliation(s)
- Ben Galeota-Sprung
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy Fernandez
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul Sniegowski
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Cheng X, Qin Y, Ivessa AS. Loss of mitochondrial DNA under genotoxic stress conditions in the absence of the yeast DNA helicase Pif1p occurs independently of the DNA helicase Rrm3p. Mol Genet Genomics 2009; 281:635-45. [PMID: 19277716 DOI: 10.1007/s00438-009-0438-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 02/21/2009] [Indexed: 11/28/2022]
Abstract
How the cellular amount of mitochondrial DNA (mtDNA) is regulated under normal conditions and in the presence of genotoxic stress is less understood. We demonstrate that the inefficient mtDNA replication process of mutant yeast cells lacking the PIF1 DNA helicase is partly rescued in the absence of the DNA helicase RRM3. The rescue effect is likely due to the increase in the deoxynucleoside triphosphates (dNTPs) pool caused by the lack of RRM3. In contrast, the Pif1p-dependent mtDNA breakage in the presence and absence of genotoxic stress is not suppressed if RRM3 is lacking suggesting that this phenotype is likely independent of the dNTP pool. Pif1 protein (Pif1p) was found to stimulate the incorporation of dNTPs into newly synthesised mtDNA of gradient-purified mitochondria. We propose that Pif1p that acts likely as a DNA helicase in mitochondria affects mtDNA replication directly. Possible roles of Pif1p include the resolution of secondary DNA and/or DNA/RNA structures, the temporarily displacement of tightly bound mtDNA-binding proteins, or the stabilization of the mitochondrial replication complex during mtDNA replication.
Collapse
Affiliation(s)
- Xin Cheng
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 185 South Orange Avenue, Newark, NJ 07101-1709, USA
| | | | | |
Collapse
|
4
|
Lebedeva MA, Shadel GS. Cell cycle- and ribonucleotide reductase-driven changes in mtDNA copy number influence mtDNA Inheritance without compromising mitochondrial gene expression. Cell Cycle 2007; 6:2048-57. [PMID: 17721079 PMCID: PMC2606055 DOI: 10.4161/cc.6.16.4572] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Most eukaryotes maintain multiple copies of mtDNA, ranging from 20-50 in yeast to as many as 10,000 in mammalian cells. The mitochondrial genome encodes essential subunits of the respiratory chain, but the number of mtDNA molecules is apparently in excess of that needed to sustain adequate respiration, as evidenced by the "threshold effect" in mitochondrial diseases. Thus, other selective pressures apparently have contributed to the universal maintenance of multiple mtDNA molecules/cell. Here we analyzed the interplay between the two pathways proposed to regulate mtDNA copy number in Saccharomyces cerevisiae, and the requirement of normal mtDNA copy number for mitochondrial gene expression, respiration, and inheritance. We provide the first direct evidence that upregulation of mtDNA can be achieved by increasing ribonucleotide reductase (RNR) activity via derepression of nuclear RNR gene transcription or elimination of allosteric-feedback regulation. Analysis of rad53 mutant strains also revealed upregulation of mtDNA copy number independent of that resulting from elevated RNR activity. We present evidence that a prolonged cell cycle allows accumulation of mtDNA in these strains. Analysis of multiple strains with increased or decreased mtDNA revealed that mechanisms are in place to prevent significant changes in mitochondrial gene expression and respiration in the face of approximately two-fold alterations in mtDNA copy number. However, depletion of mtDNA in abf2 null strains leads to defective mtDNA inheritance that is partially rescued by replenishing mtDNA via overexpression of RNR1. These results indicate that one role for multiple mtDNA copies is to ensure optimal inheritance of mtDNA during cell division.
Collapse
Affiliation(s)
- Maria A. Lebedeva
- Department of Pathology; Yale University School of Medicine; New Haven, Connecticut USA
- Graduate Program in Genetics; Yale University School of Medicine; New Haven, Connecticut USA
| | - Gerald S. Shadel
- Department of Pathology; Yale University School of Medicine; New Haven, Connecticut USA
| |
Collapse
|
5
|
Davermann D, Martinez M, McKoy J, Patel N, Averbeck D, Moore CW. Impaired mitochondrial function protects against free radical-mediated cell death. Free Radic Biol Med 2002; 33:1209-20. [PMID: 12398929 DOI: 10.1016/s0891-5849(02)00984-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Free radical damage can have fatal consequences. Mitochondria carry out essential cellular functions and produce high levels of reactive oxygen species (ROS). Many agents also generate ROS. Using the yeast Saccharomyces cerevisiae as a eukaryotic model, the role of functional mitochondria in surviving free radical damage was investigated. Respiratory-deficient cells lacking mitochondrial DNA (rho(0)) were up to 100-fold more resistant than isogenic rho(+) cells to killing by ROS generated by the bleomycin-phleomycin family of oxidative agents. Up to approximately 90% of the survivors of high oxidative stress lost mitochondrial function and became "petites." The selective advantage of respiratory deficiency was studied in several strains, including DNA repair-deficient rad52/rad52 and blm5/blm5 diploid strains. These mutant strains are hypersensitive to lethal effects of free radicals and accumulate more DNA damage than related wild-type strains. Losses in mitochondrial function were dose-dependent, and mutational alteration of the RAD52 or BLM5 gene did not affect the resistance of surviving cells lacking mitochondrial function. The results indicate that inactivation of mitochondrial function protects cells against lethal effects of oxygen free radicals.
Collapse
Affiliation(s)
- Darlene Davermann
- Department of Microbiology and Immunology, City University of New York Medical School/Sophie Davis School of Biomedical Education and Graduate Programs in Biochemistry and Biology, New York 10031, USA
| | | | | | | | | | | |
Collapse
|
6
|
Zelenaya-Troitskaya O, Newman SM, Okamoto K, Perlman PS, Butow RA. Functions of the high mobility group protein, Abf2p, in mitochondrial DNA segregation, recombination and copy number in Saccharomyces cerevisiae. Genetics 1998; 148:1763-76. [PMID: 9581629 PMCID: PMC1460092 DOI: 10.1093/genetics/148.4.1763] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Previous studies have established that the mitochondrial high mobility group (HMG) protein, Abf2p, of Saccharomyces cerevisiae influences the stability of wild-type (rho+) mitochondrial DNA (mtDNA) and plays an important role in mtDNA organization. Here we report new functions for Abf2p in mtDNA transactions. We find that in homozygous deltaabf2 crosses, the pattern of sorting of mtDNA and mitochondrial matrix protein is altered, and mtDNA recombination is suppressed relative to homozygous ABF2 crosses. Although Abf2p is known to be required for the maintenance of mtDNA in rho+ cells growing on rich dextrose medium, we find that it is not required for the maintenance of mtDNA in p cells grown on the same medium. The content of both rho+ and rho- mtDNAs is increased in cells by 50-150% by moderate (two- to threefold) increases in the ABF2 copy number, suggesting that Abf2p plays a role in mtDNA copy control. Overproduction of Abf2p by > or = 10-fold from an ABF2 gene placed under control of the GAL1 promoter, however, leads to a rapid loss of rho+ mtDNA and a quantitative conversion of rho+ cells to petites within two to four generations after a shift of the culture from glucose to galactose medium. Overexpression of Abf2p in rho- cells also leads to a loss of mtDNA, but at a slower rate than was observed for rho+ cells. The mtDNA instability phenotype is related to the DNA-binding properties of Abf2p because a mutant Abf2p that contains mutations in residues of both HMG box domains known to affect DNA binding in vitro, and that binds poorly to mtDNA in vivo, complements deltaabf2 cells only weakly and greatly lessens the effect of overproduction on mtDNA instability. In vivo binding was assessed by colocalization to mtDNA of fusions between mutant or wild-type Abf2p and green fluorescent protein. These findings are discussed in the context of a model relating mtDNA copy number control and stability to mtDNA recombination.
Collapse
Affiliation(s)
- O Zelenaya-Troitskaya
- Department of Molecular Biology and Oncology, University of Texas Southwestern Medical Center, Dallas 75235-9148, USA
| | | | | | | | | |
Collapse
|
7
|
Glucose repression of yeast mitochondrial transcription: kinetics of derepression and role of nuclear genes. Mol Cell Biol 1994. [PMID: 8289797 DOI: 10.1128/mcb.14.2.1160] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yeast mitochondrial transcript and gene product abundance has been observed to increase upon release from glucose repression, but the mechanism of regulation of this process has not been determined. We report a kinetic analysis of this phenomenon, which demonstrates that the abundance of all classes of mitochondrial RNA changes slowly relative to changes observed for glucose-repressed nuclear genes. Several cell doublings are required to achieve the 2- to 20-fold-higher steady-state levels observed after a shift to a nonrepressing carbon source. Although we observed that in some yeast strains the mitochondrial DNA copy number also increases upon derepression, this does not seem to play the major role in increased RNA abundance. Instead we found that three- to sevenfold increases in RNA synthesis rates, measured by in vivo pulse-labelling experiments, do correlate with increased transcript abundance. We found that mutations in the SNF1 and REG1 genes, which are known to affect the expression of many nuclear genes subject to glucose repression, affect derepression of mitochondrial transcript abundance. These genes do not appear to regulate mitochondrial transcript levels via regulation of the nuclear genes RPO41 and MTF1, which encode the subunits of the mitochondrial RNA polymerase. We conclude that a nuclear gene-controlled factor(s) in addition to the two RNA polymerase subunits must be involved in glucose repression of mitochondrial transcript abundance.
Collapse
|
8
|
Ulery TL, Jang SH, Jaehning JA. Glucose repression of yeast mitochondrial transcription: kinetics of derepression and role of nuclear genes. Mol Cell Biol 1994; 14:1160-70. [PMID: 8289797 PMCID: PMC358472 DOI: 10.1128/mcb.14.2.1160-1170.1994] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Yeast mitochondrial transcript and gene product abundance has been observed to increase upon release from glucose repression, but the mechanism of regulation of this process has not been determined. We report a kinetic analysis of this phenomenon, which demonstrates that the abundance of all classes of mitochondrial RNA changes slowly relative to changes observed for glucose-repressed nuclear genes. Several cell doublings are required to achieve the 2- to 20-fold-higher steady-state levels observed after a shift to a nonrepressing carbon source. Although we observed that in some yeast strains the mitochondrial DNA copy number also increases upon derepression, this does not seem to play the major role in increased RNA abundance. Instead we found that three- to sevenfold increases in RNA synthesis rates, measured by in vivo pulse-labelling experiments, do correlate with increased transcript abundance. We found that mutations in the SNF1 and REG1 genes, which are known to affect the expression of many nuclear genes subject to glucose repression, affect derepression of mitochondrial transcript abundance. These genes do not appear to regulate mitochondrial transcript levels via regulation of the nuclear genes RPO41 and MTF1, which encode the subunits of the mitochondrial RNA polymerase. We conclude that a nuclear gene-controlled factor(s) in addition to the two RNA polymerase subunits must be involved in glucose repression of mitochondrial transcript abundance.
Collapse
Affiliation(s)
- T L Ulery
- Department of Biology, Indiana University, Bloomington 47405
| | | | | |
Collapse
|
9
|
Bankmann M, Brendel M. UVA-induced binding of 8-methoxypsoralen to cells of Saccharomyces cerevisiae: separation and characterization of DNA photoadducts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1989; 3:33-52. [PMID: 2498481 DOI: 10.1016/1011-1344(89)80019-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We present methods for the determination of UVA-induced binding of 8-methoxypsoralen (8-MOP) to nucleic acids and protein and for a quantitative assay of radioactively labelled 8-MOP plus UVA induced DNA photoproducts in the yeast Saccharomyces cerevisiae. For the dose range up to 60 kJ m-2, with a wild-type survival of 1% or higher, binding to DNA is 100-fold and to RNA 10- to 20-fold more efficient than that to protein. Between 20% and 65% of the 8-MOP binds to macromolecules that are neither nucleic acids nor protein. The number of DNA-bound 8-MOP molecules for the haploid genome rises from 14 (unirradiated control) to 349 at the highest UVA exposure dose (60 kJ m-2). Gel chromatography reveals three types of DNA thymine photoproduct, the pyrone-side monoadducts, the furan-side monoadducts and the diadducts. Among these, pyrone-side monoadducts always constitute the smallest fraction, regardless of whether the treatment is with in vitro or in vivo 8-MOP plus UVA.
Collapse
Affiliation(s)
- M Bankmann
- Institut für Mikrobiologie der J. W. Goethe-Universität, Frankfurt/Main, F.R.G
| | | |
Collapse
|
10
|
Abstract
We have compiled the available primary structural data for the mitochondrial genome of Saccharomyces cerevisiae and have estimated the size of the remaining gaps, which represent 12-13% of the genome. The lengths of sequenced regions and of gaps lead to a new assessment of genome sizes; these range (in round figures) from 85 000 bp for the long genomes, to 78 000 bp for the short genomes, to 74 000 bp for the supershort genome of Saccharomyces carlsbergensis. These values are 8-11% higher than those previously estimated from restriction fragments. Interstrain differences concern not only facultative intervening sequences (introns) and mini-inserts, but also insertions/deletions in intergenic sequences. The primary structure appears to be extremely conserved in genes and ori sequences, and highly conserved in intergenic sequences. Since coding sequences represent at most 33-35% of the genome, at least two thirds of the genome are formed by noncoding and yet highly conserved sequences. The G + C level of genes or exon is 25%, and that of intronic open reading frames (ORFs) 22%; increasingly lower values are shown by intronic closed reading frames (CRFs), 20%, ori sequences, 19%, intergenic ORFs, 17.5% and intergenic sequences, 15%.
Collapse
|
11
|
Abstract
We have developed a method of preparing yeast chromatin that facilitates the analysis of nucleoprotein organization. Yeast chromatin, isolated as an insoluble complex, is digested with micrococcal nuclease and fractionated into major insoluble and soluble fractions. No nucleosomal repeat is seen early in digestion for the insoluble fraction. Nucleosomal complexes of the soluble fraction are excised by nuclease in a distinctive non-random pattern; they are markedly depleted in mononucleosomes. When we analyze the soluble material by high resolution native electrophoresis, we find that the nucleoproteins resolve into two bands for each DNA multimer of the nucleosomal repeat. Our results suggest that there are structural similarities between bulk yeast chromatin and chromatin configurations found in transcribing genes of complex eukaryotes.
Collapse
|
12
|
|
13
|
The regulation of mitochondrial DNA levels in Saccharomyces cerevisiae. Curr Genet 1982; 6:147-52. [DOI: 10.1007/bf00435214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/1982] [Revised: 07/21/1982] [Indexed: 10/26/2022]
|
14
|
Piperakis SM, Parry EM. A study of macromolecular synthesis in a range of radiation sensitive mutants of yeast. INTERNATIONAL JOURNAL OF RADIATION BIOLOGY AND RELATED STUDIES IN PHYSICS, CHEMISTRY, AND MEDICINE 1982; 41:91-8. [PMID: 7037671 DOI: 10.1080/09553008214550091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Cottrell SF. Variations in mitochondrial DNA concentration as a function of different growth conditions in yeast. Biochem Biophys Res Commun 1981; 98:1091-6. [PMID: 7013766 DOI: 10.1016/0006-291x(81)91223-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
16
|
Hixon SC, Franks HL, Moustacchi E. Yeast mitochondrial DNA characterization after ultraviolet irradiation. Mutat Res 1980; 73:267-77. [PMID: 7007878 DOI: 10.1016/0027-5107(80)90193-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Yeast mitochondrial (mtDNA) 3H-labelled was isolated from exponential phase cells after ultraviolet light irradiation. Both the size and amount of mtDNA were found to be reduced during a 40-h liquid-holding (LH) period in non-growth medium following irradiation as compared to the mtDNA recovered from nonirradiated cells under similar conditions. After the LH period, previously irradiated cells were resuspended in growth medium containing [14C]adenine. Double labelled mtDNA (3H and 14C) was isolated from cell samples removed during new growth. A recovery in the amount and size of mtDNA was observed in irradiated cells during new growth. These biochemical studies agree with the observed loss and recovery of mtDNA genetic markers in UV-irradiated exponential phase yeast after a period of LH and new growth resp.
Collapse
|
17
|
Blanc H, Dujon B. Replicator regions of the yeast mitochondrial DNA responsible for suppressiveness. Proc Natl Acad Sci U S A 1980; 77:3942-6. [PMID: 7001449 PMCID: PMC349743 DOI: 10.1073/pnas.77.7.3942] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hypersuppressiveness is a heritable property of some rho- mutants (called HS) that, in crosses to rho+, give rise to about 100% rho- cells. The mtDNAs of all HS rho- mutants reveal a common organization: they all share a homologous region of about 300 base pairs (called rep) and the fragments retained are always short (ca. 1% of the wild-type genome) and tandemly repeated. Using one HS rho- mutant as an example, we show that, after crosses with rho+ strains, the mitochondrial genome of the progeny is indistinguishable from that of the HS parent. This suggests that HS mtDNA molecules have a decisive selective advantage for replication during the transient heteroplasmic stage that follows zygote formation, the rep regions playing a role in the control of replication initiation of the mtDNA molecules. The complete nucleotide sequence of one HS rho- mutant and its localization in the oli1-rib3 segment of the rho+ mitochondrial genome are presented. Comparison of the nucleotide sequences of the rep regions of two different HS rho- mutants reveals that several rep sequences must exist in the wild-type genome, probably as a result of duplications of an originally unique ancestor.
Collapse
|
18
|
Lewin AS, Morimoto R, Rabinowitz M. Stable heterogeneity of mitochondrial DNA in grande and petite strains of S. cerevisiae. Plasmid 1979; 2:474-84. [PMID: 384424 DOI: 10.1016/0147-619x(79)90031-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
|
20
|
Strausberg RL, Perlman PS. The effect of zygotic bud position on the transmission of mitochondrial genes in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1978; 163:131-44. [PMID: 355844 DOI: 10.1007/bf00267404] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Linnane AW, Nagley P. Mitochondrial genetics in perspective: the derivation of a genetic and physical map of the yeast mitochondrial genome. Plasmid 1978; 1:324-45. [PMID: 372968 DOI: 10.1016/0147-619x(78)90049-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Hall RM, Mattick JS, Nagley P, Cobon GS, Eastwood FW, Linnane AW. The action of structural analogues of ethidium bromide on the mitochondrial genome of yeast. Mol Biol Rep 1977; 3:443-9. [PMID: 339057 DOI: 10.1007/bf00808386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have studied the effects on the yeast mitochondrial genome of four analogues of ethidium bromide, in which the phenyl moieyt has been replaced by linear alkyl chains of lengths varying from seven to fifteen carbon atoms. These analogues are more efficient than ethidium bromide in inducing petite mutants in Saccharomyces cervisiae. The drugs also cause a loss of mtDNA from the cells in vivo; however these analogues are in fact less effective inhibitors of mitochondrial DNA replication per se, as shown by direct in vitro studies. It is concluded that these analogues are more efficient than ethidium bromide in causing the fragmentation of mitochondrial DNA in S. cervisiae.
Collapse
|
23
|
Mattick JS, Hall RM. Replicative deoxyribonucleic acid synthesis in isolated mitochondria from Saccharomyces cerevisiae. J Bacteriol 1977; 130:973-82. [PMID: 324990 PMCID: PMC235317 DOI: 10.1128/jb.130.3.973-982.1977] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The characteristics of a system for the in vitro synthesis of mitochondrial deoxyribonucleic acid (mtDNA) in mitochondria isolated from Saccharomyces cerevisiae are described. In this system the exclusive product of the reaction is mtDNA. Under optimal conditions the initial rate of synthesis is close to the calculated in vivo rate; the rate is approximately linear for 20 min but then decreases gradually with time. DNA synthesis proceeds for at least 60 min and the de novo synthesis of an amount of mtDNA equivalent to 15% of the mtDNA initially present is achieved. The rate and extent of synthesis observed with mitochondria isolated from grande and petite (rho(-)) strains were similar. The mode of DNA synthesis is semiconservative; after density labeling with 5-bromodeoxyuridine triphosphate, in vitro, the majority of labeled DNA fragments of duplex molecular weight, 6 x 10(6), are of a density close to that calculated for hybrid yeast mtDNA. The density label is incorporated into one strand of the duplex molecules. These properties indicate that the synthesis resembles replicative rather than repair synthesis. This system therefore provides a convenient method for the study of mtDNA synthesis in S. cerevisiae. The observation that mtDNA synthesis is semiconservative in vitro suggests that the dispersive mode of synthesis observed in S. cerevisiae in vivo labeling studies is the result of some other process, possibly a high recombination rate.
Collapse
|
24
|
Mattick JS. Comparative studies of the effects of acridines and other petite inducing drugs on the mitochondrial genome of Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1977; 152:267-76. [PMID: 327282 DOI: 10.1007/bf00693080] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Nagley P, Mattick JS. Mitochondrial DNA replication in petite mutants of yeast: resistance to inhibition by ethidium bromide, berenil and euflavine. MOLECULAR & GENERAL GENETICS : MGG 1977; 152:277-83. [PMID: 327283 DOI: 10.1007/bf00693081] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mitochondrial DNA (mtDNA) replication in petite mutants of Saccharomyces cerevisiae is generally less sensitive to inhibition by ethidium bromide than in grande (respiratory competent) cells. In every petite that we have examined, which retain a range of different grande mtDNA sequences, this general phenomenon has been demonstrated by measurements of the loss of mtDNA from cultures grown in the presence of the drug. The resistance is also demonstrable by direct analysis of drug inhibition of mtDNA replication in isolated mitochondria. Furthermore, the resistance to ethidium bromide is accompanied, in every case tested, by cross-resistance to berenil and euflavine, although variations in the levels of resistance are observed. In one petite the level of in vivo resistance to the three drugs was very similar (4-fold over the grande parent) whilst another petite was mildly resistant to ethidium bromide and berenil (each 1.6-fold over the parent) and strongly resistant (nearly 8-fold) to inhibition of mtDNA replication by euflavine. The level of resistance to ethidium bromide in several other petite clones tested was found to vary markedly. Using genetic techniques it is possible to identify those petites which display an enhanced resistance to ethidium bromide inhibition of mtDNA replication. It is considered that the general resistance of petites arises because a product of mitochondrial protein synthesis is normally involved in facilitating the inhibitory action of these drugs on mtDNA synthesis in grande cells. The various levels of resistance in petites may be modulated by the particular mtDNA sequences retained in each petite.
Collapse
|
26
|
Adena MA. A model in mitochondrial genetics. Math Biosci 1977. [DOI: 10.1016/0025-5564(77)90025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
Nagley P, Sriprakash KS, Linnane AW. Structure, synthesis and genetics of yeast mitochondrial DNA. Adv Microb Physiol 1977; 16:157-277. [PMID: 343546 DOI: 10.1016/s0065-2911(08)60049-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Schweyen RJ, Kaudewitz F. On the formation of rho- petites in yeast. I. Multifactorial mitochondrial crosses (rho+ X rho+) involving a mutation conferring temperature-sensitivity of rho factor stability. MOLECULAR & GENERAL GENETICS : MGG 1976; 149:311-22. [PMID: 799250 DOI: 10.1007/bf00268533] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The inheritance of an extrakaryotic mutation conferring temperature-sensitive growth on non-fermentable substrates and a high frequency of mutation to rho- has been studied. Multifactorial crosses (rho+ X rho+) involving this mutation TS8 and mitochondrial mutations conferring resistance to chloramphenicol, erythromycin, oligomycin or paromomycin revealed: a) Mutation TS8 is localized on the mitDNA, referring to a new gene locus TSM1. b) Locus TSM1 appears to be weakly linked to the locus PAR1 and to the loci RIB1 and RIB3 but unlinked to the locus OLI1. c) The position of TSM1 is between PAR1 and the two closely linked loci RIB1 and RIB3, OLI1 is outside and not linked to the segment PAR-TSM-RIB. d) Mutation TS8 does not significantly influence the process of mitochondrial recombination and its control by the mitochondrial locus omega.
Collapse
|