1
|
Dey A, Roy D, Mohture VM, Ghorai M, Rahman MH, Anand U, Dewanjee S, Radha, Kumar M, Prasanth DA, Jha NK, Jha SK, Shekhawat MS, Pandey DK. Biotechnological interventions and indole alkaloid production in Rauvolfia serpentina. Appl Microbiol Biotechnol 2022; 106:4867-4883. [PMID: 35819514 DOI: 10.1007/s00253-022-12040-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 11/02/2022]
Abstract
Rauvolfia serpentina (L). Benth. ex Kurz. (Apocynaceae), commonly known as Sarpagandha or Indian snakeroot, has long been used in the traditional treatment of snakebites, hypertension, and mental illness. The plant is known to produce an array of indole alkaloids such as reserpine, ajmaline, amalicine, etc. which show immense pharmacological and biomedical significance. However, owing to its poor seed viability, lesser germination rate and overexploitation for several decades for its commercially important bioactive constituents, the plant has become endangered in its natural habitat. The present review comprehensively encompasses the various biotechnological tools employed in this endangered Ayurvedic plant for its in vitro propagation, role of plant growth regulators and additives in direct and indirect regeneration, somatic embryogenesis and synthetic seed production, secondary metabolite production in vitro, and assessment of clonal fidelity using molecular markers and genetic transformation. In addition, elicitation and other methods of optimization of its indole-alkaloids are also described herewith. KEY POINTS: • Latest literature on in vitro propagation of Rauvolfia serpentina • Biotechnological production and optimization of indole alkaloids • Clonal fidelity and transgenic studies in R. serpentina.
Collapse
Affiliation(s)
- Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| | - Debleena Roy
- PG Department of Botany, Lady Brabourne College, Kolkata, West Bengal, India
| | - Vikas Moreshwar Mohture
- Department of Botany, Rashtrapita Mahatma Gandhi Arts and Science College, Nagbhid, Maharashtra, India, 441205
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Md Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju, 26426, Korea
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, West Bengal, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research On Cotton Technology, Mumbai, 400019, India
| | - Dorairaj Arvind Prasanth
- Department of Microbiology, School of Biosciences, Periyar University, Salem, 636011, Tamilnadu, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, Uttar Pradesh, India.,Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India.,Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
| | - Mahipal S Shekhawat
- Plant Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry, 605 008, India
| | - Devendra Kumar Pandey
- Department of Biotechnology, Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
2
|
Pérez-González MZ, Jiménez-Arellanes MA. Biotechnological processes to obtain bioactive secondary metabolites from some Mexican medicinal plants. Appl Microbiol Biotechnol 2021; 105:6257-6274. [PMID: 34415391 DOI: 10.1007/s00253-021-11471-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/24/2022]
Abstract
The consumption of medicinal plants has increased in recent decades due to the fact that they biosynthesize compounds with many biological activities; thus, some plant species with biological potential are being utilized as raw material by the industries for preparation of drugs, phytodrugs, or food supplements. This has the consequence of overexploitation and deforestation, which endangers plant species-of-interest. In recent years, alternatives have been sought to eradicate this problem. A solution that was given and is maintained is plant biotechnology, which favors the production of secondary metabolites (SMt) with important biological activity. Plant biotechnology allows us to increase the yield of a compound-of-interest, reduces its production times and costs, and allows constant and controlled production of the raw material, while aiding in the protection of medicinal plants that are found in danger of extinction. In the scientific literature, procuring the SMt by means of biotechnological processes is described, highlighting the study of five species from Mexican traditional medicine (Lopezia racemosa, Galphimia glauca, Cnidoscolus chayamansa, and Buddleja cordata), and the main biological activities are as follows: anti-inflammatory, hepatoprotector, neuroprotector, anxiolytic, antitumoral, antibacterial, and antioxidant, among others. KEY POINTS: • Secondary metabolites produce by biotechnology processes • Active secondary metabolites isolated from Mexican medicinal plants • Recent advances on the production of some bioactive secondary metabolites.
Collapse
Affiliation(s)
- Mariana Zuleima Pérez-González
- Unidad de Investigación Médica en Farmacología, UMAE Hospital de Especialiades, Centro Médico Nacional Siglo XXI (CMN-SXXI), Instituto Mexicano del Seguro Social (IMSS), Av. Cuauhtémoc 330, Col. Doctores; Alcaldía Cuauhtémoc 06720, Mexico City, CdMx, Mexico
| | - María Adelina Jiménez-Arellanes
- Unidad de Investigación Médica en Farmacología, UMAE Hospital de Especialiades, Centro Médico Nacional Siglo XXI (CMN-SXXI), Instituto Mexicano del Seguro Social (IMSS), Av. Cuauhtémoc 330, Col. Doctores; Alcaldía Cuauhtémoc 06720, Mexico City, CdMx, Mexico.
| |
Collapse
|
3
|
Park JS, Seong ZK, Kim MS, Ha JH, Moon KB, Lee HJ, Lee HK, Jeon JH, Park SU, Kim HS. Production of Flavonoids in Callus Cultures of Sophora flavescens Aiton. PLANTS 2020; 9:plants9060688. [PMID: 32481711 PMCID: PMC7356026 DOI: 10.3390/plants9060688] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 11/16/2022]
Abstract
Flavonoids, including maackiain (Maac) from Sophora flavescens Aiton roots, have many pharmacological properties, such as antitumor, antimicrobial, and antifungal activities. This research aimed to develop an in vitro plant and callus culture system for S. flavescens for the purpose of generating an alternative production system for enhancing Maac production, as Maac is usually present in very small amounts in S. flavescens' roots. We arranged the optimal conditions of different tissues of S. flavescens and supplemented the medium with various plant growth regulators (PGRs). The highest induction and proliferation rates of callus was shown in combination treatments of all concentrations of thidiazuron (TDZ) and picloram. In addition, calli induced with leaf explants cultured on 2.0 mg/L picloram and 0.5 mg/L 6-benzyladenine (BA) in Murashige and Skoog (MS) medium had the highest accumulation of the active metabolite Maac. In vitro shoots were regenerated on medium containing combinations of TDZ and α-Naphthalene acetic acid (NAA). A reliable protocol for the mass production of secondary metabolites using a callus culture of S. flavescens was successfully established.
Collapse
Affiliation(s)
- Ji-Sun Park
- Plant Systems Engineering Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (J.-S.P.); (M.-S.K.); (J.-H.H.); (K.-B.M.); (H.-J.L.); (J.-H.J.)
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Daejeon 34143, Korea
| | - Zuh-Kyung Seong
- Natural Medicine Research Center, KRIBB, 30 Yeongudanji-ro, Ochang-eup, Cheongju-si, Chungbuk 28116, Korea; (Z.-K.S.); (H.-K.L.)
| | - Mi-Sun Kim
- Plant Systems Engineering Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (J.-S.P.); (M.-S.K.); (J.-H.H.); (K.-B.M.); (H.-J.L.); (J.-H.J.)
| | - Jang-Ho Ha
- Plant Systems Engineering Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (J.-S.P.); (M.-S.K.); (J.-H.H.); (K.-B.M.); (H.-J.L.); (J.-H.J.)
| | - Ki-Beom Moon
- Plant Systems Engineering Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (J.-S.P.); (M.-S.K.); (J.-H.H.); (K.-B.M.); (H.-J.L.); (J.-H.J.)
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (J.-S.P.); (M.-S.K.); (J.-H.H.); (K.-B.M.); (H.-J.L.); (J.-H.J.)
| | - Hyeong-Kyu Lee
- Natural Medicine Research Center, KRIBB, 30 Yeongudanji-ro, Ochang-eup, Cheongju-si, Chungbuk 28116, Korea; (Z.-K.S.); (H.-K.L.)
| | - Jae-Heung Jeon
- Plant Systems Engineering Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (J.-S.P.); (M.-S.K.); (J.-H.H.); (K.-B.M.); (H.-J.L.); (J.-H.J.)
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Daejeon 34143, Korea
- Correspondence: (S.U.P.); (H.-S.K.)
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (J.-S.P.); (M.-S.K.); (J.-H.H.); (K.-B.M.); (H.-J.L.); (J.-H.J.)
- Correspondence: (S.U.P.); (H.-S.K.)
| |
Collapse
|
4
|
Mukherjee E, Gantait S, Kundu S, Sarkar S, Bhattacharyya S. Biotechnological interventions on the genus Rauvolfia: recent trends and imminent prospects. Appl Microbiol Biotechnol 2019; 103:7325-7354. [PMID: 31363825 DOI: 10.1007/s00253-019-10035-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 11/30/2022]
Abstract
Rauvolfia spp., also known as devil peppers, are a group of evergreen shrubs and trees. Among the ~ 76 various species, Rauvolfia serpentina is the most important one as it finds its use as an important medicinal plant. It is commonly known as the Indian snakeroot plant or Sarpagandha. The plant is rich in multiple secondary metabolites. Some of the well-known secondary metabolites are reserpine, ajmaline, ajmalicine, serpentine, yohimbine, etc. Alkaloids are also found in all parts of the plant but the richest sources are the roots. Since ancient times, roots (mainly due to reserpine) have been utilized in various Ayurvedic and Unani medicinal preparations for the treatment of diseases like hypertension, anxiety, insomnia and schizophrenia. Apart from this, there are many other pharmacological and ethnobotanical uses of this plant. There are a number of published reports regarding tissue culture techniques on Rauvolfia spp. The current review mainly illustrates and discusses the various in vitro biotechnological aspects such as direct regeneration, indirect regeneration via callus formation, somatic embryogenesis, synthetic seed production, hairy root culture, polyploidy induction and secondary metabolite estimation, which provides significant ideas regarding the ongoing research activities and future prospects related to the genetic improvement of this genus.
Collapse
Affiliation(s)
- Eashan Mukherjee
- Crop Research Unit (Genetics and Plant Breeding), Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India
| | - Saikat Gantait
- Crop Research Unit (Genetics and Plant Breeding), Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India.
| | - Suprabuddha Kundu
- Department of Agricultural Biotechnology, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India
| | - Sutanu Sarkar
- Crop Research Unit (Genetics and Plant Breeding), Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India
| | - Somnath Bhattacharyya
- Crop Research Unit (Genetics and Plant Breeding), Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India
| |
Collapse
|
5
|
Rather GA, Sharma A, Jeelani SM, Misra P, Kaul V, Lattoo SK. Metabolic and transcriptional analyses in response to potent inhibitors establish MEP pathway as major route for camptothecin biosynthesis in Nothapodytes nimmoniana (Graham) Mabb. BMC PLANT BIOLOGY 2019; 19:301. [PMID: 31291885 PMCID: PMC6617690 DOI: 10.1186/s12870-019-1912-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/30/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Nothapodytes nimmoniana, a plant of pivotal medicinal significance is a source of potent anticancer monoterpene indole alkaloid (MIA) camptothecin (CPT). This compound owes its potency due to topoisomerase-I inhibitory activity. However, biosynthetic and regulatory aspects of CPT biosynthesis so far remain elusive. Production of CPT is also constrained due to unavailability of suitable in vitro experimental system. Contextually, there are two routes for the biosynthesis of MIAs: the mevalonate (MVA) pathway operating in cytosol and the methylerythritol phosphate (MEP) pathway in the plastids. Determination of relative precursor flux through either of these pathways may provide a new vista for manipulating the enhanced CPT production. RESULTS In present study, specific enzyme inhibitors of MVA (lovastatin) and MEP pathways (fosmidomycin) were used to perturb the metabolic flux in N. nimmoniana. Interaction of both these pathways was investigated at transcriptional level by using qRT-PCR and at metabolite level by evaluating secologanin, tryptamine and CPT contents. In fosmidomycin treated plants, highly significant reduction was observed in both secologanin and CPT accumulation in the range 40-57% and 64-71.5% respectively, while 4.61-7.69% increase was observed in tryptamine content as compared to control. Lovastatin treatment showed reduction in CPT (7-11%) and secologanin (7.5%) accumulation while tryptamine registered slight increase (3.84%) in comparison to control. These inhibitor mediated changes were reflected at transcriptional level via altering expression levels of deoxy-xylulose-5-phosphate reductoisomerase (DXR) and hydroxymethylglutaryl-CoA reductase (HMG). Further, mRNA expression of four more genes downstream to DXR and HMG of MEP and MVA pathways respectively were also investigated. Expression analysis also included secologanin synthase (SLS) and strictosidine synthase (STR) of seco-iridoid pathway. Present investigation also entailed development of an efficient in vitro multiplication system as a precursor to pathway flux studies. Further, a robust Agrobacterium-mediated transformed hairy root protocol was also developed for its amenability for up-scaling as a future prospect. CONCLUSIONS Metabolic and transcriptional changes reveal differential efficacy of cytosolic and plastidial inhibitors in context to pathway flux perturbations on seco-iridoid end-product camptothecin. MEP pathway plausibly is the major precursor contributor towards CPT production. These empirical findings allude towards developing suitable biotechnological interventions for enhanced CPT production.
Collapse
Affiliation(s)
- Gulzar A. Rather
- Plant Biotechnology Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001 India
| | - Arti Sharma
- Plant Biotechnology Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001 India
| | - Syed Mudassir Jeelani
- Plant Biotechnology Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001 India
| | - Prashant Misra
- Plant Biotechnology Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001 India
| | - Veenu Kaul
- Department of Botany, University of Jammu, Jammu Tawi, 180006 India
| | - Surrinder K. Lattoo
- Plant Biotechnology Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001 India
| |
Collapse
|
6
|
Mohammed A, Chiruvella KK, Rao YK, Geethangili M, Raghavan SC, Ghanta RG. In Vitro Production of Echioidinin, 7-O-Methywogonin from Callus Cultures of Andrographis lineata and Their Cytotoxicity on Cancer Cells. PLoS One 2015; 10:e0141154. [PMID: 26488879 PMCID: PMC4619555 DOI: 10.1371/journal.pone.0141154] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/03/2015] [Indexed: 11/19/2022] Open
Abstract
Andrographis lineata is an herbal medicinal plant used in traditional medicine as a substitute for Andrographis paniculata. Here, using mature leaf explants of A. lineata we demonstrate for the first time the callus induction established on MS medium containing 1.0 mg l-1 IAA. Dried callus was subjected to solvent extraction with acetone. Further the acetone residue was separated by silica gel column chromatography, crystallized and characterized on the basis of nuclear magnetic resonance (proton and c13) and liquid chromatographic mass spectroscopy. This analysis revealed the occurrence of two known flavones namely, 7-O-methylwogonin (MW) and Echioidinin (ED). Furthermore, these compounds were tested for their cytotoxicity against leukemic cell line, CEM. We identify that ED and MW induced cytotoxicity in a time- and concentration-dependent manner. Further increase in the LDH release upon treatment with ED and MW further confirmed our cytotoxicity results against leukemic cell line. Strikingly, MW was more potent than ED when compared by trypan blue and MTT assays. Our results recapitulate the utility of callus cultures for the production of plant specific bioactive secondary metabolites instead of using wild plants. Together, our in vitro studies provide new insights of A. lineata callus cultures serving as a source for cancer chemotherapeutic agents.
Collapse
Affiliation(s)
- Arifullah Mohammed
- Faculty of Agrobased Industry, Universiti Malaysia Kelantan, Jeli Campus, Locked bag-100, 17600, Jeli, Kelantan, Malaysia
- Division of Plant Tissue Culture, Department of Botany, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
- * E-mail:
| | - Kishore K. Chiruvella
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
- Division of Plant Tissue Culture, Department of Botany, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Yerra Koteswara Rao
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung, Taiwan
| | | | - Sathees C. Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Rama Gopal Ghanta
- Division of Plant Tissue Culture, Department of Botany, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| |
Collapse
|
7
|
Alatar AA. Thidiazuron induced efficientin vitromultiplication andex vitroconservation ofRauvolfia serpentina– a potent antihypertensive drug producing plant. BIOTECHNOL BIOTEC EQ 2015. [DOI: 10.1080/13102818.2015.1017535] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
8
|
Yue W, Ming QL, Lin B, Rahman K, Zheng CJ, Han T, Qin LP. Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Crit Rev Biotechnol 2014; 36:215-32. [PMID: 24963701 DOI: 10.3109/07388551.2014.923986] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The development of plant tissue (including organ and cell) cultures for the production of secondary metabolites has been underway for more than three decades. Plant cell cultures with the production of high-value secondary metabolites are promising potential alternative sources for the production of pharmaceutical agents of industrial importance. Medicinal plant cell suspension cultures (MPCSC), which are characterized with the feature of fermentation with plant cell totipotency, could be a promising alternative "chemical factory". However, low productivity becomes an inevitable obstacle limiting further commercialization of MPCSC and the application to large-scale production is still limited to a few processes. This review generalizes and analyzes the recent progress of this bioproduction platform for the provision of medicinal chemicals and outlines a range of trials taken or underway to increase product yields from MPCSC. The scale-up of MPCSC, which could lead to an unlimited supply of pharmaceuticals, including strategies to overcome and solution of the associated challenges, is discussed.
Collapse
Affiliation(s)
- Wei Yue
- a Department of Pharmacognosy, School of Pharmacy , Second Military Medical University , Shanghai , China .,b School of Life Science , East China Normal University , Shanghai , China
| | - Qian-Liang Ming
- a Department of Pharmacognosy, School of Pharmacy , Second Military Medical University , Shanghai , China
| | - Bing Lin
- a Department of Pharmacognosy, School of Pharmacy , Second Military Medical University , Shanghai , China
| | - Khalid Rahman
- c Faculty of Science, School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Byrom Street , Liverpool , UK , and
| | - Cheng-Jian Zheng
- a Department of Pharmacognosy, School of Pharmacy , Second Military Medical University , Shanghai , China
| | - Ting Han
- a Department of Pharmacognosy, School of Pharmacy , Second Military Medical University , Shanghai , China .,d School of Forestry and Biotechnology , ZheJiang Agriculture & Forestry University , Lin'an , Hangzhou , China
| | - Lu-Ping Qin
- a Department of Pharmacognosy, School of Pharmacy , Second Military Medical University , Shanghai , China
| |
Collapse
|
9
|
|
10
|
Salma U, Rahman MSM, Islam S, Haque N, Jubair TA, Haque AKMF, Mukti IJ. The influence of different hormone concentration and combination on callus induction and regeneration of Rauwolfia serpentina L. Benth. Pak J Biol Sci 2008; 11:1638-41. [PMID: 18819656 DOI: 10.3923/pjbs.2008.1638.1641] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Abstract
The influence of media composition on callus induction and subsequent regeneration of Rauwolfia serpentina L. Benth has been studied. High frequency (96.43%) callus induction was obtained when nodal segments from in vitro raised shoots were cultured on MS medium supplemented with 0.5 mg L(-1) BA and 2.0 mg L(-1) NAA. The callus differentiated into adventitious shoots when it was subcultured on MS medium supplemented with 2.0 mg L(-1) BA with 0.2 mg L(-1) NAA. Regenerated shoots were best rooted on half-strength MS medium with 1.0 mg L(-1) each of IBA and IAA.
Collapse
Affiliation(s)
- U Salma
- Department of RDDR, Modern Herbal Group, Dhaka-1217, Bangladesh
| | | | | | | | | | | | | |
Collapse
|
11
|
Chapter 2 Biosynthesis in Rauwolfia serpentina Modern Aspects of an Old Medicinal Plant. THE ALKALOIDS: CHEMISTRY AND PHARMACOLOGY 1995. [DOI: 10.1016/s0099-9598(08)60154-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Verpoorte R, van der Heijden R, van Gulik WM, ten Hoopen HJ. Chapter 1 Plant Biotechnology for the Production of Alkaloids: Present Status and Prospects. THE ALKALOIDS: CHEMISTRY AND PHARMACOLOGY 1991. [DOI: 10.1016/s0099-9598(08)60268-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
13
|
|
14
|
Nakajima H, Sonomoto K, Sato F, Ichimura K, Yamada Y, Tanaka A. Enhancement of pigment productivity of immobilized cultured Lavandula vera cells by limitation of nitrogen sources. ACTA ACUST UNITED AC 1989. [DOI: 10.1016/0922-338x(89)90238-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Formation of Secondary Metabolites in Cultured Plant Cells and Its Impact on Pharmacy. BIOTECHNOLOGY IN AGRICULTURE AND FORESTRY 1988. [DOI: 10.1007/978-3-642-73026-9_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|