1
|
Palusińska M, Barabasz A, Antosiewicz DM. NtZIP5A/B is involved in the regulation of Zn/Cu/Fe/Mn/Cd homeostasis in tobacco. Metallomics 2024; 16:mfae035. [PMID: 39085042 DOI: 10.1093/mtomcs/mfae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024]
Abstract
Plants grow in soils with varying concentrations of microelements, often in the presence of toxic metals e.g. Cd. To cope, they developed molecular mechanisms to regulate metal cross-homeostasis. Understanding underlying complex relationships is key to improving crop productivity. Recent research suggests that the Zn and Cd uptake protein NtZIP5A/B [Zinc-regulated, Iron-regulated transporter-like Proteins (ZIPs)] from tobacco (Nicotiana tabacum L. v. Xanthi) is involved in the regulation of a cross-talk between the two metals. Here, we support this conclusion by showing that RNAi-mediated silencing of NtZIP5A/B resulted in a reduction of Zn accumulation and that this effect was significantly enhanced by the presence of Cd. Our data also point to involvement of NtZIP5B in regulating a cross-talk between Cu, Fe, and Mn. Using yeast growth assays, Cu (but not Fe or Mn) was identified as a substrate for NtZIP5B. Furthermore, GUS-based analysis showed that the tissue-specific activity of the NtZIP5B promoter was different in each of the Zn-/Cu-/Fe-/Mn deficiencies applied with/without Cd. The results indicate that NtZIP5B is involved in maintaining multi-metal homeostasis under conditions of Zn, Cu, Fe, and Mn deficiency, and also in the presence of Cd. It was concluded that the protein regulates the delivery of Zn and Cu specifically to targeted different root cells depending on the Zn/Cu/Fe/Mn status. Importantly, in the presence of Cd, the activity of the NtZIP5B promoter is lost in meristematic cells and increased in mature root cortex cells, which can be considered a manifestation of a defense mechanism against its toxic effects.
Collapse
Affiliation(s)
- Małgorzata Palusińska
- U niversity of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, 1 Miecznikowa Str.,02-096 Warszawa, Poland
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Anna Barabasz
- U niversity of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, 1 Miecznikowa Str.,02-096 Warszawa, Poland
| | - Danuta Maria Antosiewicz
- U niversity of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, 1 Miecznikowa Str.,02-096 Warszawa, Poland
| |
Collapse
|
2
|
Silva GS, Souza MM, Pamponét VDCC, Micheli F, de Melo CAF, de Oliveira SG, Costa EA. Cytogenomic Characterization of Transposable Elements and Satellite DNA in Passiflora L. Species. Genes (Basel) 2024; 15:418. [PMID: 38674353 PMCID: PMC11049143 DOI: 10.3390/genes15040418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The species Passiflora alata, P. cincinnata, and P. edulis have great economic value due to the use of their fruits for human consumption. In this study, we compared the repetitive genome fractions of these three species. The compositions of the repetitive DNA of these three species' genomes were analyzed using clustering and identification of the repetitive sequences with RepeatExplorer. It was found that repetitive DNA content represents 74.70%, 66.86%, and 62.24% of the genome of P. alata, P. edulis, and P. cincinnata, respectively. LTR Ty3/Gypsy retrotransposons represent the highest genome proportions in P. alata and P. edulis, while Ty1/Copia comprises the largest proportion of P. cincinnata genome. Chromosomal mapping by Fluorescent In Situ Hybridization (FISH) showed that LTR retrotransposons have a dispersed distribution along chromosomes. The subtelomeric region of chromosomes is where 145 bp satellite DNA is located, suggesting that these elements may play important roles in genome structure and organization in these species. In this work, we obtained the first global characterization of the composition of repetitive DNA in Passiflora, showing that an increase in genome size is related to an increase in repetitive DNA, which represents an important evolutionary route for these species.
Collapse
Affiliation(s)
- Gonçalo Santos Silva
- Laboratório de Melhoramento de Plantas, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil; (G.S.S.); (V.d.C.C.P.); (F.M.); (C.A.F.d.M.); (E.A.C.)
| | - Margarete Magalhães Souza
- Laboratório de Melhoramento de Plantas, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil; (G.S.S.); (V.d.C.C.P.); (F.M.); (C.A.F.d.M.); (E.A.C.)
| | - Vanessa de Carvalho Cayres Pamponét
- Laboratório de Melhoramento de Plantas, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil; (G.S.S.); (V.d.C.C.P.); (F.M.); (C.A.F.d.M.); (E.A.C.)
| | - Fabienne Micheli
- Laboratório de Melhoramento de Plantas, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil; (G.S.S.); (V.d.C.C.P.); (F.M.); (C.A.F.d.M.); (E.A.C.)
- CIRAD, UMR AGAP, F-34398 Montpellier, France
| | - Cláusio Antônio Ferreira de Melo
- Laboratório de Melhoramento de Plantas, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil; (G.S.S.); (V.d.C.C.P.); (F.M.); (C.A.F.d.M.); (E.A.C.)
| | - Sárah Gomes de Oliveira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo (USP), São Paulo 01049-010, SP, Brazil;
| | - Eduardo Almeida Costa
- Laboratório de Melhoramento de Plantas, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil; (G.S.S.); (V.d.C.C.P.); (F.M.); (C.A.F.d.M.); (E.A.C.)
| |
Collapse
|
3
|
Benkő P, Kaszler N, Gémes K, Fehér A. Subfunctionalization of Parental Polyamine Oxidase (PAO) Genes in the Allopolyploid Tobacco Nicotiana tabacum (L.). Genes (Basel) 2023; 14:2025. [PMID: 38002968 PMCID: PMC10671180 DOI: 10.3390/genes14112025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Polyamines play an important role in developmental and environmental stress responses in plants. Polyamine oxidases (PAOs) are flavin-adenine-dinucleotide-dependent enzymes associated with polyamine catabolism. In this study, 14 genes were identified in the tobacco genome that code for PAO proteins being named based on their sequence homology with Arabidopsis PAOs (AtPAO1-5): NtPAO1A-B; NtPAO2A-C, NtPAO4A-D, and NtPAO5A-E. Sequence analysis confirmed that the PAO gene family of the allopolyploid hybrid Nicotiana tabacum is not an exact combination of the PAO genes of the maternal Nicotiana sylvestris and paternal Nicotiana tomentosiformis ones. The loss of the N. sylvestris homeolog of NtPAO5E and the gain of an extra NtPAO2 copy, likely of Nicotiana othophora origin, was revealed. The latter adds to the few pieces of evidence suggesting that the paternal parent of N. tabacum was an introgressed hybrid of N. tomentosiformis and N. othophora. Gene expression analysis indicated that all 14 PAO genes kept their expression following the formation of the hybrid species. The homeologous gene pairs showed similar or opposite regulation depending on the investigated organ, applied stress, or hormone treatment. The data indicate that the expression pattern of the homeologous genes is diversifying in a process of subfunctionalization.
Collapse
Affiliation(s)
- Péter Benkő
- Institute of Plant Biology, HUN-REN Biological Research Centre, 62. Temesvári Krt., H-6726 Szeged, Hungary; (P.B.) (N.K.); (K.G.)
- Doctoral School of Biology, University of Szeged, 52. Közép Fasor, H-6726 Szeged, Hungary
- Department of Plant Biology, University of Szeged, 52. Közép Fasor, H-6726 Szeged, Hungary
| | - Nikolett Kaszler
- Institute of Plant Biology, HUN-REN Biological Research Centre, 62. Temesvári Krt., H-6726 Szeged, Hungary; (P.B.) (N.K.); (K.G.)
- Doctoral School of Biology, University of Szeged, 52. Közép Fasor, H-6726 Szeged, Hungary
- Department of Plant Biology, University of Szeged, 52. Közép Fasor, H-6726 Szeged, Hungary
| | - Katalin Gémes
- Institute of Plant Biology, HUN-REN Biological Research Centre, 62. Temesvári Krt., H-6726 Szeged, Hungary; (P.B.) (N.K.); (K.G.)
- Department of Plant Biology, University of Szeged, 52. Közép Fasor, H-6726 Szeged, Hungary
| | - Attila Fehér
- Institute of Plant Biology, HUN-REN Biological Research Centre, 62. Temesvári Krt., H-6726 Szeged, Hungary; (P.B.) (N.K.); (K.G.)
- Department of Plant Biology, University of Szeged, 52. Közép Fasor, H-6726 Szeged, Hungary
| |
Collapse
|
4
|
Tomaszewska P, Schwarzacher T, Heslop-Harrison JS(P. Oat chromosome and genome evolution defined by widespread terminal intergenomic translocations in polyploids. FRONTIERS IN PLANT SCIENCE 2022; 13:1026364. [PMID: 36483968 PMCID: PMC9725029 DOI: 10.3389/fpls.2022.1026364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/14/2022] [Indexed: 06/17/2023]
Abstract
Structural chromosome rearrangements involving translocations, fusions and fissions lead to evolutionary variation between species and potentially reproductive isolation and variation in gene expression. While the wheats (Triticeae, Poaceae) and oats (Aveneae) all maintain a basic chromosome number of x=7, genomes of oats show frequent intergenomic translocations, in contrast to wheats where these translocations are relatively rare. We aimed to show genome structural diversity and genome relationships in tetraploid, hexaploid and octoploid Avena species and amphiploids, establishing patterns of intergenomic translocations across different oat taxa using fluorescence in situ hybridization (FISH) with four well-characterized repetitive DNA sequences: pAs120, AF226603, Ast-R171 and Ast-T116. In A. agadiriana (2n=4x=28), the selected probes hybridized to all chromosomes indicating that this species originated from one (autotetraploid) or closely related ancestors with the same genomes. Hexaploid amphiploids were confirmed as having the genomic composition AACCDD, while octoploid amphiploids showed three different genome compositions: AACCCCDD, AAAACCDD or AABBCCDD. The A, B, C, and D genomes of oats differ significantly in their involvement in non-centromeric, intercalary translocations. There was a predominance of distal intergenomic translocations from the C- into the D-genome chromosomes. Translocations from A- to C-, or D- to C-genome chromosomes were less frequent, proving that at least some of the translocations in oat polyploids are non-reciprocal. Rare translocations from A- to D-, D- to A- and C- to B-genome chromosomes were also visualized. The fundamental research has implications for exploiting genomic biodiversity in oat breeding through introgression from wild species potentially with contrasting chromosomal structures and hence deleterious segmental duplications or large deletions in amphiploid parental lines.
Collapse
Affiliation(s)
- Paulina Tomaszewska
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial, Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - J. S. (Pat) Heslop-Harrison
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial, Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
5
|
Wang L, Sheng M, Ren X. Chromosomal Localization of 5S and 18S rDNA in Eight Nicotiana Species and the Implications for Genome Evolution of Genus Nicotiana. CYTOLOGIA 2021. [DOI: 10.1508/cytologia.86.149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Linjiao Wang
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science
- Karst Research Institute, Guizhou Normal University
| | - Maoyin Sheng
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science
- Karst Research Institute, Guizhou Normal University
| | - Xueliang Ren
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science
| |
Collapse
|
6
|
Groszmann M, De Rosa A, Ahmed J, Chaumont F, Evans JR. A consensus on the Aquaporin Gene Family in the Allotetraploid Plant, Nicotiana tabacum. PLANT DIRECT 2021; 5:e00321. [PMID: 33977216 PMCID: PMC8104905 DOI: 10.1002/pld3.321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 08/03/2021] [Accepted: 03/13/2021] [Indexed: 05/11/2023]
Abstract
Aquaporins (AQPs) are membrane-spanning channel proteins with exciting applications for plant engineering and industrial applications. Translational outcomes will be improved by better understanding the extensive diversity of plant AQPs. However, AQP gene families are complex, making exhaustive identification difficult, especially in polyploid species. The allotetraploid species of Nicotiana tabacum (Nt; tobacco) plays a significant role in modern biological research and is closely related to several crops of economic interest, making it a valuable platform for AQP research. Recently, De Rosa et al., (2020) and Ahmed et al., (2020), concurrently reported on the AQP gene family in tobacco, establishing family sizes of 76 and 88 members, respectively. The discrepancy highlights the difficulties of characterizing large complex gene families. Here, we identify and resolve the differences between the two studies, clarify gene models, and yield a consolidated collection of 84 members that more accurately represents the complete NtAQP family. Importantly, this consensus NtAQP collection will reduce confusion and ambiguity that would inevitably arise from having two different descriptive studies and sets of NtAQP gene names. This report also serves as a case study, highlighting and discussing variables to be considered and refinements required to ensure comprehensive gene family characterizations, which become valuable resources for examining the evolution and biological functions of genes.
Collapse
Affiliation(s)
- Michael Groszmann
- ARC Centre of Excellence for Translational PhotosynthesisResearch School of BiologyAustralian National UniversityCanberraACTAustralia
| | - Annamaria De Rosa
- ARC Centre of Excellence for Translational PhotosynthesisResearch School of BiologyAustralian National UniversityCanberraACTAustralia
| | - Jahed Ahmed
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐NeuveBelgium
| | - François Chaumont
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐NeuveBelgium
| | - John R. Evans
- ARC Centre of Excellence for Translational PhotosynthesisResearch School of BiologyAustralian National UniversityCanberraACTAustralia
| |
Collapse
|
7
|
Glover N, Sheppard S, Dessimoz C. Homoeolog Inference Methods Requiring Bidirectional Best Hits or Synteny Miss Many Pairs. Genome Biol Evol 2021; 13:6237894. [PMID: 33871639 PMCID: PMC8214411 DOI: 10.1093/gbe/evab077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
Homoeologs are pairs of genes or chromosomes in the same species that originated by speciation and were brought back together in the same genome by allopolyploidization. Bioinformatic methods for accurate homoeology inference are crucial for studying the evolutionary consequences of polyploidization, and homoeology is typically inferred on the basis of bidirectional best hit (BBH) and/or positional conservation (synteny). However, these methods neglect the fact that genes can duplicate and move, both prior to and after the allopolyploidization event. These duplications and movements can result in many-to-many and/or nonsyntenic homoeologs-which thus remain undetected and unstudied. Here, using the allotetraploid upland cotton (Gossypium hirsutum) as a case study, we show that conventional approaches indeed miss a substantial proportion of homoeologs. Additionally, we found that many of the missed pairs of homoeologs are broadly and highly expressed. A gene ontology analysis revealed a high proportion of the nonsyntenic and non-BBH homoeologs to be involved in protein translation and are likely to contribute to the functional repertoire of cotton. Thus, from an evolutionary and functional genomics standpoint, choosing a homoeolog inference method which does not solely rely on 1:1 relationship cardinality or synteny is crucial for not missing these potentially important homoeolog pairs.
Collapse
Affiliation(s)
- Natasha Glover
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Center for Integrative Genomics, University of Lausanne, Switzerland.,Department of Computational Biology, University of Lausanne, Switzerland
| | | | - Christophe Dessimoz
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Center for Integrative Genomics, University of Lausanne, Switzerland.,Department of Computational Biology, University of Lausanne, Switzerland.,Department of Genetics, Evolution, and Environment, University College London, United Kingdom.,Department of Computer Science, University College London, United Kingdom
| |
Collapse
|
8
|
Chromosome change and karyotype differentiation–implications in speciation and plant systematics. THE NUCLEUS 2021. [DOI: 10.1007/s13237-020-00343-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
9
|
Papierniak-Wygladala A, Kozak K, Barabasz A, Palusińska M, Całka M, Maślińska K, Antosiewicz DM. Identification and characterization of a tobacco metal tolerance protein, NtMTP2. Metallomics 2020; 12:2049-2064. [PMID: 33169749 DOI: 10.1039/d0mt00210k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metal tolerance proteins (MTPs) from the CDF (Cation Diffusion Facilitator) family are efflux transporters that play a crucial role in metal homeostasis by maintaining optimal metal concentrations in the cytoplasm. Here, a novel tobacco NtMTP2 transporter was cloned and characterized. It encodes a 512 aa protein containing all specific CDF family domains. A GFP-NtMTP2 fusion protein localizes to the tonoplast in tobacco cells. NtMTP2 expression in yeast conferred tolerance to Co and Ni, indicating that the protein mediates transport of both metals, but not Zn, Mn, Cu, Fe, or Cd. Nonetheless, the expression level was not affected by Co or Ni, except for an increase in leaves at high Co concentrations. Its expression in plant parts remained stable during development, but increased in the leaves of older plants. Analysis of tobacco expressing a promoter-GUS construct indicates that the main sites of promoter activity are the conductive tissue throughout the plant and the palisade parenchyma in leaves. Our results suggest that NtMTP2 is a tonoplast transporter mediating sequestration of Co and Ni into vacuoles and an important housekeeping protein that controls the basal availability of micronutrients and plays a role in the sequestration of metal excess, specifically in leaves.
Collapse
Affiliation(s)
- Anna Papierniak-Wygladala
- University of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, 1 Miecznikowa Str. 02-096, Warszawa, Poland.
| | | | | | | | | | | | | |
Collapse
|
10
|
Tong Z, Zhou J, Xiu Z, Jiao F, Hu Y, Zheng F, Chen X, Li Y, Fang D, Li S, Wu X, Zeng J, Zhao S, Jian J, Xiao B. Construction of a high-density genetic map with whole genome sequencing in Nicotiana tabacum L. Genomics 2020; 112:2028-2033. [PMID: 31760041 DOI: 10.1016/j.ygeno.2019.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/23/2019] [Accepted: 11/19/2019] [Indexed: 10/25/2022]
Abstract
Tobacco (Nicotiana tabacum L.) is an essential commercial crop and an ideal model plant for biological mechanism studies. As an allopolyploid species, tobacco harbors a massive and complex genome, which makes the application of molecular markers complicated and challenging. In our study, we performed whole-genome sequencing of an intraspecific recombinant inbred line (RIL) population, a F1 generation and their parents. With the Nicotiana tabacum (K326 cultivar) genome as reference, a total of 45,081 markers were characterized to construct the genetic map, which spanned a genetic distance of 3486.78 cM. Evaluation of a two-dimensional heat map proved the high quality of the genetic map. We utilized these markers to anchor scaffolds and analyzed the ancestral genome origin of linkage groups (LGs). Furthermore, such a high-density genetic map will be applied for quantitative trait locus (QTL) detection, gene localization, genome-wide association studies (GWAS), and marker-assisted breeding in tobacco.
Collapse
Affiliation(s)
- Zhijun Tong
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan 650021, People's Republic of China.
| | - Juhong Zhou
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, People's Republic of China.
| | - Zhihui Xiu
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, People's Republic of China.
| | - Fangchan Jiao
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan 650021, People's Republic of China.
| | - Yafei Hu
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, People's Republic of China.
| | - Fengya Zheng
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, People's Republic of China.
| | - Xuejun Chen
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan 650021, People's Republic of China.
| | - Yanli Li
- Joint Institute of Tobacco Molecular Breeding, People's Republic of China.
| | - Dunhuang Fang
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan 650021, People's Republic of China.
| | - Shiming Li
- Joint Institute of Tobacco Molecular Breeding, People's Republic of China.
| | - Xingfu Wu
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan 650021, People's Republic of China.
| | - Jianmin Zeng
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan 650021, People's Republic of China.
| | - Shancen Zhao
- Joint Institute of Tobacco Molecular Breeding, People's Republic of China.
| | - Jianbo Jian
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, People's Republic of China.
| | - Bingguang Xiao
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan 650021, People's Republic of China.
| |
Collapse
|
11
|
Marenkova TV, Sidorchuk YV, Kusnetsov VV, Deineko EV. Effect of Changes in Genome Ploidy on the Mosaic Character of nptII Gene Expression in Epialleles of the Transgenic Tobacco Line Nu21. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420020088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Phukela B, Geeta R, Das S, Tandon R. Ancestral segmental duplication in Solanaceae is responsible for the origin of CRCa-CRCb paralogues in the family. Mol Genet Genomics 2020; 295:563-577. [PMID: 31912236 DOI: 10.1007/s00438-019-01641-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/18/2019] [Indexed: 01/03/2023]
Abstract
CRABS CLAW (CRC), a member of YABBY transcription factor family, has been previously reported to be principally involved in carpel development across angiosperms, and nectary development in core eudicots. Most of the studies suggest that CRC exists as a single copy gene, except in the Solanaceae where CRC occurs as paralogous pairs-CRCa-CRCb in Solanum lycopersicum, and CRC1-CRC2 in Petunia hybrida. In spite of their crucial role in carpel and nectary development, there is no information about the evolutionary history of the CRC paralogy in Solanaceae and whether the paralogy extends beyond Solanaceae. We analyzed homologues of CRC across angiosperms including genome sequence of fourteen species of Solanaceae available at Sol Genomics Network database, Phytozome and NCBI, to address the questions. Our phylogenetic reconstruction across angiosperms combined with comparative genomic, microsynteny and genome-fractionation analyses across the Solanaceae genomes revealed that (1) the CRCa-CRCb lineage is represented by a single copy in other flowering plants; (2) putative homologues of CRCa and CRCb are present in all the Solanaceae genomes studied; (3) the CRCa-CRCb paralogy in Solanaceae is associated with a large segmental duplication within Solanaceae (perhaps in its common ancestor), and (4) the duplicated segments have undergone different degrees of retention and loss of genes. Also, the CRC gene lineage expanded in Solanaceae following Solanaceae-α hexaploidy event and that two CRC duplicate copies were subsequently retained during the course of evolution. Besides the first detailed description of CRC evolution in Solanaceae, the study identifies potential candidate genes for future functional investigations.
Collapse
Affiliation(s)
- Banisha Phukela
- Department of Botany, University of Delhi, Delhi, 110 007, India
| | - R Geeta
- Department of Botany, University of Delhi, Delhi, 110 007, India
| | - Sandip Das
- Department of Botany, University of Delhi, Delhi, 110 007, India
| | - Rajesh Tandon
- Department of Botany, University of Delhi, Delhi, 110 007, India.
| |
Collapse
|
13
|
Liu Q, Qi Y, Liang Q, Xu X, Hu F, Wang J, Xiao J, Wang S, Li W, Tao M, Qin Q, Zhao R, Yao Z, Liu S. The chimeric genes in the hybrid lineage of Carassius auratus cuvieri (♀)×Carassius auratus red var. (♂). SCIENCE CHINA-LIFE SCIENCES 2018; 61:1079-1089. [DOI: 10.1007/s11427-017-9306-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/06/2018] [Indexed: 12/30/2022]
|
14
|
Chiarini F, Sazatornil F, Bernardello G. Data reassessment in a phylogenetic context gives insight into chromosome evolution in the giant genus Solanum (Solanaceae). SYST BIODIVERS 2018. [DOI: 10.1080/14772000.2018.1431320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Franco Chiarini
- CONICET, Instituto Multidisciplinario de Biología Vegetal, Córdoba, Argentina
| | - Federico Sazatornil
- CONICET, Instituto Multidisciplinario de Biología Vegetal, Córdoba, Argentina
| | - Gabriel Bernardello
- CONICET, Instituto Multidisciplinario de Biología Vegetal, Córdoba, Argentina
- Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales, Casilla de Correo 495, 5000 Córdoba Argentina
| |
Collapse
|
15
|
Barabasz A, Palusińska M, Papierniak A, Kendziorek M, Kozak K, Williams LE, Antosiewicz DM. Functional Analysis of NtZIP4B and Zn Status-Dependent Expression Pattern of Tobacco ZIP Genes. FRONTIERS IN PLANT SCIENCE 2018; 9:1984. [PMID: 30687374 PMCID: PMC6335357 DOI: 10.3389/fpls.2018.01984] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/20/2018] [Indexed: 05/06/2023]
Abstract
Tobacco is frequently considered as a plant useful for phytoremediation of metal-contaminated soil, despite the mechanisms for regulation of uptake and accumulation being largely unknown. Here we cloned and characterized a new tobacco Zn and Cd transporter NtZIP4B from the ZIP family (ZRT-IRT-Like proteins). It complemented the Zn-uptake defective yeast mutant zrt1zrt2, and rendered the wild type DY1457 yeast more sensitive to Cd. Bioinformatic analysis and transient expression of the NtZIP4B-GFP fusion protein in tobacco leaves indicated its localization to the plasma membrane. Real-time q-PCR based analysis showed that it is expressed in all vegetative organs with the highest level in leaves. The Zn status determined transcript abundance; NtZIP4B was upregulated by Zn-deficiency and downregulated by Zn excess. At the tissue level, in roots NtZIP4B is expressed in the vasculature of the middle part of the roots and in surrounding tissues including the root epidermis; in leaves primarily in the vasculature. Bioinformatic analysis identified two copies of ZIP4 in tobacco, NtZIP4A and NtZIP4B with 97.57% homology at the amino acid level, with the same expression pattern for both, indicating a high degree of functional redundancy. Moreover, the present study provides new insights into the coordinated function of NtZIP1, NtZIP2, NtZIP4, NtZIP5, NtZIP8, NtIRT1, and NtIRT1-like in response to low-to-high Zn status. Leaves were the major site of NtZIP4, NtZIP5, and NtZIP8 expression, and roots for NtZIP1, NtZIP2, NtIRT1, and NtIRT1-like. Contrasting expression level in the apical and basal root parts indicates distinct roles in root-specific processes likely contributing to the regulation of Zn root-to-shoot translocation. In summary, new insight into the role of ZIP genes in Zn homeostasis pointing to their overlapping and complementary functions, offers opportunities for strategies to modify Zn and Cd root/shoot partition in tobacco.
Collapse
Affiliation(s)
- Anna Barabasz
- Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Warsaw, Poland
- *Correspondence: Anna Barabasz, Danuta Maria Antosiewicz,
| | - Małgorzata Palusińska
- Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Anna Papierniak
- Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Maria Kendziorek
- Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Katarzyna Kozak
- Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Warsaw, Poland
| | | | - Danuta Maria Antosiewicz
- Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Warsaw, Poland
- *Correspondence: Anna Barabasz, Danuta Maria Antosiewicz,
| |
Collapse
|
16
|
Edwards KD, Fernandez-Pozo N, Drake-Stowe K, Humphry M, Evans AD, Bombarely A, Allen F, Hurst R, White B, Kernodle SP, Bromley JR, Sanchez-Tamburrino JP, Lewis RS, Mueller LA. A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genomics 2017; 18:448. [PMID: 28625162 PMCID: PMC5474855 DOI: 10.1186/s12864-017-3791-6] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/12/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tobacco (Nicotiana tabacum) is an important plant model system that has played a key role in the early development of molecular plant biology. The tobacco genome is large and its characterisation challenging because it is an allotetraploid, likely arising from hybridisation between diploid N. sylvestris and N. tomentosiformis ancestors. A draft assembly was recently published for N. tabacum, but because of the aforementioned genome complexities it was of limited utility due to a high level of fragmentation. RESULTS Here we report an improved tobacco genome assembly, which, aided by the application of optical mapping, achieves an N50 size of 2.17 Mb and enables anchoring of 64% of the genome to pseudomolecules; a significant increase from the previous value of 19%. We use this assembly to identify two homeologous genes that explain the differentiation of the burley tobacco market class, with potential for greater understanding of Nitrogen Utilization Efficiency and Nitrogen Use Efficiency in plants; an important trait for future sustainability of agricultural production. CONCLUSIONS Development of an improved genome assembly for N. tabacum enables what we believe to be the first successful map-based gene discovery for the species, and demonstrates the value of an improved assembly for future research in this model and commercially-important species.
Collapse
Affiliation(s)
- K. D. Edwards
- Plant Biotechnology Division, British American Tobacco, Cambridge, UK
| | | | - K. Drake-Stowe
- Crop Science Department, North Carolina State University, Raleigh, NC USA
| | - M. Humphry
- Plant Biotechnology Division, British American Tobacco, Cambridge, UK
| | - A. D. Evans
- Plant Biotechnology Division, British American Tobacco, Cambridge, UK
| | - A. Bombarely
- Boyce Thompson Institute, Ithaca, NY USA
- Present address Department of Horticulture, Virginia Tech, Blacksburg, VA USA
| | - F. Allen
- Plant Biotechnology Division, British American Tobacco, Cambridge, UK
| | - R. Hurst
- Plant Biotechnology Division, British American Tobacco, Cambridge, UK
| | - B. White
- Plant Biotechnology Division, British American Tobacco, Cambridge, UK
| | - S. P. Kernodle
- Crop Science Department, North Carolina State University, Raleigh, NC USA
| | - J. R. Bromley
- Plant Biotechnology Division, British American Tobacco, Cambridge, UK
| | | | - R. S. Lewis
- Crop Science Department, North Carolina State University, Raleigh, NC USA
| | | |
Collapse
|
17
|
Volkov RA, Panchuk II, Borisjuk NV, Hosiawa-Baranska M, Maluszynska J, Hemleben V. Evolutional dynamics of 45S and 5S ribosomal DNA in ancient allohexaploid Atropa belladonna. BMC PLANT BIOLOGY 2017; 17:21. [PMID: 28114894 PMCID: PMC5260122 DOI: 10.1186/s12870-017-0978-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 01/17/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Polyploid hybrids represent a rich natural resource to study molecular evolution of plant genes and genomes. Here, we applied a combination of karyological and molecular methods to investigate chromosomal structure, molecular organization and evolution of ribosomal DNA (rDNA) in nightshade, Atropa belladonna (fam. Solanaceae), one of the oldest known allohexaploids among flowering plants. Because of their abundance and specific molecular organization (evolutionarily conserved coding regions linked to variable intergenic spacers, IGS), 45S and 5S rDNA are widely used in plant taxonomic and evolutionary studies. RESULTS Molecular cloning and nucleotide sequencing of A. belladonna 45S rDNA repeats revealed a general structure characteristic of other Solanaceae species, and a very high sequence similarity of two length variants, with the only difference in number of short IGS subrepeats. These results combined with the detection of three pairs of 45S rDNA loci on separate chromosomes, presumably inherited from both tetraploid and diploid ancestor species, example intensive sequence homogenization that led to substitution/elimination of rDNA repeats of one parent. Chromosome silver-staining revealed that only four out of six 45S rDNA sites are frequently transcriptionally active, demonstrating nucleolar dominance. For 5S rDNA, three size variants of repeats were detected, with the major class represented by repeats containing all functional IGS elements required for transcription, the intermediate size repeats containing partially deleted IGS sequences, and the short 5S repeats containing severe defects both in the IGS and coding sequences. While shorter variants demonstrate increased rate of based substitution, probably in their transition into pseudogenes, the functional 5S rDNA variants are nearly identical at the sequence level, pointing to their origin from a single parental species. Localization of the 5S rDNA genes on two chromosome pairs further supports uniparental inheritance from the tetraploid progenitor. CONCLUSIONS The obtained molecular, cytogenetic and phylogenetic data demonstrate complex evolutionary dynamics of rDNA loci in allohexaploid species of Atropa belladonna. The high level of sequence unification revealed in 45S and 5S rDNA loci of this ancient hybrid species have been seemingly achieved by different molecular mechanisms.
Collapse
MESH Headings
- Atropa belladonna/classification
- Atropa belladonna/genetics
- Atropa belladonna/metabolism
- Chromosomes, Plant/genetics
- Chromosomes, Plant/metabolism
- DNA, Ribosomal/genetics
- DNA, Ribosomal/metabolism
- Evolution, Molecular
- Phylogeny
- Polyploidy
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 5S/genetics
- RNA, Ribosomal, 5S/metabolism
Collapse
Affiliation(s)
- Roman A. Volkov
- Department of General Genetics, Center of Plant Molecular Biology (ZMBP), Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Department of Molecular Genetics and Biotechnology, Yuriy Fedkovych University of Chernivtsi, Kotsiubynski str. 2, 58012 Chernivtsi, Ukraine
| | - Irina I. Panchuk
- Department of General Genetics, Center of Plant Molecular Biology (ZMBP), Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Department of Molecular Genetics and Biotechnology, Yuriy Fedkovych University of Chernivtsi, Kotsiubynski str. 2, 58012 Chernivtsi, Ukraine
| | - Nikolai V. Borisjuk
- Department of General Genetics, Center of Plant Molecular Biology (ZMBP), Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Australian Centre for Plant Functional Genomics (ACPFG), The University of Adelaide, Hartley Grove, Urrbrae, SA 5064 Australia
- Current addres: School of Life Science, Huaiyin Normal University, 223300 Huaian, China
| | | | - Jolanta Maluszynska
- Department of Plant Anatomy and Cytology, University of Silesia, 40032 Katowice, Poland
| | - Vera Hemleben
- Department of General Genetics, Center of Plant Molecular Biology (ZMBP), Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
18
|
Shibata F, Hizume M, Ohashi H, Furukawa S. An Event Preceding Genome Differentiation in the A Genome Populations of <i>Scilla scilloides</i>. CYTOLOGIA 2017. [DOI: 10.1508/cytologia.82.307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Fukashi Shibata
- Faculty of Education, Ehime University
- Institute of Small World
| | | | | | | |
Collapse
|
19
|
Heitkam T, Petrasch S, Zakrzewski F, Kögler A, Wenke T, Wanke S, Schmidt T. Next-generation sequencing reveals differentially amplified tandem repeats as a major genome component of Northern Europe’s oldest Camellia japonica. Chromosome Res 2015; 23:791-806. [DOI: 10.1007/s10577-015-9500-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 11/30/2022]
|
20
|
Lu Y, Hatsugai N, Katagiri F, Ishimaru CA, Glazebrook J. Putative Serine Protease Effectors of Clavibacter michiganensis Induce a Hypersensitive Response in the Apoplast of Nicotiana Species. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1216-26. [PMID: 26075829 DOI: 10.1094/mpmi-02-15-0036-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Clavibacter michiganensis subspp. michiganensis and sepedonicus cause diseases on solanaceous crops. The genomes of both subspecies encode members of the pat-1 family of putative serine proteases known to function in virulence on host plants and induction of hypersensitive responses (HR) on nonhosts. One gene of this family in C. michiganensis subsp. sepedonicus, chp-7, is required for triggering HR in Nicotiana tabacum. Here, further investigation revealed that mutation of the putative catalytic serine residue at position 232 to threonine abolished the HR induction activity of Chp-7, suggesting that enzymatic activity is required. Purified Chp-7 triggered an HR in N. tabacum leaves in the absence of the pathogen, indicating Chp-7 itself is the HR elicitor from C. michiganensis subsp. sepedonicus. Ectopic expression of chp-7 constructs in N. tabacum leaves revealed that Chp-7 targeted to the apoplast triggered an HR while cytoplasmic Chp-7 did not, indicating that Chp-7 induces the HR in the apoplast of N. tabacum leaves. Chp-7 also induced HR in N. sylvestris, a progenitor of N. tabacum, but not in other Nicotiana species tested. ChpG, a related protein from C. michiganensis subsp. michiganensis, also triggered HR in N. tabacum and N. sylvestris. Unlike Chp-7, ChpG triggered HR in N. clevelandii and N. glutinosa.
Collapse
Affiliation(s)
- You Lu
- 1 Department of Plant Biology
- 2 Microbial and Plant Genomics Institute, and
- 3 Plant Biological Sciences Graduate Program, University of Minnesota, 1445 Gortner Ave., St. Paul, MN 55108, U.S.A
| | - Noriyuki Hatsugai
- 1 Department of Plant Biology
- 2 Microbial and Plant Genomics Institute, and
| | - Fumiaki Katagiri
- 1 Department of Plant Biology
- 2 Microbial and Plant Genomics Institute, and
| | - Carol A Ishimaru
- 2 Microbial and Plant Genomics Institute, and
- 4 Department of Plant Pathology, University of Minnesota, 1991 Upper Buford Circle, St. Paul, MN 55108, U.S.A
| | - Jane Glazebrook
- 1 Department of Plant Biology
- 2 Microbial and Plant Genomics Institute, and
| |
Collapse
|
21
|
Younis A, Ramzan F, Hwang YJ, Lim KB. FISH and GISH: molecular cytogenetic tools and their applications in ornamental plants. PLANT CELL REPORTS 2015; 34:1477-1488. [PMID: 26123291 DOI: 10.1007/s00299-015-1828-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 06/15/2015] [Indexed: 06/04/2023]
Abstract
The innovations in chromosome engineering have improved the efficiency of interrogation breeding, and the identification and transfer of resistance genes from alien to native species. Recent advances in molecular biology and cytogenetics have brought revolutionary, conceptual developments in mitosis and meiosis research, chromosome structure and manipulation, gene expression and regulation, and gene silencing. Cytogenetic studies offer integrative tools for imaging, genetics, epigenetics, and cytological information that can be employed to enhance chromosome and molecular genomic research in plant taxa. In situ hybridization techniques, such as fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH), can identify chromosome morphologies and sequences, amount and distribution of various types of chromatin in chromosomes, and genome organization during the metaphase stage of meiosis. Over the past few decades, various new molecular cytogenetic applications have been developed. The FISH and GISH techniques present an authentic model for analyzing the individual chromosome, chromosomal segments, or the genomes of natural and artificial hybrid plants. These have become the most reliable techniques for studying allopolyploids, because most cultivated plants have been developed through hybridization or polyploidization. Moreover, introgression of the genes and chromatin from the wild types into cultivated species can also be analyzed. Since hybrid derivatives may have variable alien chromosome numbers or chromosome arms, the use of these approaches opens new avenues for accurately identifying genome differences.
Collapse
Affiliation(s)
- Adnan Younis
- Department of Horticultural Science, Kyungpook National University, Daegu, 702-701, South Korea,
| | | | | | | |
Collapse
|
22
|
Abstract
Allopolyploidy involves hybridization and duplication of divergent parental genomes and provides new avenues for gene expression. The expression levels of duplicated genes in polyploids can show deviation from parental additivity (the arithmetic average of the parental expression levels). Nonadditive expression has been widely observed in diverse polyploids and comprises at least three possible scenarios: (a) The total gene expression level in a polyploid is similar to that of one of its parents (expression-level dominance); (b) total gene expression is lower or higher than in both parents (transgressive expression); and (c) the relative contribution of the parental copies (homeologs) to the total gene expression is unequal (homeolog expression bias). Several factors may result in expression nonadditivity in polyploids, including maternal-paternal influence, gene dosage balance, cis- and/or trans-regulatory networks, and epigenetic regulation. As our understanding of nonadditive gene expression in polyploids remains limited, a new generation of investigators should explore additional phenomena (i.e., alternative splicing) and use other high-throughput "omics" technologies to measure the impact of nonadditive expression on phenotype, proteome, and metabolome.
Collapse
Affiliation(s)
- Mi-Jeong Yoo
- Department of Biology, University of Florida, Gainesville, Florida 32611-8525; , ,
| | | | | | | | | |
Collapse
|
23
|
Chen K, Dorlhac de Borne F, Szegedi E, Otten L. Deep sequencing of the ancestral tobacco species Nicotiana tomentosiformis reveals multiple T-DNA inserts and a complex evolutionary history of natural transformation in the genus Nicotiana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:669-82. [PMID: 25219519 DOI: 10.1111/tpj.12661] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 07/30/2014] [Accepted: 08/29/2014] [Indexed: 05/21/2023]
Abstract
Nicotiana species carry cellular T-DNA sequences (cT-DNAs), acquired by Agrobacterium-mediated transformation. We characterized the cT-DNA sequences of the ancestral Nicotiana tabacum species Nicotiana tomentosiformis by deep sequencing. N. tomentosiformis contains four cT-DNA inserts derived from different Agrobacterium strains. Each has an incomplete inverted-repeat structure. TA is similar to part of the Agrobacterium rhizogenes 1724 mikimopine-type T-DNA, but has unusual orf14 and mis genes. TB carries a 1724 mikimopine-type orf14-mis fragment and a mannopine-agropine synthesis region (mas2-mas1-ags). The mas2' gene codes for an active enzyme. TC is similar to the left part of the A. rhizogenes A4 T-DNA, but also carries octopine synthase-like (ocl) and c-like genes normally found in A. tumefaciens. TD shows a complex rearrangement of T-DNA fragments similar to the right end of the A4 TL-DNA, and including an orf14-like gene and a gene with unknown function, orf511. The TA, TB, TC and TD insertion sites were identified by alignment with N. tabacum and Nicotiana sylvestris sequences. The divergence values for the TA, TB, TC and TD repeats provide an estimate for their relative introduction times. A large deletion has occurred in the central part of the N. tabacum cv. Basma/Xanthi TA region, and another deletion removed the complete TC region in N. tabacum. Nicotiana otophora lacks TA, TB and TD, but contains TC and another cT-DNA, TE. This analysis, together with that of Nicotiana glauca and other Nicotiana species, indicates multiple sequential insertions of cT-DNAs during the evolution of the genus Nicotiana.
Collapse
Affiliation(s)
- Ke Chen
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du C. N. R. S., Rue du Général Zimmer 12, 67084, Strasbourg, France
| | | | | | | |
Collapse
|
24
|
Sierro N, Battey JN, Ouadi S, Bakaher N, Bovet L, Willig A, Goepfert S, Peitsch MC, Ivanov NV. The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun 2014; 5:3833. [PMID: 24807620 PMCID: PMC4024737 DOI: 10.1038/ncomms4833] [Citation(s) in RCA: 333] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/08/2014] [Indexed: 11/19/2022] Open
Abstract
The allotetraploid plant Nicotiana tabacum (common tobacco) is a major crop species and a model organism, for which only very fragmented genomic sequences are currently available. Here we report high-quality draft genomes for three main tobacco varieties. These genomes show both the low divergence of tobacco from its ancestors and microsynteny with other Solanaceae species. We identify over 90,000 gene models and determine the ancestral origin of tobacco mosaic virus and potyvirus disease resistance in tobacco. We anticipate that the draft genomes will strengthen the use of N. tabacum as a versatile model organism for functional genomics and biotechnology applications.
Collapse
Affiliation(s)
- Nicolas Sierro
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
| | - James N.D. Battey
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
| | - Sonia Ouadi
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
| | - Nicolas Bakaher
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
| | - Lucien Bovet
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
| | - Adrian Willig
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
- Present address: 25b Quai Charles-Page, CH-1205 Genève, Switzerland
| | - Simon Goepfert
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
| | - Manuel C. Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
| | - Nikolai V. Ivanov
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
| |
Collapse
|
25
|
Liu H, Marubashi W. Species origin of genomic factors in Nicotiana nudicaulis Watson controlling hybrid lethality in interspecific hybrids between N. nudicaulis Watson and N. tabacum L. PLoS One 2014; 9:e97004. [PMID: 24806486 PMCID: PMC4013128 DOI: 10.1371/journal.pone.0097004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/15/2014] [Indexed: 11/21/2022] Open
Abstract
Hybrid lethality is expressed at 28°C in the cross Nicotiana nudicaulis × N. tabacum. The S subgenome of N. tabacum has been identified as controlling this hybrid lethality. To clarify the responsible genomic factor(s) of N. nudicaulis, we crossed N. trigonophylla (paternal progenitor of N. nudicaulis) with N. tabacum, because hybrids between N. sylvestris (maternal progenitor of N. nudicaulis) and N. tabacum are viable when grown in a greenhouse. In the cross N. trigonophylla×N. tabacum, approximately 50% of hybrids were vitrified, 20% were viable, and 20% were nonviable at 28°C. To reveal which subgenome of N. tabacum was responsible for these phenotypes, we crossed N. trigonophylla with two progenitors of N. tabacum, N. sylvestris (SS) and N. tomentosiformis (TT). In the cross N. sylvestris × N. trigonophylla, we confirmed that over half of hybrids of N. sylvestris × N. trigonophylla were vitrified, and none of the hybrids of N. trigonophylla × N. tomentosiformis were. The results imply that the S subgenome, encoding a gene or genes inducing hybrid lethality in the cross between N. nudicaulis and N. tabacum, has one or more genomic factors that induce vitrification. Furthermore, in vitrified hybrids of N. trigonophylla × N. tabacum and N. sylvestris × N. trigonophylla, we found that nuclear fragmentation, which progresses during expression of hybrid lethality, was accompanied by vitrification. This observation suggests that vitrification has a relationship to hybrid lethality. Based on these results, we speculate that when N. nudicaulis was formed approximately 5 million years ago, several causative genomic factors determining phenotypes of hybrid seedlings were inherited from N. trigonophylla. Subsequently, genome downsizing and various recombination-based processes took place. Some of the causative genomic factors were lost and some became genomic factor(s) controlling hybrid lethality in extant N. nudicaulis.
Collapse
Affiliation(s)
- Hongshuo Liu
- Graduate School of Agriculture, Meiji University, Kanagawa, Japan
| | - Wataru Marubashi
- Graduate School of Agriculture, Meiji University, Kanagawa, Japan
| |
Collapse
|
26
|
Wei JC, Qiu EJ, Guo HY, Hao AP, Chen RP. Investigation of single nucleotide polymorphisms based on the intronic sequences of the propylene alcohol dehydrogenase gene in Chinese tobacco genotypes. BIOTECHNOL BIOTEC EQ 2014; 28:217-220. [PMID: 26740754 PMCID: PMC4686925 DOI: 10.1080/13102818.2014.907651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 10/23/2013] [Indexed: 10/26/2022] Open
Abstract
A pair of primers was designed to amplify the propylene alcohol dehydrogenase gene sequence based on the cDNA sequence of the tobacco allyl-alcohol dehydrogenase gene. All introns were sequenced using traditional polymerase chain reaction (PCR) methods and T-A cloning. The sequences from common tobacco (Nicotiana tabaccum L.) and rustica tobacco (Nicotiana rustica L.) were analysed between the third intron and the fourth intron of the propylene alcohol dehydrogenase gene. The results showed that the alcohol dehydrogenase gene is a low-copy nuclear gene. The intron sequences have a combination of single nucleotide polymorphisms and length polymorphisms between common tobacco and rustica tobacco, which are suitable to identify the different germplasms. Furthermore, there are some single nucleotide polymorphism sites in the target sequence within common tobacco that can be used to distinguish intraspecific varieties.
Collapse
Affiliation(s)
- Ji-Cheng Wei
- Department of Biology, Mudanjiang Teachers College , Mudanjiang , P.R. China
| | - En-Jian Qiu
- Laboratory of Breeding, Mudanjiang Tobacco Research Institute , Mudanjiang , P.R. China
| | - Hui-Yan Guo
- Department of Biology, Mudanjiang Teachers College , Mudanjiang , P.R. China
| | - Ai-Ping Hao
- Department of Biology, Mudanjiang Teachers College , Mudanjiang , P.R. China
| | - Rong-Ping Chen
- Laboratory of Breeding, Mudanjiang Tobacco Research Institute , Mudanjiang , P.R. China
| |
Collapse
|
27
|
Dewey RE, Xie J. Molecular genetics of alkaloid biosynthesis in Nicotiana tabacum. PHYTOCHEMISTRY 2013; 94:10-27. [PMID: 23953973 DOI: 10.1016/j.phytochem.2013.06.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/28/2013] [Accepted: 05/30/2013] [Indexed: 05/18/2023]
Abstract
Alkaloids represent an extensive group of nitrogen-containing secondary metabolites that are widely distributed throughout the plant kingdom. The pyridine alkaloids of tobacco (Nicotiana tabacum L.) have been the subject of particularly intensive investigation, driven largely due to the widespread use of tobacco products by society and the role that nicotine (16) (see Fig. 1) plays as the primary compound responsible for making the consumption of these products both pleasurable and addictive. In a typical commercial tobacco plant, nicotine (16) comprises about 90% of the total alkaloid pool, with the alkaloids nornicotine (17) (a demethylated derivative of nicotine), anatabine (15) and anabasine (5) making up most of the remainder. Advances in molecular biology have led to the characterization of the majority of the genes encoding the enzymes directly responsible the biosynthesis of nicotine (16) and nornicotine (17), while notable gaps remain within the anatabine (15) and anabasine (5) biosynthetic pathways. Several of the genes involved in the transcriptional regulation and transport of nicotine (16) have also been elucidated. Investigations of the molecular genetics of tobacco alkaloids have not only provided plant biologists with insights into the mechanisms underlying the synthesis and accumulation of this important class of plant alkaloids, they have also yielded tools and strategies for modifying the tobacco alkaloid composition in a manner that can result in changing the levels of nicotine (16) within the leaf, or reducing the levels of a potent carcinogenic tobacco-specific nitrosamine (TSNA). This review summarizes recent advances in our understanding of the molecular genetics of alkaloid biosynthesis in tobacco, and discusses the potential for applying information accrued from these studies toward efforts designed to help mitigate some of the negative health consequences associated with the use of tobacco products.
Collapse
Affiliation(s)
- Ralph E Dewey
- Department of Crop Science, North Carolina State University, Box 8009, Raleigh, NC 27695, USA.
| | | |
Collapse
|
28
|
Shibata F, Nagaki K, Yokota E, Murata M. Tobacco karyotyping by accurate centromere identification and novel repetitive DNA localization. Chromosome Res 2013; 21:375-81. [PMID: 23700277 DOI: 10.1007/s10577-013-9363-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/18/2013] [Accepted: 04/30/2013] [Indexed: 10/26/2022]
Abstract
Tobacco (Nicotiana tabacum) is an amphidiploid species (2n = 4x = 48, genome constitution SSTT) derived from a natural hybrid between Nicotiana sylvestris (2n = 2x = 24, SS) and Nicotiana tomentosiformis (2n = 2x = 24, TT). Genomic in situ hybridization (GISH), using the genomic DNA from these ancestral species as probes, revealed the chromosomal origins (S or T) and the occurrence of intergenomic translocations in N. tabacum. Fluorescence in situ hybridization (FISH) was also used to distinguish between chromosomes. However, the use of repetitive DNA sequences as probes for FISH analysis is limited by an inability to identify all chromosomes. In addition to this limitation, the occurrence of chromosomal tertiary constrictions can easily lead to the misclassification of chromosomes. To overcome these issues, immunostaining with anti-N. tabacum centromere-specific histone H3 antibody was carried out to determine the centromere position of each chromosome, followed by FISH analysis with ten distinct repetitive DNA probes. This approach allowed us to identify 22 of the 24 chromosome pairs in N. tabacum and revealed novel intergenomic chromosome rearrangements and B-chromosome-like minichromosomes. Hence, the combination of immunostaining with FISH and GISH is critical to accurately karyotype tobacco.
Collapse
Affiliation(s)
- Fukashi Shibata
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | | | | | | |
Collapse
|
29
|
Weiss-Schneeweiss H, Emadzade K, Jang TS, Schneeweiss G. Evolutionary consequences, constraints and potential of polyploidy in plants. Cytogenet Genome Res 2013; 140:137-50. [PMID: 23796571 PMCID: PMC3859924 DOI: 10.1159/000351727] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Polyploidy, the possession of more than 2 complete genomes, is a major force in plant evolution known to affect the genetic and genomic constitution and the phenotype of an organism, which will have consequences for its ecology and geography as well as for lineage diversification and speciation. In this review, we discuss phylogenetic patterns in the incidence of polyploidy including possible underlying causes, the role of polyploidy for diversification, the effects of polyploidy on geographical and ecological patterns, and putative underlying mechanisms as well as chromosome evolution and evolution of repetitive DNA following polyploidization. Spurred by technological advances, a lot has been learned about these aspects both in model and increasingly also in nonmodel species. Despite this enormous progress, long-standing questions about polyploidy still cannot be unambiguously answered, due to frequently idiosyncratic outcomes and insufficient integration of different organizational levels (from genes to ecology), but likely this will change in the near future. See also the sister article focusing on animals by Choleva and Janko in this themed issue.
Collapse
Affiliation(s)
- H. Weiss-Schneeweiss
- Department of Systematic and Evolutionary Botany University of Vienna, Rennweg 14 AT–1030 Vienna (Austria)
| | - K. Emadzade
- Department of Systematic and Evolutionary Botany University of Vienna, Rennweg 14 AT–1030 Vienna (Austria)
| | - T.-S. Jang
- Department of Systematic and Evolutionary Botany University of Vienna, Rennweg 14 AT–1030 Vienna (Austria)
| | - G.M. Schneeweiss
- Department of Systematic and Evolutionary Botany University of Vienna, Rennweg 14 AT–1030 Vienna (Austria)
| |
Collapse
|
30
|
Matyášek R, Renny-Byfield S, Fulneček J, Macas J, Grandbastien MA, Nichols R, Leitch A, Kovařík A. Next generation sequencing analysis reveals a relationship between rDNA unit diversity and locus number in Nicotiana diploids. BMC Genomics 2012; 13:722. [PMID: 23259460 PMCID: PMC3563450 DOI: 10.1186/1471-2164-13-722] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 12/13/2012] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Tandemly arranged nuclear ribosomal DNA (rDNA), encoding 18S, 5.8S and 26S ribosomal RNA (rRNA), exhibit concerted evolution, a pattern thought to result from the homogenisation of rDNA arrays. However rDNA homogeneity at the single nucleotide polymorphism (SNP) level has not been detailed in organisms with more than a few hundred copies of the rDNA unit. Here we study rDNA complexity in species with arrays consisting of thousands of units. METHODS We examined homogeneity of genic (18S) and non-coding internally transcribed spacer (ITS1) regions of rDNA using Roche 454 and/or Illumina platforms in four angiosperm species, Nicotiana sylvestris, N. tomentosiformis, N. otophora and N. kawakamii. We compared the data with Southern blot hybridisation revealing the structure of intergenic spacer (IGS) sequences and with the number and distribution of rDNA loci. RESULTS AND CONCLUSIONS In all four species the intragenomic homogeneity of the 18S gene was high; a single ribotype makes up over 90% of the genes. However greater variation was observed in the ITS1 region, particularly in species with two or more rDNA loci, where >55% of rDNA units were a single ribotype, with the second most abundant variant accounted for >18% of units. IGS heterogeneity was high in all species. The increased number of ribotypes in ITS1 compared with 18S sequences may reflect rounds of incomplete homogenisation with strong selection for functional genic regions and relaxed selection on ITS1 variants. The relationship between the number of ITS1 ribotypes and the number of rDNA loci leads us to propose that rDNA evolution and complexity is influenced by locus number and/or amplification of orphaned rDNA units at new chromosomal locations.
Collapse
Affiliation(s)
- Roman Matyášek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i, Královopolská 135, Brno, CZ-612 65, Czech Republic
| | - Simon Renny-Byfield
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London, E1 4NS, UK
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Jaroslav Fulneček
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i, Královopolská 135, Brno, CZ-612 65, Czech Republic
| | - Jiří Macas
- Biology Centre, Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-370 05, Czech Republic
| | - Marie-Angele Grandbastien
- Institut Jean-Pierre Bourgin, Laboratoire de Biologie Cellulaire, INRA-Centre de Versailles, Versailles Cedex, F-780 26, France
| | - Richard Nichols
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London, E1 4NS, UK
| | - Andrew Leitch
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London, E1 4NS, UK
| | - Aleš Kovařík
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i, Královopolská 135, Brno, CZ-612 65, Czech Republic
| |
Collapse
|
31
|
Martin F, Bovet L, Cordier A, Stanke M, Gunduz I, Peitsch MC, Ivanov NV. Design of a tobacco exon array with application to investigate the differential cadmium accumulation property in two tobacco varieties. BMC Genomics 2012; 13:674. [PMID: 23190529 PMCID: PMC3602038 DOI: 10.1186/1471-2164-13-674] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 11/23/2012] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND For decades the tobacco plant has served as a model organism in plant biology to answer fundamental biological questions in the areas of plant development, physiology, and genetics. Due to the lack of sufficient coverage of genomic sequences, however, none of the expressed sequence tag (EST)-based chips developed to date cover gene expression from the whole genome. The availability of Tobacco Genome Initiative (TGI) sequences provides a useful resource to build a whole genome exon array, even if the assembled sequences are highly fragmented. Here, the design of a Tobacco Exon Array is reported and an application to improve the understanding of genes regulated by cadmium (Cd) in tobacco is described. RESULTS From the analysis and annotation of the 1,271,256 Nicotiana tabacum fasta and quality files from methyl filtered genomic survey sequences (GSS) obtained from the TGI and ~56,000 ESTs available in public databases, an exon array with 272,342 probesets was designed (four probes per exon) and tested on two selected tobacco varieties.Two tobacco varieties out of 45 accumulating low and high cadmium in leaf were identified based on the GGE biplot analysis, which is analysis of the genotype main effect (G) plus analysis of the genotype by environment interaction (GE) of eight field trials (four fields over two years) showing reproducibility across the trials. The selected varieties were grown under greenhouse conditions in two different soils and subjected to exon array analyses using root and leaf tissues to understand the genetic make-up of the Cd accumulation. CONCLUSIONS An Affymetrix Exon Array was developed to cover a large (~90%) proportion of the tobacco gene space. The Tobacco Exon Array will be available for research use through Affymetrix array catalogue. As a proof of the exon array usability, we have demonstrated that the Tobacco Exon Array is a valuable tool for studying Cd accumulation in tobacco leaves. Data from field and greenhouse experiments supported by gene expression studies strongly suggested that the difference in leaf Cd accumulation between the two specific tobacco cultivars is dependent solely on genetic factors and genetic variability rather than on the environment.
Collapse
Affiliation(s)
- Florian Martin
- Philip Morris International R&D, Philip Morris Products SA, Neuchatel, 2000, Switzerland
| | - Lucien Bovet
- Philip Morris International R&D, Philip Morris Products SA, Neuchatel, 2000, Switzerland
| | - Audrey Cordier
- Philip Morris International R&D, Philip Morris Products SA, Neuchatel, 2000, Switzerland
| | - Mario Stanke
- Institut für Mathematik und Informatik, Greifswald, D-17487, Germany
| | - Irfan Gunduz
- Philip Morris International Operations, Neuchatel, 2000, Switzerland
| | - Manuel C Peitsch
- Philip Morris International R&D, Philip Morris Products SA, Neuchatel, 2000, Switzerland
| | - Nikolai V Ivanov
- Philip Morris International R&D, Philip Morris Products SA, Neuchatel, 2000, Switzerland
| |
Collapse
|
32
|
Bombarely A, Edwards KD, Sanchez-Tamburrino J, Mueller LA. Deciphering the complex leaf transcriptome of the allotetraploid species Nicotiana tabacum: a phylogenomic perspective. BMC Genomics 2012; 13:406. [PMID: 22900718 PMCID: PMC3582432 DOI: 10.1186/1471-2164-13-406] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 08/03/2012] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Polyploidization is an important mechanism in plant evolution. By analyzing the leaf transcriptomes taken from the allotetraploid Nicotiana tabacum (tobacco) and parental genome donors, N. sylvesteris (S-Genome) and N. tomentosiformis (T-Genome), a phylogenomic approach was taken to map the fate of homeologous gene pairs in this plant. RESULTS A comparison between the genes present in the leaf transcriptomes of N. tabacum and modern day representatives of its progenitor species demonstrated that only 33% of assembled transcripts could be distinguished based on their sequences. A large majority of the genes (83.6% of the non parent distinguishable and 87.2% of the phylogenetic topology analyzed clusters) expressed above background level (more than 5 reads) showed similar overall expression levels. Homeologous sequences could be identified for 968 gene clusters, and 90% (6% of all genes) of the set maintained expression of only one of the tobacco homeologs. When both homeologs were expressed, only 15% (0.5% of the total) showed evidence of differential expression, providing limited evidence of subfunctionalization. Comparing the rate of synonymous nucleotide substitution (Ks) and non-synonymous nucleotide substitution (Kn) provided limited evidence for positive selection during the evolution of tobacco since the polyploidization event took place. CONCLUSIONS Polyploidization is a powerful mechanism for plant speciation that can occur during one generation; however millions of generations may be necessary for duplicate genes to acquire a new function. Analysis of the tobacco leaf transcriptome reveals that polyploidization, even in a young tetraploid such as tobacco, can lead to complex changes in gene expression. Gene loss and gene silencing, or subfunctionalization may explain why both homeologs are not expressed by the associated genes. With Whole Genome Duplication (WGD) events, polyploid genomes usually maintain a high percentage of gene duplicates. The data provided little evidence of preferential maintenance of gene expression from either the T- or S-genome. Additionally there was little evidence of neofunctionalization in Nicotiana tabacum suggesting it occurs at a low frequency in young polyploidy.
Collapse
Affiliation(s)
- Aureliano Bombarely
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY, 14853-1801, USA
| | - Kieron D Edwards
- Advanced Technologies (Cambridge Ltd), 210 Cambridge Science Park, Milton Road, Cambridge, CB4 0WA, UK
| | - Juan Sanchez-Tamburrino
- Advanced Technologies (Cambridge Ltd), 210 Cambridge Science Park, Milton Road, Cambridge, CB4 0WA, UK
| | - Lukas A Mueller
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY, 14853-1801, USA
| |
Collapse
|
33
|
Song C, Liu S, Xiao J, He W, Zhou Y, Qin Q, Zhang C, Liu Y. Polyploid organisms. SCIENCE CHINA-LIFE SCIENCES 2012; 55:301-11. [DOI: 10.1007/s11427-012-4310-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/29/2012] [Indexed: 12/16/2022]
|
34
|
Ryan SM, Cane KA, DeBoer KD, Sinclair SJ, Brimblecombe R, Hamill JD. Structure and expression of the quinolinate phosphoribosyltransferase (QPT) gene family in Nicotiana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 188-189:102-10. [PMID: 22525250 DOI: 10.1016/j.plantsci.2012.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/08/2012] [Accepted: 02/11/2012] [Indexed: 05/14/2023]
Abstract
Synthesis of wound-inducible pyridine alkaloids is characteristic of species in the genus Nicotiana. The enzyme quinolinate phosphoribosyltransferase (QPT) plays a key role in facilitating the availability of precursors for alkaloid synthesis, in addition to its ubiquitous role in enabling NAD(P)(H) synthesis. In a previous study, we reported that Nicotiana tabacum L. var. NC 95 possesses a QPT RFLP pattern similar to its model paternal progenitor species, Nicotiana tomentosiformis Goodsp. Here we show that although some varieties of N. tabacum (e.g. NC 95 and LAFC 53) possess QPT genomic contributions from only its paternal progenitor species, this is not the case for many other N. tabacum varieties (e.g. Xanthi, Samsun, Petite Havana SR1 and SC 58) where genomic QPT sequences from both diploid progenitor species have been retained. We also report that QPT is encoded by duplicate genes (designated QPT1 and QPT2) not only in N. tabacum, but also its model progenitor species Nicotiana sylvestris Speg. and Comes and N. tomentosiformis as well as in the diploid species Nicotiana glauca Graham. Previous studies have demonstrated that the N. tabacum QPT2 gene encodes a functional enzyme via complementation of a nadC(-)Escherichia coli mutant. Using a similar experimental approach here, we demonstrate that the N. tabacum QPT1 gene also encodes a functional QPT protein. We observe too that QPT2 is the predominate transcript present in both alkaloid and non-alkaloid synthesising tissues in N. tabacum and that promoter regions of both QPT1 and QPT2 are able to produce GUS activity in reproductive tissues. In N. tabacum and in several other Nicotiana species tested, QPT2 transcript levels increase following wounding or methyl jasmonate treatment whilst QPT1 transcript levels remain largely unaltered by these treatments. Together with conclusions from recently published studies involving functional interaction of MYC2-bHLH and specific ERF-type and transcription factors with QPT2-promoter sequences from N. tabacum, our results suggest that whilst both members of the QPT gene family can contribute to the transcript pool in both alkaloid producing and non-producing tissues, it is QPT2 that is regulated in association with inducible defensive pyridine alkaloid synthesis in species across the genus Nicotiana.
Collapse
Affiliation(s)
- S M Ryan
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | |
Collapse
|
35
|
Tezuka T, Marubashi W. Genes in S and T subgenomes are responsible for hybrid lethality in interspecific hybrids between Nicotiana tabacum and Nicotiana occidentalis. PLoS One 2012; 7:e36204. [PMID: 22563450 PMCID: PMC3338585 DOI: 10.1371/journal.pone.0036204] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 04/03/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Many species of Nicotiana section Suaveolentes produce inviable F(1) hybrids after crossing with Nicotiana tabacum (genome constitution SSTT), a phenomenon that is often called hybrid lethality. Through crosses with monosomic lines of N. tabacum lacking a Q chromosome, we previously determined that hybrid lethality is caused by interaction between gene(s) on the Q chromosome belonging to the S subgenome of N. tabacum and gene(s) in Suaveolentes species. Here, we examined if hybrid seedlings from the cross N. occidentalis (section Suaveolentes)×N. tabacum are inviable despite a lack of the Q chromosome. METHODOLOGY/PRINCIPAL FINDINGS Hybrid lethality in the cross of N. occidentalis×N. tabacum was characterized by shoots with fading color. This symptom differed from what has been previously observed in lethal crosses between many species in section Suaveolentes and N. tabacum. In crosses of monosomic N. tabacum plants lacking the Q chromosome with N. occidentalis, hybrid lethality was observed in hybrid seedlings either lacking or possessing the Q chromosome. N. occidentalis was then crossed with two progenitors of N. tabacum, N. sylvestris (SS) and N. tomentosiformis (TT), to reveal which subgenome of N. tabacum contains gene(s) responsible for hybrid lethality. Hybrid seedlings from the crosses N. occidentalis×N. tomentosiformis and N. occidentalis×N. sylvestris were inviable. CONCLUSIONS/SIGNIFICANCE Although the specific symptoms of hybrid lethality in the cross N. occidentalis×N. tabacum were similar to those appearing in hybrids from the cross N. occidentalis×N. tomentosiformis, genes in both the S and T subgenomes of N. tabacum appear responsible for hybrid lethality in crosses with N. occidentalis.
Collapse
Affiliation(s)
- Takahiro Tezuka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan.
| | | |
Collapse
|
36
|
Vaquero-Sedas MI, Vega-Palas MA. DNA methylation at tobacco telomeric sequences. PLANT MOLECULAR BIOLOGY 2011; 77:529-31; author reply 533-6. [PMID: 22016003 DOI: 10.1007/s11103-011-9833-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 10/06/2011] [Indexed: 05/31/2023]
Abstract
Majerová et al. (Plant Mol Biol, 2011) have recently reported that a considerable fraction of cytosines at tobacco telomeres is methylated. Although the data presented in this report indicate that tobacco telomeric sequences undergo certain levels of DNA methylation, it is not clear whether the methylated sequences are at telomeres, at internal chromosomal loci or at both.
Collapse
|
37
|
Matyasek R, Fulnecek J, Leitch AR, Kovarik A. Analysis of two abundant, highly related satellites in the allotetraploid Nicotiana arentsii using double-strand conformation polymorphism analysis and sequencing. THE NEW PHYTOLOGIST 2011; 192:747-59. [PMID: 21777247 DOI: 10.1111/j.1469-8137.2011.03827.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
• Allopolyploidy, a driving force in plant evolution, can induce rapid structural changes in parental subgenomes. Here, we examined the fate of homologous subtelomeric satellites in intrasection allotetraploid Nicotiana arentsii formed from N. undulata and N. wigandioides progenitors < 200,000 yr ago. • We cloned and sequenced a number of monomers from progenitors and the allotetraploid. Structural features of both cloned and genomic monomers were studied using double-strand conformation polymorphism analysis. • Two homologous satellites were isolated from N. undulata (called NUNSSP) and N. wigandioides (NWISSP). While the NUNSSP monomers were highly homogeneous in nucleotide sequences, the NWISSP monomers formed two separate clades. Likewise, the genomic NUNSSP monomers showed less DNA conformation heterogeneity than NWISSP monomers, with distinct conformations. While both satellites predominantly occupy subtelomeric positions, a fraction of the NWISSP repeats was found in an intercalary location, supporting the hypothesis that dispersion prevents the repeats becoming homogeneous. Sequence, structural and chromosomal features of the parental satellites were faithfully inherited by N. arentsii. • Our study revealed that intergenomic homogenization of subtelomeric satellite repeats does not occur in N. arentsii allotetraploid. We propose that the sequence and structural divergence of subtelomeric satellites may render allopolyploid chromosomes less vulnerable to intergenomic exchanges.
Collapse
Affiliation(s)
- Roman Matyasek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, vvi, Brno, Czech Republic.
| | | | | | | |
Collapse
|
38
|
Makarova SS, Minina EA, Makarov VV, Semenyuk PI, Kopertekh L, Schiemann J, Serebryakova MV, Erokhina TN, Solovyev AG, Morozov SY. Orthologues of a plant-specific At-4/1 gene in the genus Nicotiana and the structural properties of bacterially expressed 4/1 protein. Biochimie 2011; 93:1770-8. [PMID: 21712068 DOI: 10.1016/j.biochi.2011.06.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Accepted: 06/14/2011] [Indexed: 11/24/2022]
Abstract
Arabidopsis thaliana At-4/1 is the protein of unknown function capable of polar localization in plant cells and intercellular trafficking. In this work, we cloned cDNAs and chromosomal genes of At-4/1 orthologues from several Nicotiana species. Similarly to the 4/1 genes of A. thaliana and Oryza sativa, Nicotiana 4/1 genes have eight exons and seven introns but are considerably longer due to their larger introns. The allotetraploid genome of Nicotiana tabacum, which is known to consist of the 'S genome' originated from Nicotiana sylvestris and the 'T genome' derived from Nicotiana tomentosiformis, encodes two 4/1 genes. The T genome-encoded 4/1 gene, but not that of the S genome, contains a SINE-like transposable element in its intron 2. The 4/1 genes of Nicotiana hesperis and Nicotiana benthamiana lack such an element in the intron 2, but possess a related SINE-like sequence in their intron 4. Collectively, the sequence analysis data provide an insight into the organization of 4/1 genes in flowering plants and the patterns of evolution in the genus Nicotiana. The Nicotiana 4/1 proteins and those of other flowering plants show a significant level of sequence similarity. Computer-assisted analysis was further used to compare their predicted secondary structures. Several algorithms confidently predicted the presence of several coiled-coil domains occupying similar positions in different 4/1 proteins. Analysis of circular dichroism spectra carried out for bacterially expressed N. tabacum 4/1 protein (Nt-4/1) and its N- and C-terminally truncated mutants confirmed that the secondary structure of Nt-4/1 is generally alpha-helical. The C-terminal region of Nt-4/1 was found to undergo a partial proteolysis in Escherichia coli cells. Differential scanning calorimetry of Nt-4/1 protein and its mutants revealed three calorimetric domains most probably corresponding to the N-terminal, central, and C-terminal structural domains of the protein.
Collapse
Affiliation(s)
- Svetlana S Makarova
- Department of Virology, Biological Faculty, Moscow State University, Moscow 119992, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Organization and evolution of subtelomeric satellite repeats in the potato genome. G3-GENES GENOMES GENETICS 2011; 1:85-92. [PMID: 22384321 PMCID: PMC3276127 DOI: 10.1534/g3.111.000125] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 05/03/2011] [Indexed: 12/30/2022]
Abstract
Subtelomeric domains immediately adjacent to telomeres represent one of the most dynamic and rapidly evolving regions in eukaryotic genomes. A common feature associated with subtelomeric regions in different eukaryotes is the presence of long arrays of tandemly repeated satellite sequences. However, studies on molecular organization and evolution of subtelomeric repeats are rare. We isolated two subtelomeric repeats, CL14 and CL34, from potato (Solanum tuberosum). The CL14 and CL34 repeats are organized as independent long arrays, up to 1-3 Mb, of 182 bp and 339 bp monomers, respectively. The CL14 and CL34 repeat arrays are directly connected with the telomeric repeats at some chromosomal ends. The CL14 repeat was detected at the subtelomeric regions among highly diverged Solanum species, including tomato (Solanum lycopersicum). In contrast, CL34 was only found in potato and its closely related species. Interestingly, the CL34 repeat array was always proximal to the telomeres when both CL14 and CL34 were found at the same chromosomal end. In addition, the CL34 repeat family showed more sequence variability among monomers compared with the CL14 repeat family. We conclude that the CL34 repeat family emerged recently from the subtelomeric regions of potato chromosomes and is rapidly evolving. These results provide further evidence that subtelomeric domains are among the most dynamic regions in eukaryotic genomes.
Collapse
|
40
|
Bindler G, Plieske J, Bakaher N, Gunduz I, Ivanov N, Van der Hoeven R, Ganal M, Donini P. A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:219-30. [PMID: 21461649 PMCID: PMC3114088 DOI: 10.1007/s00122-011-1578-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 03/15/2011] [Indexed: 05/19/2023]
Abstract
Tobacco (Nicotiana tabacum L.) is a species in the large family of the Solanaceae and is important as an agronomic crop and as a model system in plant biotechnology. Despite its importance, only limited molecular marker resources are available that can be used for genome analysis, genetic mapping and breeding. We report here on the development and characterization of 5,119 new and functional microsatellite markers and on the generation of a high-resolution genetic map for the tetraploid tobacco genome. The genetic map was generated using an F2 mapping population derived from the intervarietal cross of Hicks Broadleaf × Red Russian and merges the polymorphic markers from this new set with those from a smaller set previously used to produce a lower density map. The genetic map described here contains 2,317 microsatellite markers and 2,363 loci, resulting in an average distance between mapped microsatellite markers which is less than 2 million base pairs or 1.5 cM. With this new and expanded marker resource, a sufficient number of markers are now available for multiple applications ranging from tobacco breeding to comparative genome analysis. The genetic map of tobacco is now comparable in marker density and resolution with the best characterized genomes of the Solanaceae: tomato and potato.
Collapse
Affiliation(s)
- Gregor Bindler
- Applied Research Department, Philip Morris International, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Jörg Plieske
- TraitGenetics GmbH, Am Schwabeplan 1b, 06466 Gatersleben, Germany
| | - Nicolas Bakaher
- Applied Research Department, Philip Morris International, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Irfan Gunduz
- Applied Research Department, Philip Morris International, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Nikolai Ivanov
- Applied Research Department, Philip Morris International, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Rutger Van der Hoeven
- Applied Research Department, Philip Morris International, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
- Present Address: KWS SAAT AG, P.O. Box 1463, 37555 Einbeck, Germany
| | - Martin Ganal
- TraitGenetics GmbH, Am Schwabeplan 1b, 06466 Gatersleben, Germany
| | - Paolo Donini
- Applied Research Department, Philip Morris International, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| |
Collapse
|
41
|
Qin Q, He W, Liu S, Wang J, Xiao J, Liu Y. Analysis of 5S rDNA organization and variation in polyploid hybrids from crosses of different fish subfamilies. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:403-11. [PMID: 20535772 DOI: 10.1002/jez.b.21346] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this article, sequence analysis of the coding region (5S) and adjacent nontranscribed spacer (NTS) were conducted in red crucian carp (RCC), blunt snout bream (BSB), and their polyploid offspring. Three monomeric 5S rDNA classes (designated class I: 203 bp; class II: 340 bp; and class III: 477 bp) of RCC were characterized by distinct NTS types (designated NTS-I, II, and III for the 83, 220, and 357 bp monomers, respectively). In BSB, only one monomeric 5S rDNA was observed (designated class IV: 188 bp), which was characterized by one NTS type (designated NTS-IV: 68 bp). In the polyploid offspring, the tetraploid (4nRB) hybrids partially inherited 5S rDNA classes from their female parent (RCC); however, they also possessed a unique 5S rDNA sequence (designated class I-L: 203 bp) with a novel NTS sequence (designated NTS-I-L: 83 bp). The characteristic paternal 5S rDNA sequences (class IV) were not observed. The 5S rDNA of triploid (3nRB) hybrids was completely inherited from the parental species, and generally preserved the parental 5S rDNA structural organization. These results first revealed the influence of polyploidy on the organization and evolution of the multigene family of 5S rDNA of fish, and are also useful in clarifying aspects of vertebrate genome evolution.
Collapse
Affiliation(s)
- Qinbo Qin
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | | | | | | | | | | |
Collapse
|
42
|
Anssour S, Baldwin IT. Variation in antiherbivore defense responses in synthetic Nicotiana allopolyploids correlates with changes in uniparental patterns of gene expression. PLANT PHYSIOLOGY 2010; 153:1907-18. [PMID: 20525855 PMCID: PMC2923876 DOI: 10.1104/pp.110.156786] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 06/01/2010] [Indexed: 05/21/2023]
Abstract
We examined the expression of Nicotiana attenuata (Na) and Nicotiana obtusifolia (No) herbivore-induced genes in synthetic autopolyploids (NaT and NoT) and five independent allopolyploid Nicotiana x obtusiata (Nxo) lines to understand how the expression of genes regulating complex polygenetic defense traits is altered in the early stages of allopolyploid hybridization. In Na, applying Manduca sexta oral secretions (OS) to wounds rapidly increased the transcript accumulation of wound-induced protein kinase (WIPK), lipoxygenase 3 (LOX3), nonexpressor of pathogenesis-related 1 (NPR1), and jasmonate-resistant 4 (JAR4) genes; these were correlated with increases in accumulation of jasmonic acid (JA), jasmonate-isoleucine, and trypsin protease inhibitors (TPIs). In No, OS elicitation reduced NPR1 transcripts and increased the level of salicylic acid (SA) that appeared to antagonize JA and JA-mediated defenses. OS elicited Nxo lines, accumulated high levels of the uniparental transcript of WIPK, LOX3, JAR4, and TPI, but low levels of both parental NPR1 transcripts that in turn were correlated with an increase in SA and a decrease in JA levels, suggesting SA/JA antagonism in the allopolyploid crosses. Methyl jasmonate treatment of Nxo lines elicited transcripts of both parental LOX3, JAR4, and TPIs, demonstrating that the uniparental pattern observed after OS elicitation was not due to gene inactivation. TPIs were induced at different levels among Nxo lines; some lines expressed high levels comparable to Na, others low levels similar to No, suggesting that synthetic neoallopolyploids rapidly readjust the expression of their parental defensive genes to generate diverse antiherbivore responses. Changes in the expression of key genes and posttranscriptional events likely facilitate adaptive radiations during allopolyploid speciation events.
Collapse
Affiliation(s)
- Samir Anssour
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Beutenberg Campus, D-07745 Jena, Germany
| | | |
Collapse
|
43
|
Chester M, Leitch AR, Soltis PS, Soltis DE. Review of the Application of Modern Cytogenetic Methods (FISH/GISH) to the Study of Reticulation (Polyploidy/Hybridisation). Genes (Basel) 2010; 1. [PMID: 24710040 PMCID: PMC3954085 DOI: 10.3390/genes1010166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The convergence of distinct lineages upon interspecific hybridisation, including when accompanied by increases in ploidy (allopolyploidy), is a driving force in the origin of many plant species. In plant breeding too, both interspecific hybridisation and allopolyploidy are important because they facilitate introgression of alien DNA into breeding lines enabling the introduction of novel characters. Here we review how fluorescence in situ hybridisation (FISH) and genomic in situ hybridisation (GISH) have been applied to: 1) studies of interspecific hybridisation and polyploidy in nature, 2) analyses of phylogenetic relationships between species, 3) genetic mapping and 4) analysis of plant breeding materials. We also review how FISH is poised to take advantage of nextgeneration sequencing (NGS) technologies, helping the rapid characterisation of the repetitive fractions of a genome in natural populations and agricultural plants.
Collapse
Affiliation(s)
- Michael Chester
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA.
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary, University of London, UK.
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, USA.
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
44
|
Chester M, Leitch AR, Soltis PS, Soltis DE. Review of the Application of Modern Cytogenetic Methods (FISH/GISH) to the Study of Reticulation (Polyploidy/Hybridisation). Genes (Basel) 2010; 1:166-92. [PMID: 24710040 PMCID: PMC3954085 DOI: 10.3390/genes1020166] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 06/30/2010] [Accepted: 06/30/2010] [Indexed: 11/16/2022] Open
Abstract
The convergence of distinct lineages upon interspecific hybridisation, including when accompanied by increases in ploidy (allopolyploidy), is a driving force in the origin of many plant species. In plant breeding too, both interspecific hybridisation and allopolyploidy are important because they facilitate introgression of alien DNA into breeding lines enabling the introduction of novel characters. Here we review how fluorescence in situ hybridisation (FISH) and genomic in situ hybridisation (GISH) have been applied to: 1) studies of interspecific hybridisation and polyploidy in nature, 2) analyses of phylogenetic relationships between species, 3) genetic mapping and 4) analysis of plant breeding materials. We also review how FISH is poised to take advantage of nextgeneration sequencing (NGS) technologies, helping the rapid characterisation of the repetitive fractions of a genome in natural populations and agricultural plants.
Collapse
Affiliation(s)
- Michael Chester
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA.
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary, University of London, UK.
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, USA.
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
45
|
Xie S, Khan N, Ramanna MS, Niu L, Marasek-Ciolakowska A, Arens P, van Tuyl JM. An assessment of chromosomal rearrangements in neopolyploids of Lilium hybrids. Genome 2010; 53:439-46. [DOI: 10.1139/g10-018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two types of newly induced polyploids (neopolyploids) of Lilium hybrids were monitored for the occurrence of chromosomal rearrangements through genomic in situ hybridization (GISH) technique. One of the populations was obtained through crossing an allotriploid Longiflorum × Oriental hybrid (LLO) with an allotetraploid Longiflorum × Trumpet hybrid (LLTT), both of which were derived from somatic chromosome doubling. The other type of allopolyploid population was derived from meiotic chromosome doubling in which numerically unreduced (2n) gametes from two different interspecific hybrids, namely, Longiflorum × Asiatic (LA) and Oriental × Asiatic (OA), were used to get backcross progeny with the Asiatic parents. GISH clearly discriminated the three constituent genomes (L, T, and O) in the complements of the progeny obtained from mitotic chromosome doubling. A total of 26 individuals were analyzed from this population and there was no evidence of chromosomal rearrangements. However, in the case of meiotically doubled allopolyploid progeny, considerable frequencies of chromosomal rearrangements were observed through GISH. The so-called chromosomal rearrangements in meiotic polyploids are the result of homoeologous recombination rather than translocations. Furthermore, evidence for the occurrence of meiotic recombination in the LA hybrids has been confirmed with GISH on meiotic chromosomes. Thus, there was evidence that neopolyploids of Lilium hybrids did not possess any noticeable chromosome rearrangements.
Collapse
Affiliation(s)
- Songlin Xie
- College of Horticulture, Northwest A&F University, Yangling Shaanxi 712100, People’s Republic of China
- Plant Breeding, Wageningen University and Research Centre, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
- Research Institute of Pomology and Floriculture, Department of Physiology and Biochemistry, Pomologiczna Str. 18, 96-100 Skierniewice, Poland
| | - Nadeem Khan
- College of Horticulture, Northwest A&F University, Yangling Shaanxi 712100, People’s Republic of China
- Plant Breeding, Wageningen University and Research Centre, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
- Research Institute of Pomology and Floriculture, Department of Physiology and Biochemistry, Pomologiczna Str. 18, 96-100 Skierniewice, Poland
| | - M. S. Ramanna
- College of Horticulture, Northwest A&F University, Yangling Shaanxi 712100, People’s Republic of China
- Plant Breeding, Wageningen University and Research Centre, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
- Research Institute of Pomology and Floriculture, Department of Physiology and Biochemistry, Pomologiczna Str. 18, 96-100 Skierniewice, Poland
| | - Lixin Niu
- College of Horticulture, Northwest A&F University, Yangling Shaanxi 712100, People’s Republic of China
- Plant Breeding, Wageningen University and Research Centre, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
- Research Institute of Pomology and Floriculture, Department of Physiology and Biochemistry, Pomologiczna Str. 18, 96-100 Skierniewice, Poland
| | - Agnieszka Marasek-Ciolakowska
- College of Horticulture, Northwest A&F University, Yangling Shaanxi 712100, People’s Republic of China
- Plant Breeding, Wageningen University and Research Centre, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
- Research Institute of Pomology and Floriculture, Department of Physiology and Biochemistry, Pomologiczna Str. 18, 96-100 Skierniewice, Poland
| | - Paul Arens
- College of Horticulture, Northwest A&F University, Yangling Shaanxi 712100, People’s Republic of China
- Plant Breeding, Wageningen University and Research Centre, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
- Research Institute of Pomology and Floriculture, Department of Physiology and Biochemistry, Pomologiczna Str. 18, 96-100 Skierniewice, Poland
| | - Jaap M. van Tuyl
- College of Horticulture, Northwest A&F University, Yangling Shaanxi 712100, People’s Republic of China
- Plant Breeding, Wageningen University and Research Centre, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
- Research Institute of Pomology and Floriculture, Department of Physiology and Biochemistry, Pomologiczna Str. 18, 96-100 Skierniewice, Poland
| |
Collapse
|
46
|
Clarkson JJ, Kelly LJ, Leitch AR, Knapp S, Chase MW. Nuclear glutamine synthetase evolution in Nicotiana: phylogenetics and the origins of allotetraploid and homoploid (diploid) hybrids. Mol Phylogenet Evol 2010; 55:99-112. [PMID: 19818862 DOI: 10.1016/j.ympev.2009.10.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 09/30/2009] [Accepted: 10/01/2009] [Indexed: 10/20/2022]
Abstract
Interspecies relationships in Nicotiana (Solanaceae) are complex because 40 species are diploid (two sets of chromosomes) and 35 species are allotetraploid (four sets of chromosomes, two from each progenitor diploid species). We sequenced a fragment (containing four introns) of the nuclear gene 'chloroplast-expressed glutamine synthetase' (ncpGS) in 65 species of Nicotiana. Here we present the first phylogenetic analysis based on a low-copy nuclear gene for this well studied and important genus. Diploid species have a single-copy of ncpGS, and allotetraploids as expected have two homeologous copies, each derived from their progenitor diploid. Results were particularly useful for determining the paternal lineage of previously enigmatic taxa (for which our previous analyses had revealed only the maternal progenitors). In particular, we were able to shed light on the origins of the two oldest and largest allotetraploid sections, N. sects. Suaveolentes and Repandae. All homeologues have an intact reading frame and apparently similar rates of divergence, suggesting both remain functional. Difficulties in fitting certain diploid species into the sectional classification of Nicotiana on morphological grounds, coupled with discordance between the ncpGS data and previous trees (i.e. plastid, nuclear ribosomal DNA), indicate a number of homoploid (diploid) hybrids in the genus. We have evidence for Nicotiana glutinosa and Nicotiana linearis being of hybrid origin and patterns of intra-allelic recombination also indicate the possibility of reticulate origins for other diploid species.
Collapse
Affiliation(s)
- James J Clarkson
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK.
| | - Laura J Kelly
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
| | - Andrew R Leitch
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | - Sandra Knapp
- Department of Botany, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Mark W Chase
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
| |
Collapse
|
47
|
Gaeta RT, Chris Pires J. Homoeologous recombination in allopolyploids: the polyploid ratchet. THE NEW PHYTOLOGIST 2010; 186:18-28. [PMID: 20002315 DOI: 10.1111/j.1469-8137.2009.03089.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Polyploidization and recombination are two important processes driving evolution through the building and reshaping of genomes. Allopolyploids arise from hybridization and chromosome doubling among distinct, yet related species. Polyploids may display novel variation relative to their progenitors, and the sources of this variation lie not only in the acquisition of extra gene dosages, but also in the genomic changes that occur after divergent genomes unite. Genomic changes (deletions, duplications, and translocations) have been detected in both recently formed natural polyploids and resynthesized polyploids. In resynthesized Brassica napus allopolyploids, there is evidence that many genetic changes are the consequence of homoeologous recombination. Homoeologous recombination can generate novel gene combinations and phenotypes, but may also destabilize the karyotype and lead to aberrant meiotic behavior and reduced fertility. Thus, natural selection plays a role in the establishment and maintenance of fertile natural allopolyploids that have stabilized chromosome inheritance and a few advantageous chromosomal rearrangements. We discuss the evidence for genome rearrangements that result from homoeologous recombination in resynthesized B. napus and how these observations may inform phenomena such as chromosome replacement, aneuploidy, non-reciprocal translocations and gene conversion seen in other polyploids.
Collapse
Affiliation(s)
- Robert T Gaeta
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211-7310, USA
| | | |
Collapse
|
48
|
Genetic Variability of Macedonian Tobacco Varieties Determined by Microsatellite Marker Analysis. DIVERSITY 2010. [DOI: 10.3390/d2040439] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Wu F, Eannetta NT, Xu Y, Plieske J, Ganal M, Pozzi C, Bakaher N, Tanksley SD. COSII genetic maps of two diploid Nicotiana species provide a detailed picture of synteny with tomato and insights into chromosome evolution in tetraploid N. tabacum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:809-27. [PMID: 19921141 DOI: 10.1007/s00122-009-1206-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 10/17/2009] [Indexed: 05/28/2023]
Abstract
Using single-copy conserved ortholog set (COSII) and simple sequence repeat (SSR) markers, we have constructed two genetic maps for diploid Nicotiana species, N. tomentosiformis and N. acuminata, respectively. N. acuminata is phylogenetically closer to N. sylvestris than to N. tomentosiformis, the latter two of which are thought to contribute the S-genome and T-genome, respectively, to the allotetraploid tobacco (N. tabacum L., 2n = 48). A comparison of the two maps revealed a minimum of seven inversions and one translocation subsequent to the divergence of these two diploid species. Further, comparing the diploid maps with a dense tobacco map revealed that the tobacco genome experienced chromosomal rearrangements more frequently than its diploid relatives, supporting the notion of accelerated genome evolution in allotetraploids. Mapped COSII markers permitted the investigation of Nicotiana-tomato syntenic relationships. A minimum of 3 (and up to 10) inversions and 11 reciprocal translocations differentiate the tomato genome from that of the last common ancestor of N. tomentosiformis and N. acuminata. Nevertheless, the marker/gene order is well preserved in 25 conserved syntenic segments. Molecular dating based on COSII sequences suggested that tobacco was formed 1.0 MYA or later. In conclusion, these COSII and SSR markers link the cultivated tobacco map to those of wild diploid Nicotiana species and tomato, thus providing a platform for cross-reference of genetic and genomic information among them as well as other solanaceous species including potato, eggplant, pepper and the closely allied coffee (Rubiaceae). Therefore they will facilitate genetic research in the genus Nicotiana.
Collapse
Affiliation(s)
- Feinan Wu
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Allopolyploid origin of Mediterranean species inHelictotrichon(Poaceae) and its consequences for karyotype repatterning and homogenisation of rDNA repeat units. SYST BIODIVERS 2009. [DOI: 10.1017/s1477200009003041] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|