1
|
Lu CH, Chang TT, Cho CC, Lin HC, Li HW. Stable Nuclei of Nucleoprotein Filament and High ssDNA Binding Affinity Contribute to Enhanced RecA E38K Recombinase Activity. Sci Rep 2017; 7:14964. [PMID: 29097773 PMCID: PMC5668366 DOI: 10.1038/s41598-017-15088-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/20/2017] [Indexed: 11/10/2022] Open
Abstract
RecA plays central roles in the homologous recombination to repair double-stranded DNA break damage in E. coli. A previously identified recA strain surviving high doses of UV radiation includes a dominant RecA E38K mutation. Using single-molecule experiments, we showed that the RecA E38K variant protein assembles nucleoprotein filaments more rapidly than the wild-type RecA. We also used a single-molecule fluorescence resonance energy transfer (smFRET) experiment to compare the nucleation cluster dynamics of wild-type RecA and RecA E38K mutants on various short ssDNA substrates. At shorter ssDNA, nucleation clusters of RecA E38K form dynamically, while only few were seen in wild-type RecA. RecA E38K also forms stable nuclei by specifically lowering the dissociation rate constant, kd. These observations provide evidence that greater nuclei stability and higher ssDNA binding affinity contribute to the observed enhanced recombination activity of the RecA E38K mutant. Given that assembly of RecA nucleoprotein filaments is the first committed step in recombinational repair processes, enhancement at this step gives rise to a more efficient recombinase.
Collapse
Affiliation(s)
- Chih-Hao Lu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Ting-Tzu Chang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Chia-Chuan Cho
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Hui-Cin Lin
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Hung-Wen Li
- Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
Kim T, Chitteni-Pattu S, Cox BL, Wood EA, Sandler SJ, Cox MM. Directed Evolution of RecA Variants with Enhanced Capacity for Conjugational Recombination. PLoS Genet 2015; 11:e1005278. [PMID: 26047498 PMCID: PMC4457935 DOI: 10.1371/journal.pgen.1005278] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 05/13/2015] [Indexed: 11/18/2022] Open
Abstract
The recombination activity of Escherichia coli (E. coli) RecA protein reflects an evolutionary balance between the positive and potentially deleterious effects of recombination. We have perturbed that balance, generating RecA variants exhibiting improved recombination functionality via random mutagenesis followed by directed evolution for enhanced function in conjugation. A recA gene segment encoding a 59 residue segment of the protein (Val79-Ala137), encompassing an extensive subunit-subunit interface region, was subjected to degenerate oligonucleotide-mediated mutagenesis. An iterative selection process generated at least 18 recA gene variants capable of producing a higher yield of transconjugants. Three of the variant proteins, RecA I102L, RecA V79L and RecA E86G/C90G were characterized based on their prominence. Relative to wild type RecA, the selected RecA variants exhibited faster rates of ATP hydrolysis, more rapid displacement of SSB, decreased inhibition by the RecX regulator protein, and in general displayed a greater persistence on DNA. The enhancement in conjugational function comes at the price of a measurable RecA-mediated cellular growth deficiency. Persistent DNA binding represents a barrier to other processes of DNA metabolism in vivo. The growth deficiency is alleviated by expression of the functionally robust RecX protein from Neisseria gonorrhoeae. RecA filaments can be a barrier to processes like replication and transcription. RecA regulation by RecX protein is important in maintaining an optimal balance between recombination and other aspects of DNA metabolism. The genetic recombination systems of bacteria have not evolved for optimal enzymatic function. As recombination and recombination systems can have deleterious effects, these systems have evolved sufficient function to repair a level of DNA double strand breaks typically encountered during replication and cell division. However, maintenance of genome stability requires a proper balance between all aspects of DNA metabolism. A substantial increase in recombinase function is possible, but it comes with a cellular cost. Here, we use a kind of directed evolution to generate variants of the Escherichia coli RecA protein with an enhanced capacity to promote conjugational recombination. The mutations all occur within a targeted 59 amino acid segment of the protein, encompassing a significant part of the subunit-subunit interface. The RecA variants exhibit a range of altered activities. In general, the mutations appear to increase RecA protein persistence as filaments formed on DNA creating barriers to DNA replication and/or transcription. The barriers can be eliminated via expression of more robust forms of a RecA regulator, the RecX protein. The results elucidate an evolutionary compromise between the beneficial and deleterious effects of recombination.
Collapse
Affiliation(s)
- Taejin Kim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sindhu Chitteni-Pattu
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Benjamin L. Cox
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Elizabeth A. Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Steven J. Sandler
- Department of Microbiology, University of Massachusetts-Amherst, Amherst, Massachusetts, United States of America
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
3
|
Abstract
The bacterial RecA protein participates in a remarkably diverse set of functions, all of which are involved in the maintenance of genomic integrity. RecA is a central component in both the catalysis of recombinational DNA repair and the regulation of the cellular SOS response. Despite the mechanistic differences of its functions, all require formation of an active RecA/ATP/DNA complex. RecA is a classic allosterically regulated enzyme, and ATP binding results in a dramatic increase in DNA binding affinity and a cooperative assembly of RecA subunits to form an ordered, helical nucleoprotein filament. The molecular events that underlie this ATP-induced structural transition are becoming increasingly clear. This review focuses on descriptions of our current understanding of the molecular design and allosteric regulation of RecA. We present a comprehensive list of all published recA mutants and use the results of various genetic and biochemical studies, together with available structural information, to develop ideas regarding the design of RecA functional domains and their catalytic organization.
Collapse
Affiliation(s)
- Dharia A McGrew
- Department of Biochemistry and Molecular Pharmacology, Aaron Lazare Research Building, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-2324, USA
| | | |
Collapse
|
4
|
Gruenig MC, Renzette N, Long E, Chitteni-Pattu S, Inman RB, Cox MM, Sandler SJ. RecA-mediated SOS induction requires an extended filament conformation but no ATP hydrolysis. Mol Microbiol 2008; 69:1165-79. [PMID: 18627467 DOI: 10.1111/j.1365-2958.2008.06341.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The Escherichia coli SOS response to DNA damage is modulated by the RecA protein, a recombinase that forms an extended filament on single-stranded DNA and hydrolyzes ATP. The RecA K72R (recA2201) mutation eliminates the ATPase activity of RecA protein. The mutation also limits the capacity of RecA to form long filaments in the presence of ATP. Strains with this mutation do not undergo SOS induction in vivo. We have combined the K72R variant of RecA with another mutation, RecA E38K (recA730). In vitro, the double mutant RecA E38K/K72R (recA730,2201) mimics the K72R mutant protein in that it has no ATPase activity. The double mutant protein will form long extended filaments on ssDNA and facilitate LexA cleavage almost as well as wild-type, and do so in the presence of ATP. Unlike recA K72R, the recA E38K/K72R double mutant promotes SOS induction in vivo after UV treatment. Thus, SOS induction does not require ATP hydrolysis by the RecA protein, but does require formation of extended RecA filaments. The RecA E38K/K72R protein represents an improved reagent for studies of the function of ATP hydrolysis by RecA in vivo and in vitro.
Collapse
Affiliation(s)
- Marielle C Gruenig
- Department of Biochemistry, 433 Babcock Drive, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Bakhlanova IV, Ogawa T, Lanzov VA. Recombinogenic activity of chimeric recA genes (Pseudomonas aeruginosa/Escherichia coli): a search for RecA protein regions responsible for this activity. Genetics 2001; 159:7-15. [PMID: 11560883 PMCID: PMC1461784 DOI: 10.1093/genetics/159.1.7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the background of weak, if any, constitutive SOS function, RecA from Pseudomonas aeruginosa (RecAPa) shows a higher frequency of recombination exchange (FRE) per DNA unit length as compared to RecA from Escherichia coli (RecAEc). To understand the molecular basis for this observation and to determine which regions of the RecAPa polypeptide are responsible for this unusual activity, we analyzed recAX chimeras between the recAEc and recAPa genes. We chose 31 previously described recombination- and repair-proficient recAX hybrids and determined their FRE calculated from linkage frequency data and constitutive SOS function expression as measured by using the lacZ gene under control of an SOS-regulated promoter. Relative to recAEc, the FRE of recAPa was 6.5 times greater; the relative alterations of FRE for recAX genes varied from approximately 0.6 to 9.0. No quantitative correlation between the FRE increase and constitutive SOS function was observed. Single ([L29M] or [I102D]), double ([G136N, V142I]), and multiple substitutions in related pairs of chimeric RecAX proteins significantly altered their relative FRE values. The residue content of three separate regions within the N-terminal and central but not the C-terminal protein domains within the RecA molecule also influenced the FRE values. Critical amino acids in these regions were located close to previously identified sequences that comprise the two surfaces for subunit interactions in the RecA polymer. We suggest that the intensity of the interactions between the subunits is a key factor in determining the FRE promoted by RecA in vivo.
Collapse
Affiliation(s)
- I V Bakhlanova
- Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, Russian Academy of Sciences, Gatchina/St. Petersburg 188300, Russia
| | | | | |
Collapse
|
6
|
Namsaraev EA, Baitin D, Bakhlanova IV, Alexseyev AA, Ogawa H, Lanzov VA. Biochemical basis of hyper-recombinogenic activity of Pseudomonas aeruginosa RecA protein in Escherichia coli cells. Mol Microbiol 1998; 27:727-38. [PMID: 9515699 DOI: 10.1046/j.1365-2958.1998.00718.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The replacement of Escherichia coli recA gene (recA[Ec]) with the Pseudomonas aeruginosa recA(Pa) gene in Escherichia coli cells results in constitutive hyper-recombination (high frequency of recombination exchanges per unit length of DNA) in the absence of constitutive SOS response. To understand the biochemical basis of this unusual in vivo phenotype, we compared in vitro the recombination properties of RecA(Pa) protein with those of RecA(Ec) protein. Consistent with hyper-recombination activity, RecA(Pa) protein appeared to be more proficient both in joint molecule formation, producing extensive DNA networks in strand exchange reaction, and in competition with single-stranded DNA binding (SSB) protein for single-stranded DNA (ssDNA) binding sites. The RecA(Pa) protein showed in vitro a normal ability for cleavage of the E. coli LexA repressor (a basic step in SOS regulon derepression) both in the absence and in the presence (i.e. even under suboptimal conditions for RecA(Ec) protein) of SSB protein. However, unlike other hyper-recombinogenic proteins, such as RecA441 and RecA730, RecA(Pa) protein displaced insufficient SSB protein from ssDNA at low magnesium concentration to induce the SOS response constitutively. In searching for particular characteristics of RecA(Pa) in comparison with RecA(Ec), RecA441 and RecA803 proteins, RecA(Pa) showed unusually high abilities: to be resistant to the displacement by SSB protein from poly(dT); to stabilize a ternary complex RecA::ATP::ssDNA to high salt concentrations; and to be much more rapid in both the nucleation of double-stranded DNA (dsDNA) and the steady-state rate of dsDNA-dependent ATP hydrolysis at pH7.5. We hypothesized that the high affinity of RecA(Pa) protein for ssDNA, and especially dsDNA, is the factor that directs the ternary complex to bind secondary DNA to initiate additional acts of recombination instead of to bind LexA repressor to induce constitutive SOS response.
Collapse
Affiliation(s)
- E A Namsaraev
- Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, Russian Academy of Sciences, Gatchina/St Petersburg
| | | | | | | | | | | |
Collapse
|
7
|
Cerutti H, Johnson AM, Boynton JE, Gillham NW. Inhibition of chloroplast DNA recombination and repair by dominant negative mutants of Escherichia coli RecA. Mol Cell Biol 1995; 15:3003-11. [PMID: 7760798 PMCID: PMC230531 DOI: 10.1128/mcb.15.6.3003] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The occurrence of homologous DNA recombination in chloroplasts is well documented, but little is known about the molecular mechanisms involved or their biological significance. The endosymbiotic origin of plastids and the recent finding of an Arabidopsis nuclear gene, encoding a chloroplast-localized protein homologous to Escherichia coli RecA, suggest that the plastid recombination system is related to its eubacterial counterpart. Therefore, we examined whether dominant negative mutants of the E. coli RecA protein can interfere with the activity of their putative homolog in the chloroplast of the unicellular green alga Chlamydomonas reinhardtii. Transformants expressing these mutant RecA proteins showed reduced survival rates when exposed to DNA-damaging agents, deficient repair of chloroplast DNA, and diminished plastid DNA recombination. These results strongly support the existence of a RecA-mediated recombination system in chloroplasts. We also found that the wild-type E. coli RecA protein enhances the frequency of plastid DNA recombination over 15-fold, although it has no effect on DNA repair or cell survival. Thus, chloroplast DNA recombination appears to be limited by the availability of enzymes involved in strand exchange rather than by the level of initiating DNA substrates. Our observations suggest that a primary biological role of the recombination system in plastids is in the repair of their DNA, most likely needed to cope with damage due to photooxidation and other environmental stresses. This hypothesis could explain the evolutionary conservation of DNA recombination in chloroplasts despite the predominantly uniparental inheritance of their genomes.
Collapse
Affiliation(s)
- H Cerutti
- Department of Botany, Duke University, Durham, North Carolina 27708, USA
| | | | | | | |
Collapse
|
8
|
Morimatsu K, Horii T, Takahashi M. Interaction of Tyr103 and Tyr264 of the RecA protein with DNA and nucleotide cofactors. Fluorescence study of engineered proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 228:779-85. [PMID: 7737177 DOI: 10.1111/j.1432-1033.1995.tb20323.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To obtain structural insight on the interaction of the RecA protein with nucleotide cofactors (ATP and ADP) and DNA, we have made two engineered RecA proteins, in which either Tyr103 or Tyr264 was replaced with tryptophan. The fluorescence of tryptophan residues (two/subunit) of wild-type RecA is not significantly altered upon the binding of cofactor or DNA. Therefore, any detectable fluorescence change of the engineered proteins could be directly related to interaction with the particular inserted tryptophan residue. The fluorescence of Trp103 is almost completely quenched upon ADP binding, supporting a stacking interaction of adenine base of ADP with Tyr103. By contrast, with ATP the quenching of fluorescence of Trp103 is not complete (75%), possibly indicating that there is no stacking interaction with ATP. Such a difference could explain the antagonistic effects of ATP and ADP. Both nucleotides partially quench the fluorescence of Trp264 (about 70%), confirming that this residue is in the vicinity of the cofactor-binding site. The binding of ssDNA also decreases the fluorescence of both Trp103 and Trp264, the degree of quenching depending upon base composition and decreasing in the following order: poly(dT) > poly(dI) > M13 ssDNA > poly(dA). This order coincides with that of the binding affinities of these polynucleotides to RecA reported by Cazenave et al. [Cazenave, C., Chabbert, M., Toulmé, J. J. & Hélène, C. (1984) Biochim. Biophys. Acta 781, 7-13]. This correlation supports the finding that a region very close to Tyr103 interacts with DNA.
Collapse
Affiliation(s)
- K Morimatsu
- Department of Molecular Protozoology, Osaka University, Japan
| | | | | |
Collapse
|