1
|
Choe ME, Kim JY, Syed Nabi RB, Han SI, Cho KS. Development of InDels markers for the identification of cytoplasmic male sterility in Sorghum by complete chloroplast genome sequences analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1188149. [PMID: 37528970 PMCID: PMC10388542 DOI: 10.3389/fpls.2023.1188149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023]
Abstract
Cytoplasmic male sterility (CMS) is predominantly used for F1 hybrid breeding and seed production in Sorghum. DNA markers to distinguish between normal fertile (CMS-N) and sterile (CMS-S) male cytoplasm can facilitate F1 hybrid cultivar development in Sorghum breeding programs. In this study, the complete chloroplast (cp) genome sequences of CMS-S and Korean Sorghum cultivars were obtained using next-generation sequencing. The de novo assembled genome size of ATx623, the CMS-S line of the chloroplast, was 140,644bp. When compared to the CMS-S and CMS-N cp genomes, 19 single nucleotide polymorphisms (SNPs) and 142 insertions and deletions (InDels) were identified, which can be used for marker development for breeding, population genetics, and evolution studies. Two InDel markers with sizes greater than 20 bp were developed to distinguish cytotypes based on the copy number variation of lengths as 28 and 22 bp tandem repeats, respectively. Using the newly developed InDel markers with five pairs of CMS-S and their near isogenic maintainer line, we were able to easily identify their respective cytotypes. The InDel markers were further examined and applied to 1,104 plants from six Korean Sorghum cultivars to identify variant cytotypes. Additionally, the phylogenetic analysis of seven Sorghum species with complete cp genome sequences, including wild species, indicated that CMS-S and CMS-N contained Milo and Kafir cytotypes that might be hybridized from S. propinquum and S. sudanese, respectively. This study can facilitate F1 hybrid cultivar development by providing breeders with reliable tools for marker-assisted selection to breed desirable Sorghum varieties.
Collapse
|
2
|
Han Y, Gao Y, Li Y, Zhai X, Zhou H, Ding Q, Ma L. Chloroplast Genes Are Involved in The Male-Sterility of K-Type CMS in Wheat. Genes (Basel) 2022; 13:310. [PMID: 35205355 PMCID: PMC8871828 DOI: 10.3390/genes13020310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 12/04/2022] Open
Abstract
The utilization of crop heterosis can greatly improve crop yield. The sterile line is vital for the heterosis utilization of wheat (Triticum aestivum L.). The chloroplast genomes of two sterile lines and one maintainer were sequenced using second-generation high-throughput technology and assembled. The nonsynonymous mutated genes among the three varieties were identified, the expressed difference was further analyzed by qPCR, and finally, the function of the differentially expressed genes was analyzed by the barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) method. A total of 16 genes containing 31 nonsynonymous mutations between K519A and 519B were identified. There were no base mutations in the protein-encoding genes between K519A and YS3038. The chloroplast genomes of 519B and K519A were closely related to the Triticum genus and Aegilops genus, respectively. The gene expression levels of the six selected genes with nonsynonymous mutation sites for K519A compared to 519B were mostly downregulated at the binucleate and trinucleate stages of pollen development. The seed setting rates of atpB-silenced or ndhH-silenced 519B plants by BSMV-VIGS method were significantly reduced. It can be concluded that atpB and the ndhH are likely to be involved in the reproductive transformation of 519B.
Collapse
Affiliation(s)
- Yucui Han
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; (Y.H.); (Y.L.)
- College of Agronomy, Northwest A&F University, Xianyang 712100, China; (Y.G.); (X.Z.); (H.Z.)
| | - Yujie Gao
- College of Agronomy, Northwest A&F University, Xianyang 712100, China; (Y.G.); (X.Z.); (H.Z.)
| | - Yun Li
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; (Y.H.); (Y.L.)
| | - Xiaoguang Zhai
- College of Agronomy, Northwest A&F University, Xianyang 712100, China; (Y.G.); (X.Z.); (H.Z.)
| | - Hao Zhou
- College of Agronomy, Northwest A&F University, Xianyang 712100, China; (Y.G.); (X.Z.); (H.Z.)
| | - Qin Ding
- College of Horticulture, Northwest A&F University, Xianyang 712100, China
| | - Lingjian Ma
- College of Agronomy, Northwest A&F University, Xianyang 712100, China; (Y.G.); (X.Z.); (H.Z.)
| |
Collapse
|
3
|
Diekmann K, Hodkinson TR, Wolfe KH, van den Bekerom R, Dix PJ, Barth S. Complete chloroplast genome sequence of a major allogamous forage species, perennial ryegrass (Lolium perenne L.). DNA Res 2009; 16:165-76. [PMID: 19414502 PMCID: PMC2695775 DOI: 10.1093/dnares/dsp008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Lolium perenne L. (perennial ryegrass) is globally one of the most important forage and grassland crops. We sequenced the chloroplast (cp) genome of Lolium perenne cultivar Cashel. The L. perenne cp genome is 135 282 bp with a typical quadripartite structure. It contains genes for 76 unique proteins, 30 tRNAs and four rRNAs. As in other grasses, the genes accD, ycf1 and ycf2 are absent. The genome is of average size within its subfamily Pooideae and of medium size within the Poaceae. Genome size differences are mainly due to length variations in non-coding regions. However, considerable length differences of 1–27 codons in comparison of L. perenne to other Poaceae and 1–68 codons among all Poaceae were also detected. Within the cp genome of this outcrossing cultivar, 10 insertion/deletion polymorphisms and 40 single nucleotide polymorphisms were detected. Two of the polymorphisms involve tiny inversions within hairpin structures. By comparing the genome sequence with RT–PCR products of transcripts for 33 genes, 31 mRNA editing sites were identified, five of them unique to Lolium. The cp genome sequence of L. perenne is available under Accession number AM777385 at the European Molecular Biology Laboratory, National Center for Biotechnology Information and DNA DataBank of Japan.
Collapse
|
4
|
|
5
|
Shiina T, Tsunoyama Y, Nakahira Y, Khan MS. Plastid RNA polymerases, promoters, and transcription regulators in higher plants. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 244:1-68. [PMID: 16157177 DOI: 10.1016/s0074-7696(05)44001-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Plastids are semiautonomous plant organelles exhibiting their own transcription-translation systems that originated from a cyanobacteria-related endosymbiotic prokaryote. As a consequence of massive gene transfer to nuclei and gene disappearance during evolution, the extant plastid genome is a small circular DNA encoding only ca. 120 genes (less than 5% of cyanobacterial genes). Therefore, it was assumed that plastids have a simple transcription-regulatory system. Later, however, it was revealed that plastid transcription is a multistep gene regulation system and plays a crucial role in developmental and environmental regulation of plastid gene expression. Recent molecular and genetic approaches have identified several new players involved in transcriptional regulation in plastids, such as multiple RNA polymerases, plastid sigma factors, transcription regulators, nucleoid proteins, and various signaling factors. They have provided novel insights into the molecular basis of plastid transcription in higher plants. This review summarizes state-of-the-art knowledge of molecular mechanisms that regulate plastid transcription in higher plants.
Collapse
Affiliation(s)
- Takashi Shiina
- Faculty of Human Environment, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | | | | | | |
Collapse
|
6
|
Abstract
The nuclear genome of the model plant Arabidopsis thaliana contains a small gene family consisting of three genes encoding RNA polymerases of the single-subunit bacteriophage type. There is evidence that similar gene families also exist in other plants. Two of these RNA polymerases are putative mitochondrial enzymes, whereas the third one may represent the nuclear-encoded RNA polymerase (NEP) active in plastids. In addition, plastid genes are transcribed from another, entirely different multisubunit eubacterial-type RNA polymerase, the core subunits of which are encoded by plastid genes [plastid-encoded RNA polymerase (PEP)]. This core enzyme is complemented by one of several nuclear-encoded sigma-like factors. The development of photosynthetically active chloroplasts requires both PEP and NEP. Most NEP promoters show certain similarities to mitochondrial promoters in that they include the sequence motif 5'-YRTA-3' near the transcription initiation site. PEP promoters are similar to bacterial promoters of the -10/-35 sigma 70 type.
Collapse
Affiliation(s)
- W R Hess
- Institute of Biology, Humboldt University, Berlin, Germany
| | | |
Collapse
|
7
|
Van Tang H, Pring DR, Muza FR, Yan B. Sorghum mitochondrial orf25 and a related chimeric configuration of a male-sterile cytoplasm. Curr Genet 1996; 29:265-74. [PMID: 8595673 DOI: 10.1007/bf02221557] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We describe fundamental characteristics of sorghum mitochondrial orf25, urf209, and a related chimeric configuration, orf265/130, which is restricted to the IS1112C source of cytoplasmic male sterility in sorghum. Transcripts of urf209 are edited at ten nucleotides, resulting in nine amino-acid changes predicted from genomic sequences. The cDNA-predicted polypeptide product is 23.6 kDa, while Western blot analyses identify a product of 20k Da. Transcription of urf209 is characterized by one or two transcripts, dependent on nuclear background, but this difference is not related to male fertility status. The orf265/130 chimeric region includes 288 bp 95% identical to sequences 5' to maize T-cytoplasm T-urf13 and atp6, which includes a common transcription initiation site, and terminates with a recombinational event involving urf209. The urf209 similarity extends 189 bp, followed by sequences duplicated 5' to sorghum atp6-2. Sequences immediately 3' to the atp6-2 similarity include a second in-frame start codon, defining orf130. Structural features 5' to orf130 are shared with motifs found 5' to several translated mitochondrial open reading frames. The orf265/orf130 configuration is uniquely transcribed, and transcripts of orf130 exhibit one silent RNA editing event. Transcription in somatic cells is not altered by male fertility status.
Collapse
Affiliation(s)
- H Van Tang
- Department of Plant Pathology and Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| | | | | | | |
Collapse
|
8
|
Ran Z, Michaelis G. Mapping of a chloroplast RFLP marker associated with the CMS cytoplasm of sugar beet (Beta vulgaris). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1995; 91:836-840. [PMID: 24169966 DOI: 10.1007/bf00223889] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/1995] [Accepted: 03/31/1995] [Indexed: 06/02/2023]
Abstract
The Owen cytoplasm of male-sterile sugar beet is associated with several alterations of mitochondrial DNA and one additional HindIII site of chloroplast DNA. The region of this HindIII site has been cloned and sequenced. The site maps in a small reading frame (orf32) close to the ycf7 (orf31) gene in the petG-psbE region of chloroplast DNA. Possible functional implications of the results are discussed. The chloroplast RFLP marker described could be useful for studies on chloroplast-mitochondrial interactions, CMS of sugar beet, and the origin of the Owen cytoplasm.
Collapse
Affiliation(s)
- Z Ran
- Botanisches Institut der Universität Düsseldorf, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| | | |
Collapse
|
9
|
Chen Z, Schertz KF, Mullet JE, DuBell A, Hart GE. Characterization and expression of rpoC2 in CMS and fertile lines of sorghum. PLANT MOLECULAR BIOLOGY 1995; 28:799-809. [PMID: 7640353 DOI: 10.1007/bf00042066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A 165 bp deletion in the middle of rpoC2, the plastid gene which encodes the RNA polymerase beta" subunit, was identified in the small-anthered types of CMS sorghum, Sorghum bicolor (L.). Moench, containing A1, A2, A5, and A6 cytoplasms. It was previously shown that the amino acid sequence deleted in these CMS lines is in a monocot-specific region that contains several protein motifs that are characteristic of several transcription factors. Using primers flanking the deletion in PCR analyses, various types of CMS lines, some of which are used in hybrid sorghum production, were classified into two groups. CMS lines containing A1, A2, A5, A6 cytoplasms display the deletion in rpoC2. These lines have small anthers in which pollen development is arrested at an early stage and in which usually only empty exines are found. CMS lines containing A3, A4, and 9E cytoplasms do not possess the deletion. These lines have large anthers in which pollen degenerates at a later stage. Run-on transcription assays using 15 chloroplast genes showed that chloroplast gene transcription rates are similar in CMS and fertile (maintainer and restorer) lines and F1 in seedling leaves. Analyses of RNA blots indicated that rbcL, rpoB and rpoC2 transcripts are accumulated mainly in the leaves and low in the inflorescence tissues and pollen. These data document plastid gene expression in leaves and non-photosynthetic tissues from CMS and fertile lines of sorghum.
Collapse
Affiliation(s)
- Z Chen
- Department of Soil and Crop Sciences, Texas A&M University, College Station 77843, USA
| | | | | | | | | |
Collapse
|
10
|
Kawata M, Ohmiya A, Shimamoto Y, Oono K, Takaiwa F. Structural changes in the plastid DNA of rice (Oryza sativa L.) during tissue culture. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1995; 90:364-371. [PMID: 24173926 DOI: 10.1007/bf00221978] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/1994] [Accepted: 09/08/1994] [Indexed: 06/02/2023]
Abstract
To investigate the rearrangement of the plastid genome during tissue culture, DNA from rice callus lines, which had been derived individually from single protoplasts isolated from seed or pollen callus (protoclones), was analyzed by Southern hybridization with rice chloroplast DNA (ctDNA) clones as probes. Among 44 long-term cultured protoclones, maintained for 4, 8 or 11 years, 28 contained plastid DNA (ptDNA) from which portions had been deleted. The ptDNA of all protoclones that had been maintained for 11 years had a deletion that covered a large region of the plastid genome. The deletions could be classified into 15 types from their respective sizes and positions. By contrast, no deletions were found in the ptDNA of 38 protoclones that had been maintained for only 1 month. These results indicate that long-term culture causes deletions in the plastid genome. Detailed hybridization experiments revealed that plastid genomes with deletions in several protoclones were organized as head-to-head or tail-to-tail structures. Furthermore, ptDNAs retained during long-term culture all had a common terminus at one end, where extensive rearrangement is known to have occurred during the speciation of rice and tobacco. Morphological analysis revealed the accumulation of starch granules in plastids and amyloplasts in protoclones in which the plastid genome had undergone deletion. Our observations indicated that novel structural changes in the plastid genome and morphological changes in the plastid had occurred in rice cells during long-term tissue culture. Moreover, the morphological changes in plastids were associated with deletions in the plastid genome.
Collapse
Affiliation(s)
- M Kawata
- Forage Crop Breeding and Seed Research Institute, Nishinasuno, 329-27, Tochigi, Japan
| | | | | | | | | |
Collapse
|
11
|
|
12
|
|