1
|
Abstract
Escherichia coli arbitrarily encompasses facultative anaerobic, rod-shaped bacteria with defined respiratory and fermentative types of metabolism. The species diversification has been further advanced by atypical strains whose features deviate from the essential species-specific morphological and metabolic cutoff. The morphological cutoff is exemplified by bacterial filamentation. E. coli filamentation has been studied from two different perspectives: the first considers filamentation as a result of adaptive strategies and response to stress, while the second is based on findings from the cell division of E. coli's conditional mutants. Another cutoff is represented by E. coli's inability to use citrate as a sole carbon and energy source. In this study, we compared two atypical E. coli strains that belong to the same neuroinvasive ecovar but exhibit either of the two phenotypes that deviate from the species' features. While E. coli RS218 exists in the form of filaments incapable of growth on citrate, strain IHE3034 is represented as normal-sized bacteria able to ferment citrate under oxic conditions in the presence of glucose; in this paper, we show that these two phenotypes result from a bona fide trade-off. With the help of comparative proteomics and metabolomics, we discovered the proteome required for the upkeep of these phenotypes. The metabolic profiles of both strains reveal that under aerobic conditions, RS218 undergoes oxidative metabolism, while IHE3034 undergoes anaerobic respiration. Finally, we show that the use of citrate and filament formation are both linked in a trade-off occurring via a c-di-GMP-dependent phase variation event. IMPORTANCE Aerobic use of citrate and filamentous growth are arbitrary cutoffs for the Escherichia coli species. The strains that exhibit them as stable phenotypes are called atypical. In this study, we compare two atypical neuroinvasive E. coli strains, which alternatively display either of these phenotypes. We present the proteome and metabolome required for the maintenance of filamentous growth and show that anaerobic nitrate respiration is the main requirement for the use of citrate. The fact that the two phenotypes are differentially expressed by each strain prompted us to check if they are part of a trade-off. Indeed, these atypical characters are reversible and result from a c-di-GMP phase variation event. Thus, we revealed hidden links between stable morphological and metabolic phenotypes and provided information about alternative evolutionary pathways for the survival of E. coli strains in various host niches.
Collapse
|
2
|
Naidoo N, Pillay M. Bacterial pili, with emphasis on Mycobacterium tuberculosis curli pili: potential biomarkers for point-of care tests and therapeutics. Biomarkers 2016; 22:93-105. [PMID: 27797276 DOI: 10.1080/1354750x.2016.1252960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
CONTEXT Novel biomarkers are essential for developing rapid diagnostics and therapeutic interventions Objective: This review aimed to highlight biomarker characterisation and assessment of unique bacterial pili. METHODS A PubMed search for bacterial pili, diagnostics, vaccine and therapeutics was performed, with emphasis on the well characterised pili. RESULTS In total, 46 papers were identified and reviewed. CONCLUSION Extensive analyses of pili enabled by advanced nanotechnology and whole genome sequencing provide evidence that they are strong biomarker candidates. Mycobacterium tuberculosis curli pili are emphasised as important epitopes for the development of much needed point-of-care diagnostics and therapeutics.
Collapse
Affiliation(s)
- Natasha Naidoo
- a Medical Microbiology and Infection Control , School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Congella , Durban , South Africa
| | - Manormoney Pillay
- a Medical Microbiology and Infection Control , School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Congella , Durban , South Africa
| |
Collapse
|
3
|
Sepehri S, Khafipour E, Bernstein CN, Coombes BK, Pilar AV, Karmali M, Ziebell K, Krause DO. Characterization of Escherichia coli isolated from gut biopsies of newly diagnosed patients with inflammatory bowel disease. Inflamm Bowel Dis 2011; 17:1451-63. [PMID: 21674703 DOI: 10.1002/ibd.21509] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Accepted: 08/30/2010] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mucosal-associated Escherichia coli may play a role in the pathogenesis of inflammatory bowel diseases (IBDs). In this study we assessed mucosal-associated E. coli in adults at the time of first diagnosis. MATERIALS AND METHODS E. coli were isolated from 59 right colon biopsies of 34 newly diagnosed adult IBD patients (Crohn's disease [CD] = 23, ulcerative colitis [UC] = 11) and 25 healthy controls (HC). Strains were serotyped, phylotyped into A, B1, B2, or D, and tested for their ability to survive in macrophages. The presence of various virulence factors was also assessed. The fimH subunit of type 1 fimbriae was sequenced and phylogenetically analyzed. RESULTS A total of 65 E. coli were isolated from CD (29 isolates from 23 patients), UC (11 isolates from 11 patients), and HC (25 isolates from 25 subjects). All E. coli were positive for fimH, crl, and cgsA and negative for vt1, vt2, hlyA, cnf, and eae. Significant positive associations were between CD and in between CD and afae (P = 0.002), and between UC and ompA (P = 0.02), afae (P = 0.03), and USP (P = 0.04). The B2+D phylotype was significantly associated with inflammation (P = 0.04) as it was with serine protease autotransporters (SPATE), malX, ompA, and kpsMTII (P < 0.05). Macrophage survival was the highest in UC-isolated E. coli (P = 0.04). FimH amino acid substitutions N91S, S99N, and A223V were associated with IBD (P < 0.05). CONCLUSIONS Adherent invasive E. coli are present at first diagnosis, suggesting that they may have a role in the early stages of disease onset.
Collapse
Affiliation(s)
- Shadi Sepehri
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Manitoba, Canada
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Transcriptional regulation of the tad locus in Aggregatibacter actinomycetemcomitans: a termination cascade. J Bacteriol 2008; 190:3859-68. [PMID: 18375561 DOI: 10.1128/jb.00128-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tad (tight adherence) locus of Aggregatibacter actinomycetemcomitans includes genes for the biogenesis of Flp pili, which are necessary for bacterial adhesion to surfaces, biofilm formation, and pathogenesis. Although studies have elucidated the functions of some of the Tad proteins, little is known about the regulation of the tad locus in A. actinomycetemcomitans. A promoter upstream of the tad locus was previously identified and shown to function in Escherichia coli. Using a specially constructed reporter plasmid, we show here that this promoter (tadp) functions in A. actinomycetemcomitans. To study expression of the pilin gene (flp-1) relative to that of tad secretion complex genes, we used Northern hybridization analysis and a lacZ reporter assay. We identified three terminators, two of which (T1 and T2) can explain flp-1 mRNA abundance, while the third (T3) is at the end of the locus. T1 and T3 have the appearance and behavior of intrinsic terminators, while T2 has a different structure and is inhibited by bicyclomycin, indicating that T2 is probably Rho dependent. To help achieve the appropriate stoichiometry of the Tad proteins, we show that a transcriptional-termination cascade is important to the proper expression of the tad genes. These data indicate a previously unreported mechanism of regulation in A. actinomycetemcomitans and lead to a more complete understanding of its Flp pilus biogenesis.
Collapse
|
5
|
Müller CM, Dobrindt U, Nagy G, Emödy L, Uhlin BE, Hacker J. Role of histone-like proteins H-NS and StpA in expression of virulence determinants of uropathogenic Escherichia coli. J Bacteriol 2006; 188:5428-38. [PMID: 16855232 PMCID: PMC1540026 DOI: 10.1128/jb.01956-05] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The histone-like protein H-NS is a global regulator in Escherichia coli that has been intensively studied in nonpathogenic strains. However, no comprehensive study on the role of H-NS and its paralogue, StpA, in gene expression in pathogenic E. coli has been carried out so far. Here, we monitored the global effects of H-NS and StpA in a uropathogenic E. coli isolate by using DNA arrays. Expression profiling revealed that more than 500 genes were affected by an hns mutation, whereas no effect of StpA alone was observed. An hns stpA double mutant showed a distinct gene expression pattern that differed in large part from that of the hns single mutant. This suggests a direct interaction between the two paralogues and the existence of distinct regulons of H-NS and an H-NS/StpA heteromeric complex. hns mutation resulted in increased expression of alpha-hemolysin, fimbriae, and iron uptake systems as well as genes involved in stress adaptation. Furthermore, several other putative virulence genes were found to be part of the H-NS regulon. Although the lack of H-NS, either alone or in combination with StpA, has a huge impact on gene expression in pathogenic E. coli strains, its effect on virulence is ambiguous. At a high infection dose, hns mutants trigger more sudden lethality due to their increased acute toxicity in murine urinary tract infection and sepsis models. At a lower infectious dose, however, mutants lacking H-NS are attenuated through their impaired growth rate, which can only partially be compensated for by the higher expression of numerous virulence factors.
Collapse
Affiliation(s)
- Claudia M Müller
- Institut für Molekulare Infektionsbiologie, Röntgenring 11, D-97070 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
6
|
Verdonck F, Cox E, Goddeeris BM. F4 fimbriae expressed by porcine enterotoxigenic Escherichia coli, an example of an eccentric fimbrial system? J Mol Microbiol Biotechnol 2004; 7:155-69. [PMID: 15383714 DOI: 10.1159/000079825] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
An overwhelming number of infectious diseases in both humans and animals are initiated by bacterial adhesion to carbohydrate structures on a mucosal surface. Most bacterial pathogens mediate this adhesion by fimbriae or pili which contain an adhesive lectin subunit. The importance of fimbriae as virulence factors led to research elucidating the regulation of fimbrial expression and their molecular assembly process. This review provides an overview of the current knowledge of induction, expression and assembly of F4 (K88) fimbriae and discusses its unique as well as its identical characteristics compared to other intensively studied fimbriae or pili expressed by Escherichia coli.
Collapse
Affiliation(s)
- F Verdonck
- Laboratory of Veterinary Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | | | | |
Collapse
|
7
|
Balsalobre C, Morschhäuser J, Jass J, Hacker J, Uhlin BE. Transcriptional analysis of the sfa determinant revealing mmRNA processing events in the biogenesis of S fimbriae in pathogenic Escherichia coli. J Bacteriol 2003; 185:620-9. [PMID: 12511509 PMCID: PMC145322 DOI: 10.1128/jb.185.2.620-629.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Among the virulence factors present in pathogenic extraintestinal Escherichia coli strains, expression of fimbrial adhesins is necessary for attachment to the host tissues and subsequent colonization. Occurrence of the sfa determinant coding for the S fimbriae is widespread among the uropathogens and meningitis isolates. The sfa operon consists of nine genes. In the biogenesis of S fimbriae, the proteins encoded by the sfa genes are presumably required in a specific stoichiometry. In the present work we studied how differential expression of the sfa operon genes occurs. Our findings indicate that a number of endoribonucleolytic cleavages occur in the mRNA from the sfa operon, and we detected the presence of different distinct transcriptional products, including sfaBA, sfaA, sfaADE, and sfaGSH. The sfaGSH transcript represents the three distal genes of the sfa operon, which code for the minor subunits of the S fimbriae. Analysis of the proteins in S fimbriae suggested that expression of the sfaGSH transcript provides equimolar amounts of the minor subunits. Furthermore, we showed that in the generation of the major sfaA transcript, the processing included RNase E endoribonuceolytic cleavage of the precursor sfaBA transcript. We suggest that posttranscriptional mRNA processing events result in differential gene expression important to achieve the stoichiometry necessary for fimbrial adhesin biogenesis.
Collapse
|
8
|
Holden NJ, Uhlin BE, Gally DL. PapB paralogues and their effect on the phase variation of type 1 fimbriae in Escherichia coli. Mol Microbiol 2001; 42:319-30. [PMID: 11703657 DOI: 10.1046/j.1365-2958.2001.02656.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent work has demonstrated that expression of type 1 fimbriae is repressed by PapB, a regulator of pyelonephritis-associated pili (P-pili). PapB belongs to family of related adhesin regulators, for which consensus residues required for DNA binding and oligomerization have been identified. Of the regulators tested in this study, PapB, SfaB (S-fimbriae) and PefB (Salmonella enterica serovar Typhimurium--plasmid-encoded fimbriae) repressed FimB-promoted off-to-on inversion of the fim switch, although complete repression was only demonstrated by PapB. DaaA, FaeB, FanA, FanB and ClpB had no effect on fim switching. In addition, only PapB stimulated FimE-promoted on-to-off inversion. Deletion analysis demonstrated that this specificity resides in the carboxy terminal of the protein, and not the amino terminal, with the central region being homologous among the family members. Exchange of Leu(82) and Ile(83) of PapB for the equivalent residues from the DaaA protein (Phe and Gln) within the carboxy terminal virtually abolished cross-talk activity. Whereas PapB can bind to a region around the left inverted repeat of the fim switch, DaaA and the PapB double mutant were effectively unable to bind this region. A previously characterized PapB DNA binding mutant also failed to bind to this region and failed to inhibit FimB activity at the fim switch. Thus, repression of fim expression appears unique to PapB and SfaB within E. coli and requires DNA binding involving amino acid residues located both within the homologous core and in the heterogeneous carboxy terminus. The variation in the carboxy terminus between the PapB family members explains their differential effects on fim. This mechanism of cross-talk seems restricted to the P and S family adhesins with type 1 fimbriae and may ensure variable and sequential expression of adhesins during urinary tract infections.
Collapse
Affiliation(s)
- N J Holden
- ZAP Research Laboratory, Medical Microbiology, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
9
|
Uhlin BE, Balsalobre C, Forsman-Semb K, Göransson M, Jass J, Johansson J, Naureckiene S, Sondén B, Urbonaviciene J, Xia Y. Control mechanisms in the Pap-pili system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 485:113-8. [PMID: 11109094 DOI: 10.1007/0-306-46840-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- B E Uhlin
- Department of Microbiology, Umeå University, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Balsalobre C, Morschhäuser J, Hacker J, Uhlin BE. Transcriptional analysis of the sfa and pap determinants of uropathogenic Escherichia coli strains. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 485:119-22. [PMID: 11109095 DOI: 10.1007/0-306-46840-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- C Balsalobre
- Department of Microbiology, Umeå University, Sweden
| | | | | | | |
Collapse
|
11
|
Daigle F, Forget C, Martin C, Drolet M, Tessier MC, Dezfulian H, Harel J. Effects of global regulatory proteins and environmental conditions on fimbrial gene expression of F165(1) and F165(2) produced by Escherichia coli causing septicaemia in pigs. Res Microbiol 2000; 151:563-74. [PMID: 11037134 DOI: 10.1016/s0923-2508(00)00226-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Escherichia coli O115:F165 strains are associated with septicaemia in young pigs and possess at least two types of fimbriae. F165(1) fimbriae belong to the P fimbrial family and F165(2) fimbriae belong to the S fimbrial family. Regulatory regions of foo (F165(1)) and fot (F165(2)) fimbrial gene clusters from wild-type strain 4787 were sequenced and characterised. Expression of F165(1) and F165(2) fimbrial genes was analysed by using lacZ and/or luxAB as reporter genes under the control of the native fimbrial promoters. Differential expression of fimbrial genes was observed. Global regulatory mechanisms such as catabolite repression, leucine-responsive regulatory protein (Lrp), methylation and DNA supercoiling were demonstrated to influence foo and fot expression. foo and fot expression was optimal at 37 degrees C and under aerobic conditions. Expression of foo was higher on minimal medium, whereas fot expression was higher on complex Luria-Bertani medium. This could reflect an in vivo differential expression.
Collapse
Affiliation(s)
- F Daigle
- Department of Pathology and Microbiology, University of Montreal, St. Hyacinthe, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
12
|
Morrow BJ, Graham JE, Curtiss R. Genomic subtractive hybridization and selective capture of transcribed sequences identify a novel Salmonella typhimurium fimbrial operon and putative transcriptional regulator that are absent from the Salmonella typhi genome. Infect Immun 1999; 67:5106-16. [PMID: 10496884 PMCID: PMC96859 DOI: 10.1128/iai.67.10.5106-5116.1999] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/1999] [Accepted: 07/29/1999] [Indexed: 11/20/2022] Open
Abstract
Salmonella typhi, the etiologic agent of typhoid fever, is adapted to the human host and unable to infect nonprimate species. The genetic basis for host specificity in S. typhi is unknown. The avirulence of S. typhi in animal hosts may result from a lack of genes present in the broad-host-range pathogen Salmonella typhimurium. Genomic subtractive hybridization was successfully employed to isolate S. typhimurium genomic sequences which are absent from the S. typhi genome. These genomic subtracted sequences mapped to 17 regions distributed throughout the S. typhimurium chromosome. A positive cDNA selection method was then used to identify subtracted sequences which were transcribed by S. typhimurium following macrophage phagocytosis. A novel putative transcriptional regulator of the LysR family was identified as transcribed by intramacrophage S. typhimurium. This putative transcriptional regulator was absent from the genomes of the human-adapted serovars S. typhi and Salmonella paratyphi A. Mutations within this gene did not alter the level of S. typhimurium survival within macrophages or virulence within mice. A subtracted genomic fragment derived from the ferrichrome operon also hybridized to the intramacrophage cDNA. Nucleotide sequence analysis of S. typhimurium and S. typhi chromosomal sequences flanking the ferrichrome operon identified a novel S. typhimurium fimbrial operon with a high level of similarity to sequences encoding Proteus mirabilis mannose-resistant fimbriae. The novel fimbrial operon was absent from the S. typhi genome. The absence of specific genes may have allowed S. typhi to evolve as a highly invasive, systemic human pathogen.
Collapse
Affiliation(s)
- B J Morrow
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | | | |
Collapse
|
13
|
Xia Y, Uhlin BE. Mutational analysis of the PapB transcriptional regulator in Escherichia coli. Regions important for DNA binding and oligomerization. J Biol Chem 1999; 274:19723-30. [PMID: 10391913 DOI: 10.1074/jbc.274.28.19723] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PapB is a transcriptional regulator in the control of pap operon expression in Escherichia coli. There are PapB homologous proteins encoded by many fimbrial gene systems that are involved in the regulation of fimbriae-adhesin production, and previous studies suggested that PapB binds DNA through minor groove contact. Both deletion and alanine-scanning mutagenesis were used to identify functionally important regions of the PapB protein. Mutations altering Arg61 or Cys65 caused deficiency in DNA binding, indicating that these residues are critical for PapB binding to DNA. Alanine substitutions at positions 35-36, 53-56, and 74-76 resulted in mutants that were impaired in oligomerization. All these amino acid residues are conserved among the PapB homologous proteins, suggesting their importance in the whole family of regulatory proteins. The transcriptional efficiency of all the mutants was clearly reduced as compared with that of wild-type PapB. Taken together, we have localized regions in the PapB protein that are involved in DNA binding and oligomerization, and our results show that both functions are required for its activity as a transcriptional regulator.
Collapse
Affiliation(s)
- Y Xia
- Department of Microbiology, Umeå University, S-90187 Umeå, Sweden
| | | |
Collapse
|
14
|
Falconi M, Colonna B, Prosseda G, Micheli G, Gualerzi CO. Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity. A temperature-dependent structural transition of DNA modulates accessibility of virF promoter to transcriptional repressor H-NS. EMBO J 1998; 17:7033-43. [PMID: 9843508 PMCID: PMC1171051 DOI: 10.1093/emboj/17.23.7033] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The expression of plasmid-borne virF of Shigella encoding a transcriptional regulator of the AraC family, is required to initiate a cascade of events resulting in activation of several operons encoding invasion functions. H-NS, one of the main nucleoid-associated proteins, controls the temperature-dependent expression of the virulence genes by repressing the in vivo transcription of virF only below a critical temperature (approximately 32 degrees C). This temperature-dependent transcriptional regulation has been reproduced in vitro and the targets of H-NS on the virF promoter were identified as two sites centred around -250 and -1 separated by an intrinsic DNA curvature. H-NS bound cooperatively to these two sites below 32 degrees C, but not at 37 degrees C. DNA supercoiling within the virF promoter region did not influence H-NS binding but was necessary for the H-NS-mediated transcriptional repression. Electrophoretic analysis between 4 and 60 degrees C showed that the virF promoter fragment, comprising the two H-NS sites, undergoes a specific and temperature-dependent conformational transition at approximately 32 degrees C. Our results suggest that this modification of the DNA target may modulate a cooperative interaction between H-NS molecules bound at two distant sites in the virF promoter region and thus represents the physical basis for the H-NS-dependent thermoregulation of virulence gene expression.
Collapse
Affiliation(s)
- M Falconi
- Laboratorio di Genetica, Dipartimento di Biologia MCA, Università di Camerino, 62032 Camerino (MC), Italy
| | | | | | | | | |
Collapse
|
15
|
Xia Y, Forsman K, Jass J, Uhlin BE. Oligomeric interaction of the PapB transcriptional regulator with the upstream activating region of pili adhesin gene promoters in Escherichia coli. Mol Microbiol 1998; 30:513-23. [PMID: 9822817 DOI: 10.1046/j.1365-2958.1998.01080.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transcriptional regulation of the pap genes, which encode fimbrial adhesins in uropathogenic Escherichia coli, depends on an upstream activating region. This region contains binding sites for a transcription factor, PapB, which is a member of a growing family of putative regulatory proteins found in several virulence-associated fimbrial gene systems. To assess the nature of the PapB binding sites, we studied different naturally occurring variants and a number of in vitro constructed mutant binding sites. DNase I footprinting analysis and visualization of the PapB-DNA complex by atomic force microscopy showed that the protein occupied a DNA region of more than 50 bp. Purified PapB protein was shown to recognize a motif including a 9 bp repeat sequence containing T/A triplets at a conserved position. PapB binding was affected by distamycin, and the results were consistent with the possibility that the binding to DNA occurred through minor groove interaction. From these analyses and estimation of the relative number of PapB proteins per binding site, we suggest that PapB binds the DNA in an oligomeric fashion and may function as an architectural factor in the transcriptional control of adhesin expression.
Collapse
Affiliation(s)
- Y Xia
- Department of Microbiology, Umeâ University, S-90187 Umeâ, Sweden
| | | | | | | |
Collapse
|
16
|
Loomis WP, Moseley SL. Translational control of mRNA processing in the F1845 fimbrial operon of Escherichia coli. Mol Microbiol 1998; 30:843-53. [PMID: 10094632 DOI: 10.1046/j.1365-2958.1998.01117.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Endoribonucleolytic processing followed by differential decay of the cleavage products is an increasingly recognized mechanism for achieving co-ordinate regulation of functionally related proteins encoded by bacterial polycistronic transcripts. Unlike most examples when RNases E or III initiate decay, the daa transcript encoding F1845 fimbriae, a member of the Dr family of adhesins in Escherichia coli, is processed by an as yet unidentified endoribonuclease using a unique recognition mechanism. An open reading frame (ORF) predicted to encode a 57-amino-acid polypeptide was identified flanking the daa processing site. To determine whether this ORF is involved in processing, site-directed mutagenesis was used to generate mutants with altered translational efficiencies. A mutation in the putative ribosome binding site preceding the ORF significantly inhibited processing while the introduction of a premature stop codon abolished processing. Site-directed mutagenesis was used to introduce a limited number of mutations into the ORF, designated daaP, to alter the reading frame such that a different polypeptide of a similar size was encoded. Despite the presumed presence of trafficking ribosomes, this mutant failed to be processed, suggesting that the sequence of the DaaP peptide is important. However, the failure of a wild-type copy of the daaP gene to complement these mutations in trans suggested that the presence of wild-type daaP gene product was not sufficient to promote processing. Although active translation has been found to inhibit processing by RNases E and III, our data suggest that translation of the daaP gene is required in cis to promote processing by the endonuclease, perhaps due to an interaction of the nascent peptide with the ribosome or the daaP mRNA.
Collapse
Affiliation(s)
- W P Loomis
- Department of Microbiology, University of Washington, Seattle 98195-7242, USA
| | | |
Collapse
|
17
|
Nilsson P, Naureckiene S, Uhlin BE. Mutations affecting mRNA processing and fimbrial biogenesis in the Escherichia coli pap operon. J Bacteriol 1996; 178:683-90. [PMID: 8550500 PMCID: PMC177712 DOI: 10.1128/jb.178.3.683-690.1996] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The Escherichia coli pap genetic determinant includes 11 genes and encodes expression of Pap pili on the bacterial surface. An RNase E-dependent mRNA-processing event in the intercistronic papB-papA region results in the accumulation of a papA-gene-specific mRNA in considerable excess of the primary papB-papA mRNA transcription product. We have introduced mutations in the intercistronic region and studied the effect in vivo of these mutations on the processing event, PapA protein expression, and the biogenesis of fimbriae on the bacterial surface. Our studies establish that mRNA processing is an important event in the mechanism resulting in differential gene expression of the major pap operon. The deletion of sequences corresponding to the major cleavage site abolished processing, reduced expression of PapA protein, and resulted in "crew-cut" bacteria with short fimbrial structures on the bacterial surface. Only a limited part of the intercistronic region appeared to be required as the recognized target for the processing to occur. Upstream sequences to a position within 10 nucleotides of the major RNase E-dependent cleavage site could be deleted without any detectable effect on papB-papA mRNA processing, PapA protein expression, or fimbria formation. Substitution mutations of specific bases at the cleavage site by site-directed mutagenesis showed that there were alternative positions at which cleavage could be enhanced, and tests with an in vitro processing assay showed that such cleavages were also RNase E dependent. Our findings are discussed in relation to other fimbrial operons and other known targets of the RNase E endoribonuclease.
Collapse
Affiliation(s)
- P Nilsson
- Department of Microbiology, Umeå University, Sweden
| | | | | |
Collapse
|
18
|
Mühldorfer I, Hacker J, Keusch GT, Acheson DW, Tschäpe H, Kane AV, Ritter A, Olschläger T, Donohue-Rolfe A. Regulation of the Shiga-like toxin II operon in Escherichia coli. Infect Immun 1996; 64:495-502. [PMID: 8550198 PMCID: PMC173792 DOI: 10.1128/iai.64.2.495-502.1996] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Investigations of the regulation of the bacteriophage-encoded Shiga-like toxin II (SLT-II) in Escherichia coli demonstrated that bacteriophages exhibit a regulatory impact on toxin production by two mechanisms. Firstly, replication of the toxin-converting bacteriophages brings about an increase in toxin production due to concomitant multiplication of toxin gene copies. Secondly, an influence of a phage-encoded regulatory molecule was demonstrated by using low-copy-number plasmid pADR-28, carrying a translational gene fusion between the promoter and proximal portion of slt-IIA and the structural gene for bacterial alkaline phosphatase (phoA). PhoA activity, reflecting the slt-II promoter activity, was significantly enhanced in E. coli strains which and been lysogenized with an SLT-I or SLT-II-converting bacteriophage (H-19B or 933W, respectively) or bacteriophage lambda. Both mechanisms are dependent on bacteriophage induction and hence are recA dependent. Moreover, the study revealed that the DNA-binding protein H-NS has a regulatory impact on both bacteriophage-mediated SLT-II synthesis and the activity of the slt-II promoter of plasmid pADR-28. While a slight impact of growth temperature on SLT-II expression was observed, no impact of either osmolarity, pH, oxygen tension, acetates, iron level, or utilized carbon source could be demonstrated.
Collapse
Affiliation(s)
- I Mühldorfer
- Lehrstuhl fäur Molekulare Infektionsbiologie, Universität Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Froehlich B, Husmann L, Caron J, Scott JR. Regulation of rns, a positive regulatory factor for pili of enterotoxigenic Escherichia coli. J Bacteriol 1994; 176:5385-92. [PMID: 7915269 PMCID: PMC196725 DOI: 10.1128/jb.176.17.5385-5392.1994] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Attachment of enterotoxigenic Escherichia coli to the human gut is considered an important early step in infection that leads to diarrhea. This attachment is mediated by pili, which belong to a limited number of serologically distinguishable types. Many of these pili require the product of rns, or a closely related gene, for their expression. We have located the major promoter for rns and found that although its sequence diverges significantly from a sigma-70 promoter consensus sequence, it is very strong. Transcription of rns is negatively regulated both at a region upstream of this promoter and at a region internal to the rns open reading frame. In addition, rns positively regulates its own transcription, probably by counteracting these two negative effects.
Collapse
Affiliation(s)
- B Froehlich
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia 30322
| | | | | | | |
Collapse
|
20
|
Lucht J, Dersch P, Kempf B, Bremer E. Interactions of the nucleoid-associated DNA-binding protein H-NS with the regulatory region of the osmotically controlled proU operon of Escherichia coli. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37411-2] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
21
|
Morschhäuser J, Vetter V, Emödy L, Hacker J. Adhesin regulatory genes within large, unstable DNA regions of pathogenic Escherichia coli: cross-talk between different adhesin gene clusters. Mol Microbiol 1994; 11:555-66. [PMID: 7908714 DOI: 10.1111/j.1365-2958.1994.tb00336.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The uropathogenic Escherichia coli strain 536 possesses two large, unstable DNA regions on its chromosome, which were termed pathogenicity islands (pais). Deletions of pais, which occur with relatively high frequency in vitro and in vivo, lead to avirulent mutants. The genetic determinants for production of haemolysin (Hly) and P-related fimbriae (Prf) are located in one of these islands. Deletion of this pathogenicity island (paill) not only removes the hly- and prf-specific genes, but also represses S fimbriae (Sfa), although the sfa genes of this virulence factor are not located on paill. We have identified two regulatory genes, prfB and prfl, of the prf gene cluster that are homologous to the sfa regulatory genes sfaB and sfaC, respectively. Mutations in sfaB and sfaC that inhibit transcription of the major fimbrial subunit gene sfaA were complemented by the homologous prf genes, suggesting communication between the two fimbrial gene clusters in the wild-type strain. Chromosomal mutagenesis of the two prf regulators in strain 536 repressed transcription of sfaA, detected by Northern hybridization and a chromosomal sfaA-lacZ fusion. In addition, haemagglutination assays measured a lower level of S fimbriae in these mutants. Expression of the cloned prf regulators in trans reversed the effect of the mutations; furthermore, constitutive expression of prfB or prfl could also over-come the repression of S fimbriae in a strain that had lost the pathogenicity islands. Virulence assays in mice established that the prf mutants were less virulent than the wild-type strain. The results demonstrate that cross-regulation of two unlinked virulence gene clusters together with the co-ordinate loss of large DNA regions significantly influences the virulence of an extraintestinal E. coli wild-type isolate.
Collapse
Affiliation(s)
- J Morschhäuser
- Institut für Molekulare Infektionsbiologie, Würzburg, Germany
| | | | | | | |
Collapse
|
22
|
Morschhäuser J, Vetter V, Korhonen T, Uhlin BE, Hacker J. Regulation and binding properties of S fimbriae cloned from E. coli strains causing urinary tract infection and meningitis. ZENTRALBLATT FUR BAKTERIOLOGIE : INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY 1993; 278:165-76. [PMID: 8102267 DOI: 10.1016/s0934-8840(11)80834-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
S fimbriae are able to recognize receptor molecules containing sialic acid and are produced by pathogenic E. coli strains causing urinary tract infection and menigitis. In order to characterize the corresponding genetic determinant, termed S fimbrial adhesin (sfa) gene cluster, we have cloned the S-specific genes from a urinary pathogen and from a meningitis isolate. Nine genes are involved in the production of S fimbriae, two of these, sfaB and sfaC code for regulatory proteins being necessary for the expression of S fimbriae. Two promoters, PB and PC, are located in front of these genes. Transcription of the sfa determinant is influenced by activation of the promoters via SfaB and SfaC, the action of the H-NS protein and an RNaseE-specific mRNA processing. In addition, a third promoter, PA, located in front of the major subunit gene sfaA, can be activated under special circumstances. Four genes of the sfa determinant code for the subunit-specific proteins, SfaA (16 kda), SfaG (17 kda), SfaS (14 kda) and SfaH (29 kda). It was demonstrated that the protein SfaA is the major subunit protein while SfaS is identical to the sialic-acid-specific adhesin of S fimbriae. The introduction of specific mutations into sfaS revealed that a region of six amino acids of the adhesin which includes two lysine and one arginine residues is involved in the receptor specific interaction of S fimbriae. Additionally, it has been shown that SfaS is necessary for the induction of fimbriation while SfaH plays a role in the stringency of binding of S fimbriae to erythrocytes.
Collapse
Affiliation(s)
- J Morschhäuser
- Theodor-Boveri-Institut für Biowissenschaften, Lehrstuhl für Mikrobiologie, Univ. Würzburg, Germany
| | | | | | | | | |
Collapse
|