1
|
Yan S, Zeng M, Wang H, Zhang H. Micromonospora: A Prolific Source of Bioactive Secondary Metabolites with Therapeutic Potential. J Med Chem 2022; 65:8735-8771. [PMID: 35766919 DOI: 10.1021/acs.jmedchem.2c00626] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Micromonospora, one of the most important actinomycetes genera, is well-known as the treasure trove of bioactive secondary metabolites (SMs). Herein, together with an in-depth genomic analysis of the reported Micromonospora strains, all SMs from this genus are comprehensively summarized, containing structural features, bioactive properties, and mode of actions as well as their biosynthetic and chemical synthesis pathways. The perspective enables a detailed view of Micromonospora-derived SMs, which will enrich the chemical diversity of natural products and inspire new drug discovery in the pharmaceutical industry.
Collapse
Affiliation(s)
- Suqi Yan
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mingyuan Zeng
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Wang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
2
|
Kudo F, Eguchi T. Biosynthesis of cyclitols. Nat Prod Rep 2022; 39:1622-1642. [PMID: 35726901 DOI: 10.1039/d2np00024e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Review covering up to 2021Cyclitols derived from carbohydrates are naturally stable hydrophilic substances under ordinary physiological conditions, increasing the water solubility of whole molecules in cells. The stability of cyclitols is derived from their carbocyclic structures bearing no acetal groups, in contrast to sugar molecules. Therefore, carbocycle-forming reactions are critical for the biosynthesis of cyclitols. Herein, we review naturally occurring cyclitols that have been identified to date and categorize them according to the type of carbocycle-forming enzymatic reaction. Furthermore, the cyclitol-forming enzymatic reaction mechanisms and modification pathways of the initially generated cyclitols are reviewed.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro-ku, Tokyo, Japan.
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro-ku, Tokyo, Japan.
| |
Collapse
|
3
|
Moureu S, Caradec T, Trivelli X, Drobecq H, Beury D, Bouquet P, Caboche S, Desmecht E, Maurier F, Muharram G, Villemagne B, Herledan A, Hot D, Willand N, Hartkoorn RC. Rubrolone production by Dactylosporangium vinaceum: biosynthesis, modulation and possible biological function. Appl Microbiol Biotechnol 2021; 105:5541-5551. [PMID: 34189614 DOI: 10.1007/s00253-021-11404-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
Rare actinomycetes are likely treasure troves for bioactive natural products, and it is therefore important that we enrich our understanding of biosynthetic potential of these relatively understudied bacteria. Dactylosporangium are a genus of such rare Actinobacteria that are known to produce a number of important antibacterial compounds, but for which there are still no fully assembled reference genomes, and where the extent of encoded biosynthetic capacity is not defined. Dactylosporangium vinaceum (NRRL B-16297) is known to readily produce a deep wine red-coloured diffusible pigment of unknown origin, and it was decided to define the chemical identity of this natural product pigment, and in parallel use whole genome sequencing and transcriptional analysis to lay a foundation for understanding the biosynthetic capacity of these bacteria. Results show that the produced pigment is made of various rubrolone conjugates, the spontaneous product of the reactive pre-rubrolone, produced by the bacterium. Genome and transcriptome analysis identified the highly expressed biosynthetic gene cluster (BGC) for pre-rubrolone. Further analysis of the fully assembled genome found it to carry 24 additional BGCs, of which the majority were poorly transcribed, confirming the encoded capacity of this bacterium to produce natural products but also illustrating the main bottleneck to exploiting this capacity. Finally, analysis of the potential environmental role of pre-rubrolone found it to react with a number of amine containing antibiotics, antimicrobial peptides and siderophores pointing to its potential role as a "minesweeper" of xenobiotic molecules in the bacterial environment. KEY POINTS: • D. vinaceum encodes many BGC, but the majority are transcriptionally silent. • Chemical screening identifies molecules that modulate rubrolone production. • Pre-rubrolone is efficient at binding and inactivating many natural antibiotics.
Collapse
Affiliation(s)
- Sophie Moureu
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Thibault Caradec
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Xavier Trivelli
- Univ. Lille, CNRS, INRA, Centrale Lille, Univ. Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, 59000, Lille, France
| | - Hervé Drobecq
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Delphine Beury
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.,Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR2014 - US41 - PLBS-Plateformes Lilloises de Biologie & Santé, F-59000, Lille, France
| | - Peggy Bouquet
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Segolene Caboche
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.,Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR2014 - US41 - PLBS-Plateformes Lilloises de Biologie & Santé, F-59000, Lille, France
| | - Eva Desmecht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Florence Maurier
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.,Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR2014 - US41 - PLBS-Plateformes Lilloises de Biologie & Santé, F-59000, Lille, France
| | - Ghaffar Muharram
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Baptiste Villemagne
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Adrien Herledan
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - David Hot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.,Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR2014 - US41 - PLBS-Plateformes Lilloises de Biologie & Santé, F-59000, Lille, France
| | - Nicolas Willand
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Ruben Christiaan Hartkoorn
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
| |
Collapse
|
4
|
Guo Z, Tang Y, Tang W, Chen Y. Heptose-containing bacterial natural products: structures, bioactivities, and biosyntheses. Nat Prod Rep 2021; 38:1887-1909. [PMID: 33704304 DOI: 10.1039/d0np00075b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to 2020Glycosylated natural products hold great potential as drugs for the treatment of human and animal diseases. Heptoses, known as seven-carbon-chain-containing sugars, are a group of saccharides that are rarely observed in natural products. Based on the structures of the heptoses, the heptose-containing natural products can be divided into four groups, characterized by heptofuranose, highly-reduced heptopyranose, d-heptopyranose, and l-heptopyranose. Many of them possess remarkable biological properties, including antibacterial, antifungal, antitumor, and pain relief activities, thereby attracting great interest in biosynthesis and chemical synthesis studies to understand their construction mechanisms and structure-activity relationships. In this review, we summarize the structural properties, biological activities, and recent progress in the biosynthesis of bacterial natural products featuring seven-carbon-chain-containing sugars. The biosynthetic origins of the heptose moieties are emphasized.
Collapse
Affiliation(s)
- Zhengyan Guo
- State Key Laboratory of Microbial Resources, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China. and University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yue Tang
- State Key Laboratory of Microbial Resources, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China. and University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Wei Tang
- State Key Laboratory of Microbial Resources, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China. and University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China. and University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
5
|
Hoang NH, Huong NL, Kim B, Sohng JK, Yoon YJ, Park JW. Istamycin aminoglycosides profiling and their characterization in Streptomyces tenjimariensis ATCC 31603 culture using high-performance liquid chromatography with tandem mass spectrometry. J Sep Sci 2016; 39:4712-4722. [PMID: 27778478 DOI: 10.1002/jssc.201600925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 10/12/2016] [Accepted: 10/22/2016] [Indexed: 11/08/2022]
Abstract
A high-performance liquid chromatography with electrospray ionization ion trap tandem mass spectrometry method was developed and validated for the robust profiling and characterization of biosynthetic congeners in the 2-deoxy-aminocyclitol istamycin pathway, from the fermentation broth of Streptomyces tenjimariensis ATCC 31603. Gradient elution on an Acquity CSH C18 column was performed with a gradient of 5 mM aqueous pentafluoropropionic acid and 50% acetonitrile. Sixteen natural istamycin congeners were profiled and quantified in descending order; istamycin A, istamycin B, istamycin A0 , istamycin B0 , istamycin B1 , istamycin A1 , istamycin C, istamycin A2 , istamycin C1 , istamycin C0 , istamycin X0 , istamycin A3 , istamycin Y0 , istamycin B3 , and istamycin FU-10 plus istamycin AP. In addition, a total of five sets of 1- or 3-epimeric pairs were chromatographically separated using a macrocyclic glycopeptide-bonded chiral column. The lower limit of quantification of istamycin-A present in S. tenjimariensis fermentation was estimated to be 2.2 ng/mL. The simultaneous identification of a wide range of 2-deoxy-aminocyclitol-type istamycin profiles from bacterial fermentation was determined for the first time by employing high-performance liquid chromatography with tandem mass spectrometry analysis and the separation of istamycin epimers.
Collapse
Affiliation(s)
- Nguyen Huu Hoang
- Department of Biotechnology Convergent Pharmaceutical Engineering, SunMoon University, Chungnam, Republic of Korea
| | - Nguyen Lan Huong
- Department of Biotechnology Convergent Pharmaceutical Engineering, SunMoon University, Chungnam, Republic of Korea
| | - Byul Kim
- School of Biosystem and Biomedical Science, Korea University, Seoul, Republic of Korea
| | - Jae Kyung Sohng
- Department of Biotechnology Convergent Pharmaceutical Engineering, SunMoon University, Chungnam, Republic of Korea
| | - Yeo Joon Yoon
- Department of Chemistry and Nano Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Je Won Park
- School of Biosystem and Biomedical Science, Korea University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Parent A, Guillot A, Benjdia A, Chartier G, Leprince J, Berteau O. The B 12-Radical SAM Enzyme PoyC Catalyzes Valine C β-Methylation during Polytheonamide Biosynthesis. J Am Chem Soc 2016; 138:15515-15518. [PMID: 27934015 PMCID: PMC5410653 DOI: 10.1021/jacs.6b06697] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Genomic and metagenomic
investigations have recently led to the
delineation of a novel class of natural products called ribosomally
synthesized and post-translationally modified peptides (RiPPs). RiPPs
are ubiquitous among living organisms and include pharmaceutically
relevant compounds such as antibiotics and toxins. A prominent example
is polytheonamide A, which exhibits numerous post-translational modifications,
some of which were unknown in ribosomal peptides until recently. Among
these post-translational modifications, C-methylations have been proposed
to be catalyzed by two putative radical S-adenosylmethionine
(rSAM) enzymes, PoyB and PoyC. Here we report the in vitro activity of PoyC, the first B12-dependent rSAM enzyme
catalyzing peptide Cβ-methylation. We show that PoyC
catalyzes the formation of S-adenosylhomocysteine
and 5′-deoxyadenosine and the transfer of a methyl group to l-valine residue. In addition, we demonstrate for the first
time that B12-rSAM enzymes have a tightly bound MeCbl cofactor
that during catalysis transfers a methyl group originating from S-adenosyl-l-methionine. Collectively, our results
shed new light on polytheonamide biosynthesis and the large and emerging
family of B12-rSAM enzymes.
Collapse
Affiliation(s)
- Aubérie Parent
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay , F-78350 Jouy-en-Josas, France
| | - Alain Guillot
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay , F-78350 Jouy-en-Josas, France
| | - Alhosna Benjdia
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay , F-78350 Jouy-en-Josas, France
| | - Gwladys Chartier
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay , F-78350 Jouy-en-Josas, France
| | - Jérôme Leprince
- INSERM U982, Université Rouen-Normandie , F-76821 Mont-Saint-Aignan, France
| | - Olivier Berteau
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay , F-78350 Jouy-en-Josas, France
| |
Collapse
|
7
|
Kim HJ, LeVieux J, Yeh YC, Liu HW. C3'-Deoxygenation of Paromamine Catalyzed by a Radical S-Adenosylmethionine Enzyme: Characterization of the Enzyme AprD4 and Its Reductase Partner AprD3. Angew Chem Int Ed Engl 2016; 55:3724-8. [PMID: 26879038 PMCID: PMC4943880 DOI: 10.1002/anie.201510635] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Indexed: 11/06/2022]
Abstract
C3'-deoxygenation of aminoglycosides results in their decreased susceptibility to phosphorylation thereby increasing their efficacy as antibiotics. However, the biosynthetic mechanism of C3'-deoxygenation is unknown. To address this issue, aprD4 and aprD3 genes from the apramycin gene cluster in Streptomyces tenebrarius were expressed in E. coli and the resulting gene products were characterized in vitro. AprD4 is shown to be a radical S-adenosylmethionine (SAM) enzyme, catalyzing homolysis of SAM to 5'-deoxyadenosine (5'-dAdo) in the presence of paromamine. [4'-(2) H]-Paromamine was prepared and used to show that its C4'-H is transferred to 5'-dAdo by AprD4, during which the substrate is dehydrated to a product consistent with 4'-oxolividamine. In contrast, paromamine is reduced to a deoxy product when incubated with AprD4/AprD3/NADPH. These results show that AprD4 is the first radical SAM diol-dehydratase and, along with AprD3, is responsible for 3'-deoxygenation in aminoglycoside biosynthesis.
Collapse
Affiliation(s)
- Hak Joong Kim
- Division of Medicinal Chemistry, College of Pharmacy and Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jake LeVieux
- Division of Medicinal Chemistry, College of Pharmacy and Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Yu-Cheng Yeh
- Division of Medicinal Chemistry, College of Pharmacy and Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Hung-Wen Liu
- Division of Medicinal Chemistry, College of Pharmacy and Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
8
|
C3′-Deoxygenation of Paromamine Catalyzed by a RadicalS-Adenosylmethionine Enzyme: Characterization of the Enzyme AprD4 and Its Reductase Partner AprD3. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510635] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Huong NL, Hoang NH, Hong SY, Sohng JK, Yoon YJ, Park JW. Characterization of fortimicin aminoglycoside profiles produced from Micromonospora olivasterospora DSM 43868 by high-performance liquid chromatography-electrospray ionization-ion trap-mass spectrometry. Anal Bioanal Chem 2016; 408:1667-78. [PMID: 26753981 DOI: 10.1007/s00216-015-9281-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/11/2015] [Accepted: 12/16/2015] [Indexed: 10/25/2022]
Abstract
In this study, an efficient high-performance liquid chromatography (HPLC)-electrospray ionization (ESI)-ion trap-tandem mass spectrometry (MS/MS) was developed for the identification of the biosynthetic congeners involved in the aminocyclitol aminoglycosidic fortimicin pathway from Micromonospora olivasterospora fermentation. The usage of both acid extraction (pH ∼2.5) followed by an cationic-exchanging SPE cleanup and pentafluoropropionic acid mediated ion-pairing chromatography with ESI-ion trap-MS/MS detection was determined to be sufficiently practical to profile the fortimicin (FOR) congeners produced in a culture broth. The limit of the quantification for the fortimicin A (FOR-A) standard spiked in the culture broth was ∼1.6 ng mL(-1). The average recovery rate was 93.6%, and the intra- and inter-day precisions were <5% with accuracy in the range from 87.1 to 94.2%. Moreover, the epimeric mixtures including FOR-KH, FOR-KR, and FOR-B were separately resolved through a macrocyclic glycopeptide (teicoplanin)-bonded chiral column. As a result, ten natural FOR pseudodisaccharide analogs were identified and semi-quantified in descending order as follows: FOR-A, FOR-B, DCM, FOR-KH plus FOR-KR, FOR-KK1, FOR-AP, FOR-KL1, FOR-AO, and FOR-FU-10. This is the first report on both the simultaneous characterization of diverse structurally closely related FORs derived from bacterial fermentation using HPLC-ESI-ion trap-MS/MS analysis and the chromatographic separation of the three FOR epimers.
Collapse
Affiliation(s)
- Nguyen Lan Huong
- Department of Biotechnology Convergent Pharmaceutical Engineering, SunMoon University, Chungnam, 336-708, Republic of Korea
| | - Nguyen Huu Hoang
- Department of Biotechnology Convergent Pharmaceutical Engineering, SunMoon University, Chungnam, 336-708, Republic of Korea
| | - Sung-Yong Hong
- School of Biosystem and Biomedical Science, Korea University, Seoul, 136-713, Republic of Korea
| | - Jae Kyung Sohng
- Department of Biotechnology Convergent Pharmaceutical Engineering, SunMoon University, Chungnam, 336-708, Republic of Korea
| | - Yeo Joon Yoon
- Department of Chemistry and Nano Sciences, Ewha Womans University, Seoul, 136-750, Republic of Korea
| | - Je Won Park
- School of Biosystem and Biomedical Science, Korea University, Seoul, 136-713, Republic of Korea.
| |
Collapse
|
10
|
Kudo F, Eguchi T. Aminoglycoside Antibiotics: New Insights into the Biosynthetic Machinery of Old Drugs. CHEM REC 2015; 16:4-18. [PMID: 26455715 DOI: 10.1002/tcr.201500210] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Indexed: 11/07/2022]
Abstract
2-Deoxystreptamine (2DOS) is the unique chemically stable aminocyclitol scaffold of clinically important aminoglycoside antibiotics such as neomycin, kanamycin, and gentamicin, which are produced by Actinomycetes. The 2DOS core can be decorated with various deoxyaminosugars to make structurally diverse pseudo-oligosaccharides. After the discovery of biosynthetic gene clusters for 2DOS-containing aminoglycoside antibiotics, the function of each biosynthetic enzyme has been extensively elucidated. The common biosynthetic intermediates 2DOS, paromamine and ribostamycin are constructed by conserved enzymes encoded in the gene clusters. The biosynthetic intermediates are then converted to characteristic architectures by unique enzymes encoded in each biosynthetic gene cluster. In this Personal Account, we summarize both common biosynthetic pathways and the pathways used for structural diversification.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
11
|
A strategy for seamless cloning of large DNA fragments from Streptomyces. Biotechniques 2015; 59:193-4, 196, 198-200. [PMID: 26458547 DOI: 10.2144/000114338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/06/2015] [Indexed: 11/23/2022] Open
Abstract
We report a novel method for the seamless cloning of large DNA fragments (SCLF) of up to 44 kb or larger from Streptomyces chromosomal DNA. SCLF is based on homologous recombination in Streptomyces and is easy to perform. The strategy of SCLF is to flank the target sequence in the chromosomal DNA with two identical restriction sites by the insertion of plasmids containing that site at either end of the fragment, which is then isolated by plasmid rescue through the self-ligation of restriction digested genomic DNA. The method involves three steps: (i) placing a certain restriction site (CRS) at the 3'-end of the target sequence by insertion through homologous recombination of a plasmid containing the CRS; (ii) inserting through homologous recombination at the 5'-end of the target sequence a linearized self-suicide vector with the identical CRS; (iii) digesting the genomic DNA with the certain restriction enzyme followed by self-ligation in order to plasmid rescue the target fragment. SCLF can be applied to other Actinomycetales, and further optimizations may reduce the amount of time required to perform this technique.
Collapse
|
12
|
Nollmann FI, Dauth C, Mulley G, Kegler C, Kaiser M, Waterfield NR, Bode HB. Insect-specific production of new GameXPeptides in photorhabdus luminescens TTO1, widespread natural products in entomopathogenic bacteria. Chembiochem 2014; 16:205-8. [PMID: 25425189 DOI: 10.1002/cbic.201402603] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Indexed: 12/31/2022]
Abstract
Discovery of new natural products by heterologous expression reaches its limits, especially when specific building blocks are missing in the heterologous host or the production medium. Here, we describe the insect-specific production of the new GameXPeptides E-H (5-8) from Photorhabdus luminescens TTO1, which can be produced heterologously from expression of the GameXPeptide synthetase GxpS only upon supplementation of the production media with the missing building blocks, and thus must be regarded as the true natural products under natural conditions.
Collapse
Affiliation(s)
- Friederike I Nollmann
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich der Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main (Germany)
| | | | | | | | | | | | | |
Collapse
|
13
|
Shao L, Chen J, Wang C, Li JA, Tang Y, Chen D, Liu W. Characterization of a key aminoglycoside phosphotransferase in gentamicin biosynthesis. Bioorg Med Chem Lett 2013; 23:1438-41. [DOI: 10.1016/j.bmcl.2012.12.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/04/2012] [Accepted: 12/19/2012] [Indexed: 11/26/2022]
|
14
|
Hanessian S, Maianti JP, Matias RD, Feeney LA, Armstrong ES. Hybrid aminoglycoside antibiotics via Tsuji palladium-catalyzed allylic deoxygenation. Org Lett 2011; 13:6476-9. [PMID: 22085292 DOI: 10.1021/ol2027703] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biosynthetically inspired manipulation of the antibiotic paromomycin led, in six high-yielding steps, to a ring A harboring an α,β-unsaturated 6'-aldehyde and an allylic 3'-methylcarbonate group. Tsuji deoxygenation in the presence of 5 mol % Pd(2)(dba)(3) and Bu(3)P granted access to a novel series of 3',4'-dideoxy-4',5'-dehydro ring A hybrids. The neomycin-sisomicin hybrid exhibited superior in vitro antibacterial activity to the parent compound neomycin.
Collapse
Affiliation(s)
- Stephen Hanessian
- Department of Chemistry, Université de Montréal, C. P. 6128, Succ. Centre-Ville, Montréal, QC, Canada, H3C 3J7.
| | | | | | | | | |
Collapse
|
15
|
Thibodeaux C, Melançon C, Liu HW. Biosynthese von Naturstoffzuckern und enzymatische Glycodiversifizierung. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200801204] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Kim JY, Suh JW, Kang SH, Phan TH, Park SH, Kwon HJ. Gene inactivation study of gntE reveals its role in the first step of pseudotrisaccharide modifications in gentamicin biosynthesis. Biochem Biophys Res Commun 2008; 372:730-4. [PMID: 18533111 DOI: 10.1016/j.bbrc.2008.05.133] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 05/20/2008] [Indexed: 11/16/2022]
Abstract
A gene inactivation study was performed on gntE, a member of the gentamicin biosynthetic gene cluster in Micromonospora echinospora. Computer-aided homology analysis predicts a methyltransferase-related cobalamin-binding domain and a radical S-adenosylmethionine domain in GntE. It is also found that there is no gntE homolog within other aminoglycoside biosynthetic gene clusters. Inactivation of gntE was achieved in both M. echinospora ATCC 15835 and a gentamicin high-producer GMC106. High-performance liquid chromatographic analysis, coupled with mass spectrometry, revealed that gntE mutants accumulated gentamicin A2 and its derivative with a methyl group installed on the glucoamine moiety. This result substantiated that GntE participates in the first step of pseudotrisaccharide modifications in gentamicin biosynthesis, though the catalytic nature of this unusual oxidoreductase/methyltransferase candidate is not resolved. The present gene inactivation study also demonstrates that targeted genetic engineering can be applied to produce specific gentamicin structures and potentially new gentamicin derivatives in M. echinospora.
Collapse
Affiliation(s)
- Jin-Yong Kim
- Department of Biological Science, Division of Bioscience and Bioinformatics, Myongji University, Yongin 449-728, Republic of Korea
| | | | | | | | | | | |
Collapse
|
17
|
Münch A, Stingl L, Jung K, Heermann R. Photorhabdus luminescens genes induced upon insect infection. BMC Genomics 2008; 9:229. [PMID: 18489737 PMCID: PMC2422844 DOI: 10.1186/1471-2164-9-229] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 05/19/2008] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Photorhabdus luminescens is a Gram-negative luminescent enterobacterium and a symbiote to soil nematodes belonging to the species Heterorhabditis bacteriophora. P.luminescens is simultaneously highly pathogenic to insects. This bacterium exhibits a complex life cycle, including one symbiotic stage characterized by colonization of the upper nematode gut, and a pathogenic stage, characterized by release from the nematode into the hemocoel of insect larvae, resulting in rapid insect death caused by bacterial toxins. P. luminescens appears to sense and adapt to the novel host environment upon changing hosts, which facilitates the production of factors involved in survival within the host, host-killing, and -exploitation. RESULTS A differential fluorescence induction (DFI) approach was applied to identify genes that are up-regulated in the bacterium after infection of the insect host Galleria mellonella. For this purpose, a P. luminescens promoter-trap library utilizing the mCherry fluorophore as a reporter was constructed, and approximately 13,000 clones were screened for fluorescence induction in the presence of a G. mellonella larvae homogenate. Since P. luminescens has a variety of regulators that potentially sense chemical molecules, like hormones, the screen for up-regulated genes or operons was performed in vitro, excluding physicochemical signals like oxygen, temperature or osmolarity as variables. Clones (18) were obtained exhibiting at least 2.5-fold induced fluorescence and regarded as specific responders to insect homogenate. In combination with a bioinformatics approach, sequence motifs were identified in these DNA-fragments that are similar to 29 different promoters within the P. luminescens genome. By cloning each of the predicted promoters upstream of the reporter gene, induction was verified for 27 promoters in vitro, and for 24 promoters in viable G. mellonella larvae. Among the validated promoters are some known to regulate the expression of toxin genes, including tccC1 (encoding an insecticidal toxin complex), and others encoding putative toxins. A comparably high number of metabolic genes or operons were observed to be induced upon infection; among these were eutABC, hutUH, and agaZSVCD, which encode proteins involved in ethanolamine, histidine and tagatose degradation, respectively. The results reflect rearrangements in metabolism and the use of other metabolites available from the insect. Furthermore, enhanced activity of promoters controlling the expression of genes encoding enzymes linked to antibiotic production and/or resistance was observed. Antibiotic production and resistance may influence competition with other bacteria, and thus might be important for a successful infection. Lastly, several genes of unknown function were identified that may represent novel pathogenicity factors. CONCLUSION We show that a DFI screen is useful for identifying genes or operons induced by chemical stimuli, such as diluted insect homogenate. A bioinformatics comparison of motifs similar to known promoters is a powerful tool for identifying regulated genes or operons. We conclude that signals for the regulation of those genes or operons induced in P. luminescens upon insect infection may represent a wide variety of compounds that make up the insect host. Our results provide insight into the complex response to the host that occurs in a bacterial pathogen, particularly reflecting the potential for metabolic shifts and other specific changes associated with virulence.
Collapse
Affiliation(s)
- Anna Münch
- Ludwig-Maximilians-Universität München, Adolf-Butenandt-Institut, Bereich Biochemie, Schillerstr. 44, 80336 München, Germany
| | - Lavinia Stingl
- Universitätsklinikum Würzburg, Klinik und Poliklinik für Strahlentherapie, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Kirsten Jung
- Ludwig-Maximilians-Universität München, Department Biologie I, Bereich Mikrobiologie, Maria-Ward-Str. 1a, D-80638 München, Germany
- Munich Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-Universität München, München, Germany
| | - Ralf Heermann
- Ludwig-Maximilians-Universität München, Department Biologie I, Bereich Mikrobiologie, Maria-Ward-Str. 1a, D-80638 München, Germany
| |
Collapse
|
18
|
Cloning of the Gene Cluster Responsible for the Biosynthesis of Brasilicardin A, a Unique Diterpenoid. J Antibiot (Tokyo) 2008; 61:164-74. [DOI: 10.1038/ja.2008.126] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Thibodeaux CJ, Melançon CE, Liu HW. Natural-product sugar biosynthesis and enzymatic glycodiversification. Angew Chem Int Ed Engl 2008; 47:9814-59. [PMID: 19058170 PMCID: PMC2796923 DOI: 10.1002/anie.200801204] [Citation(s) in RCA: 329] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Many biologically active small-molecule natural products produced by microorganisms derive their activities from sugar substituents. Changing the structures of these sugars can have a profound impact on the biological properties of the parent compounds. This realization has inspired attempts to derivatize the sugar moieties of these natural products through exploitation of the sugar biosynthetic machinery. This approach requires an understanding of the biosynthetic pathway of each target sugar and detailed mechanistic knowledge of the key enzymes. Scientists have begun to unravel the biosynthetic logic behind the assembly of many glycosylated natural products and have found that a core set of enzyme activities is mixed and matched to synthesize the diverse sugar structures observed in nature. Remarkably, many of these sugar biosynthetic enzymes and glycosyltransferases also exhibit relaxed substrate specificity. The promiscuity of these enzymes has prompted efforts to modify the sugar structures and alter the glycosylation patterns of natural products through metabolic pathway engineering and enzymatic glycodiversification. In applied biomedical research, these studies will enable the development of new glycosylation tools and generate novel glycoforms of secondary metabolites with useful biological activity.
Collapse
Affiliation(s)
- Christopher J. Thibodeaux
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX. (USA), 78712
| | - Charles E. Melançon
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX. (USA), 78712
| | - Hung-wen Liu
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX. (USA), 78712
| |
Collapse
|
20
|
Flatt PM, Mahmud T. Biosynthesis of aminocyclitol-aminoglycoside antibiotics and related compounds. Nat Prod Rep 2006; 24:358-92. [PMID: 17390001 DOI: 10.1039/b603816f] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers the biosynthesis of aminocyclitol-aminoglycoside antibiotics and related compounds, particularly from the molecular genetic perspectives. 195 references are cited.
Collapse
Affiliation(s)
- Patricia M Flatt
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331-3507, USA
| | | |
Collapse
|
21
|
Li X, Zhou X, Deng Z. Vector systems allowing efficient autonomous or integrative gene cloning in Micromonospora sp. strain 40027. Appl Environ Microbiol 2003; 69:3144-51. [PMID: 12788709 PMCID: PMC161521 DOI: 10.1128/aem.69.6.3144-3151.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Vector systems allowing autonomous or site-specific integrative gene cloning were developed for Micromonospora sp. strain 40027, a producer of the antibiotic fortimicin A. The autonomous system depends on the discovery of a low-copy-number, self-transmissible covalently closed circular plasmid, pJTU112 (ca. 14.1 kb), which was shown to be present in the progenitor strain in both integrated and autonomous states. The copy numbers of both wild-type pJTU112 and three derivatives of it can be amplified at least sixfold by addition of streptomycin to the culture medium. The integrative system was developed by the use of a pBR322-derived Escherichia coli plasmid vector, pSET152, mediated by the attP site of the Streptomyces phage PhiC31. Both vectors can be transferred by conjugation from E. coli into Micromonospora sp. strain 40027. The heterologous cloning and expression of the dnd gene cluster originating from Streptomyces lividans 1326 into Micromonospora sp. strain 40027 demonstrated the use of the two systems.
Collapse
Affiliation(s)
- Xiaohua Li
- Bio-X Life Science Research Center, Shanghai Jiaotong University, Shanghai 200030, People's Republic of China
| | | | | |
Collapse
|
22
|
Dairi T, Hamano Y, Furumai T, Oki T. Development of a self-cloning system for Actinomadura verrucosospora and identification of polyketide synthase genes essential for production of the angucyclic antibiotic pradimicin. Appl Environ Microbiol 1999; 65:2703-9. [PMID: 10347064 PMCID: PMC91399 DOI: 10.1128/aem.65.6.2703-2709.1999] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A self-cloning system for Actinomadura verrucosospora, a producer of the angucyclic antibiotic pradimicin A (PRM A), has been developed. The system is based on reproducible and reliable protoplasting and regeneration conditions for A. verrucosospora and a novel plasmid vector that consists of a replicon from a newly found Actinomadura plasmid and a selectable marker cloned from the Actinomadura strain. The system has an efficiency of more than 10(5) CFU/microgram of DNA. Using this system, we have cloned and identified the polyketide synthase (PKS) genes essential for PRM A biosynthesis from A. verrucosospora. Nucleotide sequence analysis of the 3.5-kb SalI-SphI fragment showed that ketosynthase subunits (open reading frame 1 [ORF1] and ORF2) of the essential PKS genes have strong similarities (59 to 89%) to those for angucyclic antibiotic biosynthesis.
Collapse
Affiliation(s)
- T Dairi
- Biotechnology Research Center, Toyama Prefectural University, Kurokawa 5180, Kosugi, Toyama 939-0398, Japan.
| | | | | | | |
Collapse
|
23
|
Abstract
Plasmid pMZ1, isolated from Micromonospora zionensis, was also able to replicate by the rolling circle mechanism in Micromonospora melanosporea and Streptomyces lividans. Southern hybridisation experiments with probe prepared from pMZ1 and immobilised M. zionesis DNA fragments separated on pulsed-field gel electrophoresis, indicated that the plasmid is present in the progenitor strain in both integrated and autonomous states. Thiostrepton resistant derivatives of pMZ1 plasmid, pMZS25 and pMZS34, were used to study conjugal transfer in M. melanosporea and S. lividans. A 3.4 kb NcoI-MluI fragment from pMZ1 cloned in pIJ702 (plasmid pIJNM3) was shown to be sufficient to promote plasmid transfer and pock formation in S. lividans.
Collapse
Affiliation(s)
- N Vukov
- Institute of Molecular Genetics and Genetic Engineering, Belgrade, Yugoslavia
| | | |
Collapse
|
24
|
Piepersberg W. Molecular Biology, Biochemistry and Fermentation of Aminoglycoside Antibiotics. DRUGS AND THE PHARMACEUTICAL SCIENCES 1997. [DOI: 10.1201/b14856-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
25
|
Kojic M, Topisirovic L, Vasiljevic B. Translational autoregulation of the sgm gene from Micromonospora zionensis. J Bacteriol 1996; 178:5493-8. [PMID: 8808941 PMCID: PMC178373 DOI: 10.1128/jb.178.18.5493-5498.1996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The sisomicin-gentamicin resistance methylase gene (sgm) from Micromonospora zionensis (the producer of antibiotic G-52 [6-N-methyl-sisomicin]) encodes an enzyme that modifies 16S rRNA and thereby confers resistance to 4,6-disubstituted deoxystreptamine aminoglycosides. Here, we report that this gene is regulated on the translational level. The Escherichia coli lacZ gene and operon fusion system was used, and it was shown that an extra copy of the sgm gene decreases the activity of the fusion protein. These results suggested that expression of the sgm gene is regulated by the translational autorepression because of binding of the methylase to its own mRNA. It was shown by computer analysis that the same hexanucleotide (CCGCCC) is present 14 bp before the ribosome-binding site and in the C-1400 region of 16S rRNA, i.e., the region in which most of the aminoglycosides act. A deletion that removes the hexanucleotide before the gene fusion is not prone to negative autoregulation. This mode of regulation of the sgm gene ensures that enough methylase molecules protect the cell from the action of its own antibiotic. On the other hand, if all of the ribosomes are modified, Sgm methylase binds to its own mRNA in an autorepressive manner.
Collapse
Affiliation(s)
- M Kojic
- Institute of Molecular Genetics and Genetic Engineering, Belgrade, Yugoslavia
| | | | | |
Collapse
|
26
|
Ohta T, Hasegawa M. Analysis of the self-defense gene (fmrO) of a fortimicin A (astromicin) producer, Micromonospora olivasterospora: comparison with other aminoglycoside-resistance-encoding genes. Gene X 1993; 127:63-9. [PMID: 8486289 DOI: 10.1016/0378-1119(93)90617-c] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The nucleotide (nt) sequence of a 3409-bp PvuII fragment carrying the self-defense gene (fmrO) of a fortimicin A (FmA; astromicin) producer, Micromonospora olivasterospora, was determined; four open reading frames (ORFs) exist in this region. Expression analysis of fmrO using the lac promoter in Escherichia coli revealed that ORF-3 encodes fmrO. ORF-1 was considered to encode a FmKH epimerase (fms11). ORF-2, ORF-3 and ORF-4 seemed to form an operon. No homology was detected between fmrO and the resistance-encoding gene fmrT of Streptomyces tenjimariensis, a producer of the Fm-group antibiotic, istamycin. Gene organization around the fmr genes differed considerably between M. olivasterospora and S. tenjimariensis. The deduced amino acid sequence of fmrO showed an identity of 30.8% to grmA of M. purpurea and 35.8% to grmB of M. rosea, respectively, suggesting that fmrO encodes a 16S rRNA methyltransferase. We found in M. purpurea a novel resistance gene distinct from grmA and highly similar to fmrO which conferred a resistance phenotype similar to that of fmrO. These results suggest that fmrO of M. olivasterospora and the two resistance-encoding genes of M. purpurea were derived from a common ancestral gene.
Collapse
Affiliation(s)
- T Ohta
- Tokyo Research Laboratories, Kyowa Hakko Kogyo Co., Ltd., Japan
| | | |
Collapse
|