1
|
Jena NR, Shukla PK, Jena HS, Mishra PC, Suhai S. O6-Methylguanine Repair by O6-Alkylguanine-DNA Alkyltransferase. J Phys Chem B 2009; 113:16285-90. [DOI: 10.1021/jp907836w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- N. R. Jena
- Division Molecular Biophysics (B020), Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany, Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India, Department of Physics, Banaras Hindu University, Varanasi-221005, India, and Department of Chemistry, Indian Institute of Technology, Guwahati-781039, Assam, India
| | - P. K. Shukla
- Division Molecular Biophysics (B020), Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany, Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India, Department of Physics, Banaras Hindu University, Varanasi-221005, India, and Department of Chemistry, Indian Institute of Technology, Guwahati-781039, Assam, India
| | - H. S. Jena
- Division Molecular Biophysics (B020), Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany, Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India, Department of Physics, Banaras Hindu University, Varanasi-221005, India, and Department of Chemistry, Indian Institute of Technology, Guwahati-781039, Assam, India
| | - P. C. Mishra
- Division Molecular Biophysics (B020), Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany, Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India, Department of Physics, Banaras Hindu University, Varanasi-221005, India, and Department of Chemistry, Indian Institute of Technology, Guwahati-781039, Assam, India
| | - S. Suhai
- Division Molecular Biophysics (B020), Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany, Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India, Department of Physics, Banaras Hindu University, Varanasi-221005, India, and Department of Chemistry, Indian Institute of Technology, Guwahati-781039, Assam, India
| |
Collapse
|
2
|
Tubbs JL, Pegg AE, Tainer JA. DNA binding, nucleotide flipping, and the helix-turn-helix motif in base repair by O6-alkylguanine-DNA alkyltransferase and its implications for cancer chemotherapy. DNA Repair (Amst) 2007; 6:1100-15. [PMID: 17485252 PMCID: PMC1993358 DOI: 10.1016/j.dnarep.2007.03.011] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
O(6)-Alkylguanine-DNA alkyltransferase (AGT) is a crucial target both for the prevention of cancer and for chemotherapy, since it repairs mutagenic lesions in DNA, and it limits the effectiveness of alkylating chemotherapies. AGT catalyzes the unique, single-step, direct damage reversal repair of O(6)-alkylguanines by selectively transferring the O(6)-alkyl adduct to an internal cysteine residue. Recent crystal structures of human AGT alone and in complex with substrate DNA reveal a two-domain alpha/beta fold and a bound zinc ion. AGT uses its helix-turn-helix motif to bind substrate DNA via the minor groove. The alkylated guanine is then flipped out from the base stack into the AGT active site for repair by covalent transfer of the alkyl adduct to Cys145. An asparagine hinge (Asn137) couples the helix-turn-helix DNA binding and active site motifs. An arginine finger (Arg128) stabilizes the extrahelical DNA conformation. With this newly improved structural understanding of AGT and its interactions with biologically relevant substrates, we can now begin to unravel the role it plays in preserving genetic integrity and discover how it promotes resistance to anticancer therapies.
Collapse
Affiliation(s)
- Julie L. Tubbs
- The Scripps Research Institute, The Skaggs Institute for Chemical Biology and Department of Molecular Biology, 10550 North Torrey Pines Road, MB4, La Jolla, CA 92037
| | - Anthony E. Pegg
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - John A. Tainer
- The Scripps Research Institute, The Skaggs Institute for Chemical Biology and Department of Molecular Biology, 10550 North Torrey Pines Road, MB4, La Jolla, CA 92037
- Life Sciences Division, Department of Molecular Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- *To whom correspondence should be addressed: Tel: +1-858-784-8119; fax: +1-858-784-2289;
| |
Collapse
|
3
|
Liu H, Xu-Welliver M, Pegg AE. The role of human O(6)-alkylguanine-DNA alkyltransferase in promoting 1,2-dibromoethane-induced genotoxicity in Escherichia coli. Mutat Res 2000; 452:1-10. [PMID: 10894884 DOI: 10.1016/s0027-5107(00)00062-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The expression of the DNA repair protein human O(6)-alkylguanine-DNA alkyltransferase (AGT) in Escherichia coli strains GWR109 or TRG8 that lack endogenous AGT greatly increased the toxicity and mutagenicity of 1,2-dibromoethane (DBE). Pretreatment of strain TRG8 expressing human AGT, which is permeable to exogenous drugs, with the AGT inhibitor O(6)-benzylguanine (BG) abolished the lethal and mutagenic effects of DBE, indicating that an active AGT is required for promoting DBE genotoxicity. This was confirmed by the observation that E. coli expressing either the C145A AGT mutant, which is inactive due to loss of the alkyl acceptor site, or mutants Y114E and R128A, which are inactive due to alteration of the DNA binding domain, did not enhance the action of DBE. However, the AGT mutant protein P138M/V139L/P140K, which is active in repairing methylated DNA but is totally resistant to inactivation by BG due to alterations in the active site pocket, was unable to enhance the genotoxicity of DBE. Similarly, other mutants, G156P, Y158H and K165R that are strongly resistant to BG, were much less effective than wild type AGT in mediating the genotoxicity of DBE. Mutant P140A, which is moderately resistant to BG, did increase mutations in response to DBE but was less active than wild type. These results suggest that human AGT is able to interact with a DNA lesion produced by DBE but, instead of repairing it, converts it to a more genotoxic adduct. This interaction is prevented by mutations that modify the active site of AGT to exclude BG.
Collapse
Affiliation(s)
- H Liu
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, 17033-0850, USA
| | | | | |
Collapse
|
4
|
Xu-Welliver M, Kanugula S, Loktionova NA, Crone TM, Pegg AE. Conserved residue lysine165 is essential for the ability of O6-alkylguanine-DNA alkyltransferase to react with O6-benzylguanine. Biochem J 2000; 347:527-34. [PMID: 10749683 PMCID: PMC1220986 DOI: 10.1042/0264-6021:3470527] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The role of lysine(165) in the activity of the DNA repair protein, O(6)-alkylguanine-DNA alkyltransferase (AGT), and the ability of AGT to react with the pseudosubstrate inhibitor, O(6)-benzylguanine (BG), was investigated by changing this lysine to all other 19 possibilities. All of these mutants (except for K165T, which could not be tested as it was too poorly active for assay in crude cell extracts) gave BG-resistant AGTs with increases in the amount of inhibitor needed to produce a 50% loss of activity in a 30 min incubation (ED(50)) from 100-fold (K165A) to 2400-fold (K165F). Lys(165) is a completely conserved residue in AGTs from many species, and all of the mutations at this site also reduced the ability to repair methylated DNA. The least deleterious change was that to arginine, which reduced the rate constant for DNA repair by approx. 2.5-fold. Mutant K165R resembled all of the other mutants in being highly resistant to BG, with an ED(50) value for inactivation by BG>200-fold greater than wild-type. Detailed studies of purified K165A AGT showed that the rate constant for repair and the binding to methylated DNA substrates were reduced by 10-20-fold. Despite this, the K165A mutant AGT was able to protect cells from alkylating agents and this protection was not abolished by BG. These results show that, firstly, lysine at position 165 is needed for optimal activity of AGT towards methylated DNA substrates and is essential for efficient reaction with BG; and second, even if the AGT activity towards methylated DNA substrates is impaired by mutations at codon 165, such mutants can protect tumour cells from therapeutic alkylating agents. These results raise the possibility that the conservation of Lys(165) is due to the need for AGT activity towards substrates containing more bulky adducts than O(6)-methylguanine. They also suggest that alterations at Lys(165) may occur during chemotherapy with BG and alkylating agents and could limit the effectiveness of this therapy.
Collapse
Affiliation(s)
- M Xu-Welliver
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, P.O. Box 850, 500 University Drive, Hershey, PA 17033-0850, USA
| | | | | | | | | |
Collapse
|
5
|
Sekiguchi M, Sakumi K. Roles of DNA repair methyltransferase in mutagenesis and carcinogenesis. THE JAPANESE JOURNAL OF HUMAN GENETICS 1997; 42:389-99. [PMID: 12503185 DOI: 10.1007/bf02766939] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alkylation of DNA at the O6-position of guanine is one of the most critical events leading to induction of mutation as well as cancer. An enzyme, O6-methylguanine-DNA methyltransferase, is present in various organisms, from bacteria to human cells, and appears to be responsible for preventing the occurrence of such mutations. The enzyme transfers methyl groups from O6-methylguanine and other methylated moieties of the DNA to its own molecule, thereby repairing DNA lesions in a single-step reaction. To elucidate the role of methyltransferase in preventing cancer, animal models with altered levels of enzyme activity were generated. Transgenic mice carrying extra copies of the foreign methyltransferase gene showed a decreased susceptibility to alkylating carcinogens, with regard to tumor formation. By means of gene targeting, mouse lines defective in both alleles of the methyltransferase gene were established. Administration of methylnitrosourea to these gene-targeted mice led to early death while normal mice treated in the same manner showed no untoward effects. Numerous tumors were formed in the gene-defective mice exposed to a low dose of methylnitrosourea, while none or only few tumors were induced in the methyltransferase-proficient mice. It seems apparent that the DNA repair methyltransferase plays an important role in lowering a risk of occurrence of cancer in organisms.
Collapse
Affiliation(s)
- M Sekiguchi
- Fukuoka Dental College, Fukuoka 814-01, Japan
| | | |
Collapse
|
6
|
Yamagata Y, Kato M, Odawara K, Tokuno Y, Nakashima Y, Matsushima N, Yasumura K, Tomita K, Ihara K, Fujii Y, Nakabeppu Y, Sekiguchi M, Fujii S. Three-dimensional structure of a DNA repair enzyme, 3-methyladenine DNA glycosylase II, from Escherichia coli. Cell 1996; 86:311-9. [PMID: 8706135 DOI: 10.1016/s0092-8674(00)80102-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The three-dimensional structure of Escherichia coli 3-methyladenine DNA glycosylase II, which removes numerous alkylated bases from DNA, was solved at 2.3 A resolution. The enzyme consists of three domains: one alpha + beta fold domain with a similarity to one-half of the eukaryotic TATA box-binding protein, and two all alpha-helical domains similar to those of Escherichia coli endonuclease III with combined N-glycosylase/abasic lyase activity. Mutagenesis and model-building studies suggest that the active site is located in a cleft between the two helical domains and that the enzyme flips the target base out of the DNA duplex into the active-site cleft. The structure of the active site implies broad substrate specificity and simple N-glycosylase activity.
Collapse
Affiliation(s)
- Y Yamagata
- Faculty of Pharmaceutical Sciences, Osaka University, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Christians FC, Loeb LA. Novel human DNA alkyltransferases obtained by random substitution and genetic selection in bacteria. Proc Natl Acad Sci U S A 1996; 93:6124-8. [PMID: 8650230 PMCID: PMC39200 DOI: 10.1073/pnas.93.12.6124] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
DNA repair alkyltransferases protect organisms against the cytotoxic, mutagenic, and carcinogenic effects of alkylating agents by transferring alkyl adducts from DNA to an active cysteine on the protein, thereby restoring the native DNA structure. We used random sequence substitutions to gain structure-function information about the human O6-methylguanine-DNA methyltransferase (EC 2.1.1.63), as well as to create active mutants. Twelve codons surrounding but not including the active cysteine were replaced by a random nucleotide sequence, and the resulting random library was selected for the ability to provide alkyltransferase-deficient Escherichia coli with resistance to the methylating agent N-methyl-N'-nitro-N-nitrosoguanidine. Few amino acid changes were tolerated in this evolutionarily conserved region of the protein. One mutation, a valine to phenylalanine change at codon 139 (V139F), was found in 70% of the selected mutants; in fact, this mutant was selected much more frequently than the wild type. V139F provided alkyltransferase-deficient bacteria with greater protection than the wild-type protein against both the cytotoxic and mutagenic effects of N-methyl-N'-nitro-N-nitrosoguanidine, increasing the D37 over 4-fold and reducing the mutagenesis rate 2.7-5.5-fold. This mutant human alkyltransferase, or others similarly created and selected, could be used to protect bone marrow cells from the cytotoxic side effects of alkylation-based chemotherapeutic regimens.
Collapse
Affiliation(s)
- F C Christians
- The Joseph Gottstein Memorial Cancer Research Laboratory, Department of Pathology, University of Washington, Seattle, 98195, USA
| | | |
Collapse
|
8
|
Bender K, Federwisch M, Loggen U, Nehls P, Rajewsky MF. Binding and repair of O6-ethylguanine in double-stranded oligodeoxynucleotides by recombinant human O6-alkylguanine-DNA alkyltransferase do not exhibit significant dependence on sequence context. Nucleic Acids Res 1996; 24:2087-94. [PMID: 8668540 PMCID: PMC145916 DOI: 10.1093/nar/24.11.2087] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Double-stranded (ds) oligodeoxynucleotides (29mers) containing an O6-ethylguanine (O6-EtGua) flanked 5' and 3' by different bases (5'..TGT..3'; 5'..CGG..3', 5'..GGT..3'; 5'..GGG..3'; 5'..GGA..3') were synthesized to investigate the binding and repair characteristics of recombinant human O6-alkylguanine-DNA alkyltransferase (AT) in vitro. The apparent association constant (KA(app)) of AT to the oligomers and the repair rate constant for O6-EtGua (k) respectively, were determined by gel retardation and a monoclonal antibody-based filter binding assay. When ds- or single-stranded (ss) oligomers with or without O6-EtGua were used, no major differences in KA(app) values were observed with either substrate: KA(app) values for native AT were 7.1 and 8.4 x 10(5) M(-1) respectively, for unmodified and [O6-EtGua]-containing ds-oligomers. The corresponding values for ss-oligomers were 1.0 and 4.9 x 10(5) M(-1). The N-terminal first 56 amino acids of AT only exert a limited influence on DNA binding; the KA(app) values for an N-terminally truncated AT protein (1.1 x 10(5) M(-1)) and native AT were of the same order. Moreover, KA(app) was hardly affected by Cys(145)-methylated AT (2.0 x 10(5) M(-1)). The k-values (6.5-11.5 x 10(6) M(-1)s(-1)) were not significantly dependent on nucleotide sequence. k-values of 5.3 and 4.0 x 10(6) M(-1)s(-1) respectively, were obtained with the N-terminally truncated AT protein and for repair of the postreplicative mispair [O6-EtGua]: T by native AT. The low KA(app), the negligible influence on O6 of ethylation, and the minor modulation KA(app) and k by varying the bases flanking O6-EtGua, all indicate that the binding of AT to DNA is non-specific and mediated mainly by ionic interactions [reduced KA(app) and k-values at increased ionic strength]. Surplus DNA reduces the rate of O6-EtGua repair in ds-oligomers by competitive binding of AT molecules. The reaction mechanism of AT with DNA in vivo requires further investigation.
Collapse
Affiliation(s)
- K Bender
- Institute of Cell Biology (Cancer Research), University of Essen Medical School, Germany
| | | | | | | | | |
Collapse
|
9
|
Crone TM, Goodtzova K, Pegg AE. Amino acid residues affecting the activity and stability of human O6-alkylguanine-DNA alkyltransferase. Mutat Res 1996; 363:15-25. [PMID: 8632775 DOI: 10.1016/0921-8777(95)00058-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Amino acid residues in the human O6-alkylguanine-DNA alkyltransferase (AGT) were mutated and seventeen of the mutant proteins expressed in the ada- ogt-E. coli strain GWR 109 which is very sensitive to killing by methylating agents because of the absence of endogenous alkyltransferases. Thirteen of the mutations tested (delta-10, delta 1-19, R128A, N137A, H146A, R147A, delta N157, Y158A, E172Q, delta 92-97, Y114E, C145A and E172stop) reduced activity to below detectable levels when crude cell extracts were tested for the ability to remove O6-[3H]methylguanine from 3H-methylated DNA. However, only 4 of these mutations (delta 92-97, Y114E, C145A and E172stop) led to a complete loss of activity when tested for the ability to protect the cells from killing by MNNG. This suggests that the other nine mutations do not lead to the complete inactivation of AGT but produce protein with a reduced activity or in reduced amounts. These results show that none of the residues altered in these mutations (delta 1-10, delta 1-19, R128A, N137A, delta N157, H146A, R147A, Y158A and E172Q) are absolutely essential for AGT activity in protection against killing by MNNG. The stability of the mutant AGT proteins was determined by measuring the half-life of the protein synthesis was blocked. These results indicated that five of mutants that lacked AGT activity when tested in the crude extracts (Y114E, R128A, C145A, delta N157 and Y158A) were stable in the cell showing that the alteration of these residues does greatly reduce AGT activity. The other eight mutants lacking activity in crude extracts (delta 1-10, delta 92-97, E172Q, E172stop, delta 1-19, N137A, H146A and R147A) produced a large decrease in the stability of the AGT protein. This may account for the inability to detect AGT activity in vitro despite the ability to protect from MNNG toxicity in vivo. It is of particular interest that mutation of residues His146, Arg147, Asn137 and Glu172 resulted in unstable AGT proteins active in vivo but not in vitro. The crystal structure of the related Ada-C alkyltransferase suggests the involvement of these residues with the Cys145 acceptor site in a hydrogen bond network that may stabilize the protein and aid in the reaction mechanism. The data presented here support the existence of such an interaction existing in the human AGT and stress its importance in maintaining the configuration of the protein.
Collapse
Affiliation(s)
- T M Crone
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey 17033-0850, USA
| | | | | |
Collapse
|
10
|
Sekiguchi M, Nakabeppu Y, Sakumi K, Tuzuki T. DNA-repair methyltransferase as a molecular device for preventing mutation and cancer. J Cancer Res Clin Oncol 1996; 122:199-206. [PMID: 8601571 DOI: 10.1007/bf01209646] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Alkylation of DNA at the 0(6) position of guanine is regarded as one o f the most critical events leading to induction of mutations and cancers in organisms. Once 0(6)-methylguanine is formed, it can pair with thymine during DNA replication, the result being a conversion of the guanine.cytosine to an adenine.thymine pair in DNA, and such mutations are often found in tumors induced by alkylating agents. To counteract such effects, organisms possess a mechanism to repair 0(6)-methylguanine in DNA. An enzyme, 0(6)-methylguanine-DNA methyltransferase, is present in various organism, from bacteria to human cells, and appears to be responsible for preventing the occurrence of such mutations. The enzyme transfers methyl groups from 0(6)-methylguanine and other methylated moieties of the DNA to its own molecule, thereby repairing DNA lesions in a single-step reaction. To elucidate the role of methyltransferase in preventing cancers, animal models with altered levels of enzyme activity were generated. Transgenic mice carrying the foreign methyltransferase gene with functional promoters had higher levels of methyltransferase activity and showed a decreased susceptibility to N-nitroso compounds in regard to liver carcinogenesis. Mouse lines deficient in the methyltransferase gene, which were established by gene targeting, exhibited an extraordinarily high sensitivity to an alkylating carcinogen.
Collapse
Affiliation(s)
- M Sekiguchi
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
11
|
Taketomi A, Nakabeppu Y, Ihara K, Hart DJ, Furuichi M, Sekiguchi M. Requirement for two conserved cysteine residues in the Ada protein of Escherichia coli for transactivation of the ada promoter. MOLECULAR & GENERAL GENETICS : MGG 1996; 250:523-32. [PMID: 8676855 DOI: 10.1007/bf02174440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cysteine residue 69 of the Escherichia coli Ada transcription factor, which accepts a methyl group from methylphosphotriester in methylated DNA, was substituted by each of 19 other amino acids. Only the mutant Ada (C69H), carrying a histidine substitution of Cys69, exhibited a limited degree of transactivating potential for the ada promoter in E. coli cells although the mutant protein was completely devoid of methylphosphotriester-DNA methyltransferase activity. Using a multicopy plasmid system for the expression of Ada protein, we have shown that Ada C69H has a transactivating capacity equivalent to that of wild-type Ada protein in the absence of an alkylating agent. This indicates that the zinc-binding capacity of histidine at residue 69 is likely to be sufficient for Ada to recognize and bind to the ada promoter. Furthermore, transactivation of the ada promoter by Ada C69H was enhanced up to 6-fold by treatment with methylating agents. An additional substitution was made with alanine in Ada C69H, replacing Cys321, the site for acceptance of a methyl group from O6-methylguanine and O4-methylthymine residues in DNA, with alanine. This renders the protein completely inactive as a methyltransferase but this derivative is constitutively active as a transactivator for the ada promoter. Therefore, acquisition of a methyl group at Cys321 apparently enhances the transactivating capacity of Ada protein on the ada promoter. We propose that the transcription-regulating function of Ada protein is under dual control by methylation of cysteine residues at positions 69 and 321; the former enhances DNA binding, while the latter enhances the transactivating capacity of the protein.
Collapse
Affiliation(s)
- A Taketomi
- Department of Biochemistry, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Koç ON, Phillips WP, Lee K, Liu L, Zaidi NH, Allay JA, Gerson SL. Role of DNA repair in resistance to drugs that alkylate O6 of guanine. Cancer Treat Res 1996; 87:123-46. [PMID: 8886451 DOI: 10.1007/978-1-4613-1267-3_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The mechanism of cytotoxicity of a number of chemotherapeutic agents involves alkylation at the O6 position of guanine, a site that strongly influences cytotoxicity. Repair of these lesions by the alkyltransferase protects from cytotoxicity and is a major mechanism of resistance to these agents. O6-benzylguanine inhibition of alkyltransferase sensitizes tumor cells, and clinical trials are underway to determine its efficacy. The use of gene therapy to enhance the expression of alkyltransferase in hematopoietic cells may prevent dose-limiting myelosuppression and may enhance the utility of this class of chemotherapeutic agents.
Collapse
Affiliation(s)
- O N Koç
- Department of Medicine, Case Western Reserve University School of Medicine, University Hospitals of Cleveland, OH 44106-4937, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Yamada M, Sedgwick B, Sofuni T, Nohmi T. Construction and characterization of mutants of Salmonella typhimurium deficient in DNA repair of O6-methylguanine. J Bacteriol 1995; 177:1511-9. [PMID: 7883708 PMCID: PMC176767 DOI: 10.1128/jb.177.6.1511-1519.1995] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Escherichia coli has two O6-methylguanine DNA methyltransferases that repair alkylation damage in DNA and are encoded by the ada and ogt genes. The ada gene of E. coli also regulates the adaptive response to alkylation damage. The closely related species Salmonella typhimurium possesses methyltransferase activities but does not exhibit an adaptive response conferring detectable resistance to mutagenic methylating agents. We have previously cloned the ada-like gene of S. typhimurium (adaST) and constructed an adaST-deletion derivative of S. typhimurium TA1535. Unexpectedly, the sensitivity of the resulting strain to the mutagenic action of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was similar to that of the parent strain. In this study, we have cloned and sequenced the ogt-like gene of S. typhimurium (ogtST) and characterized ogtST-deletion derivatives of TA1535. The ogtST mutant was more sensitive than the parent strain to the mutagenicity of MNNG and other simple alkylating agents with longer alkyl groups (ethyl, propyl, and butyl). The adaST-ogtST double mutant had a level of hypersensitivity to these agents similar to that of the ogtST single mutant. The ogtST and the adaST-ogtST mutants also displayed a two to three times higher spontaneous mutation frequency than the parent strain and the adaST mutant. These results indicate that the OgtST protein, but not the AdaST protein, plays a major role in protecting S. typhimurium from the mutagenic action of endogenous as well as exogenous alkylating agents.
Collapse
Affiliation(s)
- M Yamada
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tokyo, Japan
| | | | | | | |
Collapse
|