1
|
Kangben F, Kumar S, Li Z, Sreedasyam A, Dardick C, Jones D, Saski CA. Phylogenetic and functional analysis of tiller angle control homeologs in allotetraploid cotton. FRONTIERS IN PLANT SCIENCE 2024; 14:1320638. [PMID: 38356867 PMCID: PMC10864623 DOI: 10.3389/fpls.2023.1320638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/20/2023] [Indexed: 02/16/2024]
Abstract
Introduction Plants can adapt their growth to optimize light capture in competitive environments, with branch angle being a crucial factor influencing plant phenotype and physiology. Decreased branch angles in cereal crops have been shown to enhance productivity in high-density plantings. The Tiller Angle Control (TAC1) gene, known for regulating tiller inclination in rice and corn, has been found to control branch angle in eudicots. Manipulating TAC1 in field crops like cotton offers the potential for improving crop productivity. Methods Using a homolog-based methodology, we examined the distribution of TAC1-related genes in cotton compared to other angiosperms. Furthermore, tissue-specific qPCR analysis unveiled distinct expression patterns of TAC1 genes in various cotton tissues. To silence highly expressed specific TAC1 homeologs in the stem, we applied CRISPR-Cas9 gene editing and Agrobacterium-mediated transformation, followed by genotyping and subsequent phenotypic validation of the mutants. Results Gene duplication events of TAC1 specific to the Gossypium lineage were identified, with 3 copies in diploid progenitors and 6 copies in allotetraploid cottons. Sequence analysis of the TAC1 homeologs in Gossypium hirsutum revealed divergence from other angiosperms with 1-2 copies, suggesting possible neo- or sub-functionalization for the duplicated copies. These TAC1 homeologs exhibited distinct gene expression patterns in various tissues over developmental time, with elevated expression of A11G109300 and D11G112200, specifically in flowers and stems, respectively. CRISPR-mediated loss of these TAC1 homeologous genes resulted in a reduction in branch angle and altered petiole angles, and a 5 to 10-fold reduction in TAC1 expression in the mutants, confirming their role in controlling branch and petiole angles. This research provides a promising strategy for genetically engineering branch and petiole angles in commercial cotton varieties, potentially leading to increased productivity.
Collapse
Affiliation(s)
- Foster Kangben
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Sonika Kumar
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Zhigang Li
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Avinash Sreedasyam
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Chris Dardick
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Appalachian Fruit Research Station, Kearneysville, WV, United States
| | - Don Jones
- Department of Agricultural Research, Cotton Incorporated, Cary, NC, United States
| | - Christopher A. Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| |
Collapse
|
2
|
Bhutia ND, Sureja AK, Verma M, Gopala Krishnan S, Arya L, Bhardwaj R, Dash PK, Das Munshi A. Inheritance and molecular mapping of solitary/cluster fruit-bearing habit in Luffa. Mol Genet Genomics 2023:10.1007/s00438-023-02034-0. [PMID: 37231151 DOI: 10.1007/s00438-023-02034-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
Fruiting behaviour and sex form are important goals for Luffa breeders and this study aimed to shed light upon inheritance patterns for both these traits. The hermaphrodite form of Luffa acutangula (known as Satputia) is an underutilized vegetable with a unique clustered fruiting habit. Its desirable traits, such as plant architecture, earliness, as well as contrasting traits like unique clustered fruiting, bisexual flower, and crossability with Luffa acutangula (monoecious ridge gourd with solitary fruits), make it a potential source for trait improvement and mapping of desirable traits in Luffa. In the present study, we have elucidated the inheritance pattern of fruiting behaviour in Luffa using F2 mapping population generated from a cross between Pusa Nutan (Luffa acutangula, monoecious, solitary fruiting) × DSat-116 (Luffa acutangula, hermaphrodite, cluster fruiting). In F2 generation, the observed distribution of plant phenotypes fitted in the expected ratio of 3:1 (solitary vs cluster) for fruit-bearing habit. This is the first report of monogenic recessive control for cluster fruit-bearing habit in Luffa. Herein, we designate for the first time the gene symbol cl for cluster fruit bearing in Luffa. Linkage analysis revealed that SRAP marker ME10 EM4-280 was linked to the fruiting trait at the distance of 4.6 cM from the Cl locus. In addition, the inheritance pattern of hermaphrodite sex form in Luffa was also studied in the F2 population of Pusa Nutan × DSat-116 that segregated into 9:3:3:1 ratio (monoecious:andromonoecious:gynoecious:hermaphrodite), suggesting a digenic recessive control of hermaphrodite sex form in Luffa, which was further confirmed by the test cross. The inheritance and identification of molecular marker for cluster fruiting trait provides a basis for breeding in Luffa species.
Collapse
Affiliation(s)
- Nangsol D Bhutia
- College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India
| | - Amish K Sureja
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India.
| | - Manjusha Verma
- ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi, 110012, India
| | - S Gopala Krishnan
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Lalit Arya
- ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi, 110012, India
| | - Rakesh Bhardwaj
- ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi, 110012, India
| | - Prasanta K Dash
- ICAR-National Institute of Plant Biotechnology, Pusa, New Delhi, 110012, India
| | | |
Collapse
|
3
|
Huang X, Liu H, Ma B. The Current Progresses in the Genes and Networks Regulating Cotton Plant Architecture. FRONTIERS IN PLANT SCIENCE 2022; 13:882583. [PMID: 35755647 PMCID: PMC9218861 DOI: 10.3389/fpls.2022.882583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Cotton is the most important source of natural fiber in the world as well as a key source of edible oil. The plant architecture and flowering time in cotton are crucial factors affecting cotton yield and the efficiency of mechanized harvest. In the model plant arabidopsis, the functions of genes related to plant height, inflorescence structure, and flowering time have been well studied. In the model crops, such as tomato and rice, the similar genetic explorations have greatly strengthened the economic benefits of these crops. Plants of the Gossypium genus have the characteristics of perennials with indeterminate growth and the cultivated allotetraploid cottons, G. hirsutum (Upland cotton), and G. barbadense (Sea-island cotton), have complex branching patterns. In this paper, we review the current progresses in the identification of genes affecting cotton architecture and flowering time in the cotton genome and the elucidation of their functional mechanisms associated with branching patterns, branching angle, fruit branch length, and plant height. This review focuses on the following aspects: (i) plant hormone signal transduction pathway; (ii) identification of cotton plant architecture QTLs and PEBP gene family members; (iii) functions of FT/SFT and SP genes; (iv) florigen and anti-florigen systems. We highlight areas that require further research, and should lay the groundwork for the targeted bioengineering of improved cotton cultivars with flowering times, plant architecture, growth habits and yields better suited for modern, mechanized cultivation.
Collapse
Affiliation(s)
- Xianzhong Huang
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou, China
| | - Hui Liu
- State Key laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Bin Ma
- Plant Genomics Laboratory, College of Life Sciences, Shihezi University, Shihezi, China
| |
Collapse
|
4
|
Chen W, Yao J, Li Y, Zhao L, Liu J, Guo Y, Wang J, Yuan L, Liu Z, Lu Y, Zhang Y. Nulliplex-branch, a TERMINAL FLOWER 1 ortholog, controls plant growth habit in cotton. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:97-112. [PMID: 30288552 DOI: 10.1007/s00122-018-3197-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
Nulliplex-branch (nb) mutants in cotton display a specific architecture. The gene responsible for the nb phenotype was identified, and its modulation mode was further studied. Plant architecture is an important agronomic factor influencing various traits such as yield and variety adaptability in crop plants. Cotton (Gossypium) simultaneously displays monopodial and sympodial growth. Nulliplex-branch (nb) mutants showing determinate sympodial shoots have been reported in both G. hirsutum (Ghnb) and G. barbadense (Gbnb). In this study, the gene responsible for the nb phenotype was identified. GhNB and GbNB were found to be allelic loci and are TERMINAL FLOWER 1 orthologs on the Dt subgenome, though the At copies remain native. Sequencing and association analyses identified four (Gh-nb1-Gh-nb4) and one (Gb-nb1) type of point mutation in the coding sequences of Ghnb and Gbnb, respectively. The NB gene was mainly expressed in the root and shoot apex, and expression rhythms were also observed in these tissues, suggesting that the expression of the NB gene could be regulated by photoperiod. Constitutive overexpression of GhNB suppresses the differentiation of the reproductive shoots. Knockout of both copies of GhNB caused the main and lateral shoots to terminate in flowers, which is a more determinate architecture than that of the nb mutants and implies that its function might be dosage dependent. A protein lipid overlay assay indicated that the amino acid substitutions in Gh-nb1 and Gb-nb1 weaken the ligand-binding activity of the NB protein in vitro. These findings suggest that the NB gene plays crucial roles in regulating the determinacy of shoots, and the modulation of this gene should constitute an effective crop improvement approach through adjusting the growth habit of cotton.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jinbo Yao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yan Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Lanjie Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jie Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yan Guo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Junyi Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Li Yuan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Ziyang Liu
- Art and Science College, University of Saskatchewan, Saskatoon, S7N 5A5, Canada
| | - Youjun Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yongshan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
5
|
To Be a Flower or Fruiting Branch: Insights Revealed by mRNA and Small RNA Transcriptomes from Different Cotton Developmental Stages. Sci Rep 2016; 6:23212. [PMID: 26983497 PMCID: PMC4794708 DOI: 10.1038/srep23212] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 03/02/2016] [Indexed: 12/14/2022] Open
Abstract
The architecture of the cotton plant, including fruit branch formation and flowering pattern, is the most important characteristic that directly influences light exploitation, yield and cost of planting. Nulliplex branch is a useful phenotype to study cotton architecture. We used RNA sequencing to obtain mRNA and miRNA profiles from nulliplex- and normal-branch cotton at three developmental stages. The differentially expressed genes (DEGs) and miRNAs were identified that preferentially/specifically expressed in the pre-squaring stage, which is a key stage controlling the transition from vegetative to reproductive growth. The DEGs identified were primarily enriched in RNA, protein, and signalling categories in Gossypium barbadense and Gossypium hirsutum. Interestingly, during the pre-squaring stage, the DEGs were predominantly enriched in transcription factors in both G. barbadense and G. hirsutum, and these transcription factors were mainly involved in branching and flowering. Related miRNAs were also identified. The results showed that fruit branching in cotton is controlled by molecular pathways similar to those in Arabidopsis and that multiple regulated pathways may affect the development of floral buds. Our study showed that the development of fruit branches is closely related to flowering induction and provides insight into the molecular mechanisms of branch and flower development in cotton.
Collapse
|