1
|
Degtjareva GV, Logacheva MD, Samigullin TH, Terentieva EI, Valiejo-Roman CM. Organization of chloroplast psbA-trnH intergenic spacer in dicotyledonous angiosperms of the family Umbelliferae. BIOCHEMISTRY (MOSCOW) 2014; 77:1056-64. [PMID: 23157266 DOI: 10.1134/s0006297912090131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chloroplast intergenic psbA-trnH spacer has recently become a popular tool in plant molecular phylogenetic studies at low taxonomic level and as suitable for DNA barcoding studies. In present work, we studied the organization of psbA-trnH in the large family Umbelliferae and its potential as a DNA barcode and phylogenetic marker in this family. Organization of the spacer in Umbelliferae is consistent with a general pattern evident for angiosperms. The 5'-region of the spacer situated directly after the psbA gene is more conserved in length compared to the 3'-region, which has greater sequence variation. This pattern can be attributed to the maintenance of the secondary structural elements in the 5'-region of the spacer needed for posttranscriptional regulation of psbA gene expression. In Umbelliferae only, the conserved region contains a duplication of the fragment corresponding to the loop of the stem-loop structure and an independent appearance of identical sequence complementarities (traits) necessary to stabilize the stem-loop structure in different lineages. The 3'-region of the spacer nearest to trnH ranges greatly in size, mainly due to deletions, and the decrease in spacer length is a general trend in the evolution psbA-trnH in Umbelliferae. The features revealed in spacer organization allow us to use it as phylogenetic marker, and indels seem to be more informative for analyses than nucleotide substitutions. However, high conservation among closely related taxa and occurrence of homoplastic inversions in the stem-loop structure limit its application as DNA barcode.
Collapse
Affiliation(s)
- G V Degtjareva
- Botanical Garden, Biological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | | | | | | |
Collapse
|
2
|
Degenhardt J, Fiebig C, Link G. Chloroplast and Nuclear Transcripts for Plastid Proteins inArabidopsis thaliana: Tissue Distribution in Mature Plants and During Seedling Development and Embryogenesis. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1991.tb00258.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
3
|
Zubo YO, Kusnetsov VV, Börner T, Liere K. Reverse protection assay: a tool to analyze transcriptional rates from individual promoters. PLANT METHODS 2011; 7:47. [PMID: 22185205 PMCID: PMC3259058 DOI: 10.1186/1746-4811-7-47] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 12/20/2011] [Indexed: 05/08/2023]
Abstract
Transcriptional activity of entire genes in chloroplasts is usually assayed by run-on analyses. To determine not only the overall intensity of transcription of a gene, but also the rate of transcription from a particular promoter, we created the Reverse RNase Protection Assay (RePro): in-organello run-on transcription coupled to RNase protection to define distinct transcript ends during transcription. We demonstrate successful application of RePro in plastid promoter analysis and transcript 3' end processing.
Collapse
Affiliation(s)
- Yan O Zubo
- Institut für Biologie (Genetik), Humboldt-Universität zu Berlin, Chausseestrasse 117, D-10115 Berlin, Germany
- Timiriazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, Moscow, 127276 Russia
- Department of Biological Sciences, Dartmouth College, Hanover NH 03755, USA
| | - Victor V Kusnetsov
- Timiriazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, Moscow, 127276 Russia
| | - Thomas Börner
- Institut für Biologie (Genetik), Humboldt-Universität zu Berlin, Chausseestrasse 117, D-10115 Berlin, Germany
| | - Karsten Liere
- Institut für Biologie (Genetik), Humboldt-Universität zu Berlin, Chausseestrasse 117, D-10115 Berlin, Germany
| |
Collapse
|
4
|
Mulo P, Sakurai I, Aro EM. Strategies for psbA gene expression in cyanobacteria, green algae and higher plants: from transcription to PSII repair. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:247-57. [PMID: 21565160 DOI: 10.1016/j.bbabio.2011.04.011] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 04/06/2011] [Accepted: 04/07/2011] [Indexed: 11/26/2022]
Abstract
The Photosystem (PS) II of cyanobacteria, green algae and higher plants is prone to light-induced inactivation, the D1 protein being the primary target of such damage. As a consequence, the D1 protein, encoded by the psbA gene, is degraded and re-synthesized in a multistep process called PSII repair cycle. In cyanobacteria, a small gene family codes for the various, functionally distinct D1 isoforms. In these organisms, the regulation of the psbA gene expression occurs mainly at the level of transcription, but the expression is fine-tuned by regulation of translation elongation. In plants and green algae, the D1 protein is encoded by a single psbA gene located in the chloroplast genome. In chloroplasts of Chlamydomonas reinhardtii the psbA gene expression is strongly regulated by mRNA processing, and particularly at the level of translation initiation. In chloroplasts of higher plants, translation elongation is the prevalent mechanism for regulation of the psbA gene expression. The pre-existing pool of psbA transcripts forms translation initiation complexes in plant chloroplasts even in darkness, while the D1 synthesis can be completed only in the light. Replacement of damaged D1 protein requires also the assistance by a number of auxiliary proteins, which are encoded by the nuclear genome in green algae and higher plants. Nevertheless, many of these chaperones are conserved between prokaryotes and eukaryotes. Here, we describe the specific features and fundamental differences of the psbA gene expression and the regeneration of the PSII reaction center protein D1 in cyanobacteria, green algae and higher plants. This article is part of a Special Issue entitled Photosystem II.
Collapse
Affiliation(s)
- Paula Mulo
- Department of Biochemistry and Food Chemistry, University of Turku, Finland.
| | | | | |
Collapse
|
5
|
Fan LL, Zhu S, Chen HB, Yang DH, Cai SQ, Komatsu K. Molecular analysis of Stemona plants in China based on sequences of four chloroplast DNA regions. Biol Pharm Bull 2010; 32:1439-46. [PMID: 19652387 DOI: 10.1248/bpb.32.1439] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stemona sessilifolia, S. japonica and S. tuberosa are the three original sources of Stemonae Radix specified in the Chinese Pharmacopoeia (CP), and have been traditionally used for antitussive and insecticidal remedy. Significant variations in alkaloids composition and content, as well as different degrees of antitussive activities were found among them. In order to identify the genuine sources of Stemonae Radix accurately in genetic level, we determined the nucleotide sequences of chloroplast DNA trnL-trnF, trnH-psbA, petB-petD and trnK-rps16 regions of the species recorded in CP and S. parviflora, as well as the common counterfeits of Stemonae Radix, Asparagus species. The results revealed that the sequences of petB-petD and trnK-rps16 regions, showing relatively high substitution rate, were more informative than those of trnL-trnF and trnH-psbA regions. The sequences from all the four regions provided useful information to discriminate the three CP species from each other and from S. parviflora and the counterfeits. A phylogenetic tree reconstructed by the trnH-psbA sequences for 9 Stemona species distributed in China and Thailand showed that the three CP species belonged to the same clade, among which S. japonica and S. sessillifolia formed a sister group, showing closer relations to each other than to S. tuberosa. By contrast, S. parviflora was genetically far from the three CP species. Intra-species variations were observed in the three CP species. Especially, in S. tuberosa two types of petB-petD sequence and four types each of trnL-trnF, trnK-rps16 and trnH-psbA sequences resulted in 6 haplotypes; whereas, these differences had no relation with the different chemical types, but seemed to be consistent with geographical distribution.
Collapse
Affiliation(s)
- Lan-Lan Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | | | | | | | | | | |
Collapse
|
6
|
Transcription and transcriptional regulation in plastids. CELL AND MOLECULAR BIOLOGY OF PLASTIDS 2007. [DOI: 10.1007/4735_2007_0232] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Processing, degradation, and polyadenylation of chloroplast transcripts. CELL AND MOLECULAR BIOLOGY OF PLASTIDS 2007. [DOI: 10.1007/4735_2007_0235] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Hayes ML, Reed ML, Hegeman CE, Hanson MR. Sequence elements critical for efficient RNA editing of a tobacco chloroplast transcript in vivo and in vitro. Nucleic Acids Res 2006; 34:3742-54. [PMID: 16893957 PMCID: PMC1557790 DOI: 10.1093/nar/gkl490] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 06/07/2006] [Accepted: 06/19/2006] [Indexed: 11/14/2022] Open
Abstract
In tobacco chloroplast transcripts 34 nt are efficiently edited to U. No common consensus region is present around all editing sites; however, sites can be grouped in clusters that share short common sequences. Transgene transcripts carrying either the wild-type -31/+22 or -31/+60 sequence near NTrpoB C473, an editing site within tobacco rpoB transcripts, or three different mutated sequences, were all highly edited in vivo. Endogenous transcripts of rpoB, psbL and rps14, all of which contain common sequences S1, S2 and S3 5' to NTrpoB C473, NTpsbL C2 and NTrps14 C80, were less edited in transgenic plants that over-express transcripts from NTrpoB C473 transgenes. Extent of reduction of endogenous editing differed between transgenic lines expressing mutated -31/+22 regions, depending on the abundance of the transgene transcripts. The -20/-5 sequence contains critical 5' sequence elements. Synthetic RNA templates with alterations within this 5' region were less efficiently edited in vitro than wild-type templates, by either tobacco or maize chloroplast extracts. The tobacco chloroplast extract supports both RNA editing and processing of 3' transcript termini. We conclude that within the -20/-5 region, sequences common to editing sites in the transcripts of rpoB, psbL and rps14 are critical for efficient NTrpoB C473 editing.
Collapse
Affiliation(s)
- Michael L. Hayes
- Department of Molecular Biology and Genetics, Cornell UniversityBiotechnology Building, Ithaca, NY, 14853, USA
| | - Martha L. Reed
- Department of Molecular Biology and Genetics, Cornell UniversityBiotechnology Building, Ithaca, NY, 14853, USA
| | - Carla E. Hegeman
- Department of Molecular Biology and Genetics, Cornell UniversityBiotechnology Building, Ithaca, NY, 14853, USA
| | - Maureen R. Hanson
- Department of Molecular Biology and Genetics, Cornell UniversityBiotechnology Building, Ithaca, NY, 14853, USA
| |
Collapse
|
9
|
Pfannschmidt T, Liere K. Redox regulation and modification of proteins controlling chloroplast gene expression. Antioxid Redox Signal 2005; 7:607-18. [PMID: 15890004 DOI: 10.1089/ars.2005.7.607] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Chloroplasts are typical organelles of plant cells and represent the site of photosynthesis. As one very remarkable feature, they possess their own genome and a complete machinery to express the genetic information in it. The plastid gene expression machinery is a unique assembly of prokaryotic-, eukaryotic-, and phage-like components because chloroplasts acquired a great number of regulatory proteins during evolution. Such proteins can be found at all levels of gene expression. They significantly expand the functional and especially the regulatory properties of the "old" gene expression system that chloroplasts inherited from their prokaryotic ancestors. Recent results show that photosynthesis has a strong regulatory effect on plastid gene expression. The redox states of electron transport components, redox-active molecules coupled to photosynthesis, and pools of reactive oxygen species act as redox signals. They provide a functional feedback control, which couples the expression of chloroplast genes to the actual function of photosynthesis and, by this means, helps to acclimate the photosynthetic process to environmental cues. The redox signals are mediated by various specific signaling pathways that involve many of the "new" regulatory proteins. Chloroplasts therefore are an ideal model to study redox-regulated mechanisms in gene expression control. Because of the multiple origins of the expression machinery, these observations are of great relevance for many other biological systems.
Collapse
Affiliation(s)
- Thomas Pfannschmidt
- Department for General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany.
| | | |
Collapse
|
10
|
Hirose T, Sugiura M. Multiple elements required for translation of plastid atpB mRNA lacking the Shine-Dalgarno sequence. Nucleic Acids Res 2004; 32:3503-10. [PMID: 15229294 PMCID: PMC443550 DOI: 10.1093/nar/gkh682] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Revised: 06/16/2004] [Accepted: 06/16/2004] [Indexed: 11/13/2022] Open
Abstract
The mechanism of translational initiation differs between prokaryotes and eukaryotes. Prokaryotic mRNAs generally contain within their 5'-untranslated region (5'-UTR) a Shine-Dalgarno (SD) sequence that serves as a ribosome-binding site. Chloroplasts possess prokaryotic-like translation machinery, and many chloroplast mRNAs have an SD-like sequence, but its position is variable. Tobacco chloroplast atpB mRNAs contain no SD-like sequence and are U-rich in the 5'-UTR (-20 to -1 with respect to the start codon). In vitro translation assays with mutated mRNAs revealed that an unstructured sequence encompassing the start codon, the AUG codon and its context are required for translation. UV crosslinking experiments showed that a 50 kDa protein (p50) binds to the 5'-UTR. Insertion of an additional initiation region (SD-sequence and AUG) in the 5'-UTR, but not downstream, arrested translation from the authentic site; however, no inhibition was observed by inserting only an AUG triplet. We hypothesize for translational initiation of the atpB mRNA that the ribosome enters an upstream region, slides to the start codon and forms an initiation complex with p50 and other components.
Collapse
Affiliation(s)
- Tetsuro Hirose
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | | |
Collapse
|
11
|
Drapier D, Girard-Bascou J, Stern DB, Wollman FA. A dominant nuclear mutation in Chlamydomonas identifies a factor controlling chloroplast mRNA stability by acting on the coding region of the atpA transcript. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 31:687-97. [PMID: 12220261 DOI: 10.1046/j.1365-313x.2002.01387.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We have characterized a nuclear mutation, mda1-ncc1, that affects mRNA stability for the atpA gene cluster in the chloroplast of Chlamydomonas. Unlike all nuclear mutations altering chloroplast gene expression described to date, mda1-ncc1 is a dominant mutation that still allows accumulation of detectable amounts of atpA mRNAs. At variance with the subset of these mutations that affect mRNA stability through the 5' UTR of a single chloroplast transcript, the mutated version of MDA1 acts on the coding region of the atpA message. We discuss the action of MDA1 in relation to the unusual pattern of expression of atpA that associates particularly short lived-transcripts with a very high translational efficiency.
Collapse
|
12
|
Affiliation(s)
- K Liere
- Genetics Institute, Humboldt-University Berlin, D-10115 Berlin, Germany
| | | | | |
Collapse
|
13
|
|
14
|
Abstract
The conversion of genetic information stored in DNA into a protein product proceeds through the obligatory intermediate of messenger RNA. The steady-state level of an mRNA is determined by its relative synthesis and degradation rates, i.e., an interplay between transcriptional regulation and control of RNA stability. When the biological status of an organism requires that a gene product's abundance varies as a function of developmental stage, environmental factors or intracellular signals, increased or decreased RNA stability can be the determining factor. RNA stability and processing have long been known as important regulatory points in chloroplast gene expression. Here we summarize current knowledge and prospects relevant to these processes, emphasizing biochemical data. The extensive literature on nuclear mutations affecting chloroplast RNA metabolism is reviewed in another article in this volume (Barkan and Goldschmidt-Clermont, this issue).
Collapse
Affiliation(s)
- R A Monde
- Boyce Thompson Institute for Plant Research, Tower Rd., Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
15
|
Vaistij FE, Goldschmidt-Clermont M, Wostrikoff K, Rochaix JD. Stability determinants in the chloroplast psbB/T/H mRNAs of Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 21:469-82. [PMID: 10758498 DOI: 10.1046/j.1365-313x.2000.00700.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The chloroplast gene psbB encodes the chlorophyll-a binding protein P5 (CP47), one of the core subunits of photosystem II (PSII). The psbB mRNA and the downstream psbT and psbH transcripts fail to accumulate in the Chlamydomonas reinhardtii nuclear mutant 222E affected in the Mbb1 gene (Monod et al. 1992, Mol. Gen. Genet. 231, 449-459). By introducing chimeric genes consisting of sequences from psbB and the reporter gene aadA into the chloroplast, the target site of Mbb1 was mapped in the psbB 5' untranslated region (UTR). Primer extension analysis indicates that the psbB RNA exists in a less abundant long form and a more abundant short form, with 5' ends at positions -147 and -35 relative to the AUG initiation codon, respectively. The longer transcript is present both in the wild type (WT) and 222E mutant, but the shorter one accumulates only in the WT. Two putative stem-loop structures in the longer 5' UTR can be deleted individually without affecting psbB mRNA accumulation. Insertion of a poly G cassette in the long leader stabilizes a chimeric psbB transcript in the 222E mutant, suggesting the involvement of a 5'-3' exonuclease. We also show that psbH and psbT are transcribed from the upstream psbB gene promoter, and that the psbH mRNA has its own target sequence for Mbb1 function. We discuss the role of this nucleus-encoded factor, required for specific chloroplast gene expression, in the assembly of the multi-protein PSII complex.
Collapse
Affiliation(s)
- F E Vaistij
- Department of Molecular Biology,Department of Plant Biology, University of Geneva, Sciences II, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
16
|
Alexander C, Faber N, Klaff P. Characterization of protein-binding to the spinach chloroplast psbA mRNA 5' untranslated region. Nucleic Acids Res 1998; 26:2265-72. [PMID: 9580673 PMCID: PMC147569 DOI: 10.1093/nar/26.10.2265] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RNA-binding proteins play a major role in regulating mRNA metabolism in chloroplasts. In this work we characterized two proteins, of 43 and 47 kDa, which bind to the spinach psbA mRNA 5' untranslated region (psbA encoding the D1 protein of photosystem II). The 43 kDa protein, which is present in the stroma and in membranes, co-sediments with a complex of 68S. It was purified, and the N-terminal sequence was determined. Upon homology search it was identified as the chloroplast homologue of the Escherichia coli ribosomal protein S1. The 47 kDa protein, which, in contrast with the 43 kDa protein, sediments with a small sedimentation coefficient, is only detected in the stromal fraction. It is soluble in an uncomplexed form. By deletion analysis, an element within the psbA mRNA 5' untranslated region was identified that is necessary but not sufficient for binding of stromal proteins. The 'central protein binding element' ranges from nucleotide -49 to -9 of the psbA mRNA 5' untranslated region. It comprises the Shine-Dalgarno-like GGAG motif and, 7 nucleotides upstream, an endonucleolytic cleavage site involved in psbA mRNA degradation in vitro . The mechanistic impacts of this region in relation to RNA-binding proteins are discussed.
Collapse
Affiliation(s)
- C Alexander
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | | | |
Collapse
|
17
|
Goldschmidt-Clermont M. Coordination of nuclear and chloroplast gene expression in plant cells. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 177:115-80. [PMID: 9378616 DOI: 10.1016/s0074-7696(08)62232-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Plastid proteins are encoded in two genomes, one in the nucleus and the other in the organelle. The expression of genes in these two compartments in coordinated during development and in response to environmental parameters such as light. Two converging approaches reveal features of this coordination: the biochemical analysis of proteins involved in gene expression, and the genetic analysis of mutants affected in plastid function or development. Because the majority of proteins implicated in plastid gene expression are encoded in the nucleus, regulatory processes in the nucleus and in the cytoplasm control plastid gene expression, in particular during development. Many nucleus-encoded factors involved in transcriptional and posttranscriptional steps of plastid gene expression have been characterized. We are also beginning to understand whether and how certain developmental or environmental signals perceived in one compartment may be transduced to the other.
Collapse
|
18
|
Liere K, Link G. Chloroplast endoribonuclease p54 involved in RNA 3'-end processing is regulated by phosphorylation and redox state. Nucleic Acids Res 1997; 25:2403-8. [PMID: 9171092 PMCID: PMC146767 DOI: 10.1093/nar/25.12.2403] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Chloroplast RNA-binding protein p54 is an endoribonuclease required for 3'end-processing of plastid precursor transcripts. We find that purified p54 can serve as a phosphate acceptor for protein kinases in vitro. Both the processing and RNA-binding activities of p54 are enhanced by phosphorylation and decreased by dephosphorylation. In addition, the enzyme is activated by the oxidized form of glutathione and inhibited by the reduced form, whereas other redox reagents that were tested showed no effect. Kinase treatment of p54 prior to oxidation by glutathione resulted in highest levels of activation, suggesting that phosphorylation and redox state act together to control p54 activity in vitro and possibly also in vivo.
Collapse
Affiliation(s)
- K Liere
- Plant Cell Physiology and Molecular Biology, University of Bochum, D-44780 Bochum, Germany
| | | |
Collapse
|
19
|
Sugita M, Sugiura M. Regulation of gene expression in chloroplasts of higher plants. PLANT MOLECULAR BIOLOGY 1996; 32:315-26. [PMID: 8980485 DOI: 10.1007/bf00039388] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Chloroplasts contain their own genetic system which has a number of prokaryotic as well as some eukaryotic features. Most chloroplast genes of higher plants are organized in clusters and are cotranscribed as polycistronic pre-RNAs which are generally processes into many shorter overlapping RNA species, each of which accumulates of steady-state RNA levels. This indicates that posttranscriptional RNA processing of primary transcripts is an important step in the control of chloroplast gene expression. Chloroplast RNA processing steps include RNA cleavage/trimming, RNA splicing, ENA editing and RNA stabilization. Several chloroplast genes are interrupted by introns and therefore require processing for gene function. In tobacco chloroplasts, 18 genes contain introns, six for tRNA genes and 12 for protein-encoding genes. A number of specific proteins and RNA factors are believed to be involved in splicing and maturation of pre-RNAs in chloroplasts. Processing enzymes and RNA-binding proteins which could be involved in posttranscriptional steps have been identified in the last several years. Our current knowledge of the regulation of gene expression in chloroplasts of higher plants is overviewed and further studies on this matter are also considered.
Collapse
Affiliation(s)
- M Sugita
- Center for Gene Research, Nagoya University, Japan
| | | |
Collapse
|
20
|
|
21
|
Klaff P, Gruissem W. A 43 kD light-regulated chloroplast RNA-binding protein interacts with the psbA 5' non-translated leader RNA. PHOTOSYNTHESIS RESEARCH 1995; 46:235-248. [PMID: 24301588 DOI: 10.1007/bf00020436] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/1995] [Accepted: 07/03/1995] [Indexed: 06/02/2023]
Abstract
Expression of the chloroplast psbA gene coding for the D1 protein of Photosystem II is subject to regulation at different levels in higher plants, including control of mRNA accumulation and translation. In dicots, the conserved 5' non-translated leader (5'-UTR) of the psbA mRNA is sufficient to direct the light-dependent translation of the D1 protein. In this report we show that the psbA mRNA 5'-UTR forms a stem-loop structure and binds a 43 kD chloroplast protein (43RNP). Binding of the 43RNP is sensitive to competition with poly(U), but insensitive to high concentrations of tRNA, the RNA homopolymers poly(A), poly(G), poly(C), or poly(A):poly(U) as a double-strand RNA. The 43RNP does not bind efficiently to the psbA mRNA 3' non-translated region, although the RNA sequence is U-rich and folds into a stem-loop. A deletion mutant of the psbA 5'-UTR RNA in which 5' sequences of the stem-loop are removed does not affect 43RNP binding. Together, these properties suggest that the 43RNP binds most effectively to a specific single-strand U-rich sequence preceding the AUG start codon in the psbA mRNA. Binding of the 43RNP is not detectable in plastid protein extracts from 5-day-old dark-grown seedlings, but is detectable in light-grown seedlings as well as mature plants in the light and after shifted to the dark. The 43RNP is therefore a candidate for a regulatory RNA-binding protein that may control the accumulation and/or translation of the psbA mRNA during light-dependent seedling development.
Collapse
Affiliation(s)
- P Klaff
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, Universitätsstr. 1, D 40225, Düsseldorf, Germany
| | | |
Collapse
|
22
|
Liere K, Kestermann M, Müller U, Link G. Identification and characterization of the Arabidopsis thaliana chloroplast DNA region containing the genes psbA, trnH and rps19'. Curr Genet 1995; 28:128-30. [PMID: 8590463 DOI: 10.1007/bf00315778] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A 1887-nucleotide chloroplast-DNA region from Arabidopsis thaliana was analyzed. It contains the conserved genes psbA for the precursor of the D1 reaction-centre protein of photosystem II, trnH for tRNAHis, and rps19' for the 6.8-kDa protein of the small ribosomal subunit. Northern hybridization and RNase protection experiments suggest co-transcription of a minor RNA fraction over the full lengths of psbA and the preceding trnK-UUU gene, but not including downstream trnH sequences. In front of the mapped 5' end of the major 1.2-kb psbA transcript is a DNA region that shows the typical architecture of a psbA promoter, consisting of the prokaryotic-type '-35' and '-10' elements as well as the eukaryotic-type 'TATA' motif. The common 3' end of psbA transcripts seems to be located immediately after a stem-loop structure downstream from the coding region.
Collapse
Affiliation(s)
- K Liere
- University of Bochum, Germany
| | | | | | | |
Collapse
|
23
|
Chen Q, Adams CC, Usack L, Yang J, Monde RA, Stern DB. An AU-rich element in the 3' untranslated region of the spinach chloroplast petD gene participates in sequence-specific RNA-protein complex formation. Mol Cell Biol 1995; 15:2010-18. [PMID: 7891696 PMCID: PMC230428 DOI: 10.1128/mcb.15.4.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In chloroplasts, the 3' untranslated regions of most mRNAs contain a stem-loop-forming inverted repeat (IR) sequence that is required for mRNA stability and correct 3'-end formation. The IR regions of several mRNAs are also known to bind chloroplast proteins, as judged from in vitro gel mobility shift and UV cross-linking assays, and these RNA-protein interactions may be involved in the regulation of chloroplast mRNA processing and/or stability. Here we describe in detail the RNA and protein components that are involved in 3' IR-containing RNA (3' IR-RNA)-protein complex formation for the spinach chloroplast petD gene, which encodes subunit IV of the cytochrome b6/f complex. We show that the complex contains 55-, 41-, and 29-kDa RNA-binding proteins (ribonucleoproteins [RNPs]). These proteins together protect a 90-nucleotide segment of RNA from RNase T1 digestion; this RNA contains the IR and downstream flanking sequences. Competition experiments using 3' IR-RNAs from the psbA or rbcL gene demonstrate that the RNPs have a strong specificity for the petD sequence. Site-directed mutagenesis was carried out to define the RNA sequence elements required for complex formation. These studies identified an 8-nucleotide AU-rich sequence downstream of the IR; mutations within this sequence had moderate to severe effects on RNA-protein complex formation. Although other similar sequences are present in the petD 3' untranslated region, only a single copy, which we have termed box II, appears to be essential for in vitro protein binding. In addition, the IR itself is necessary for optimal complex formation. These two sequence elements together with an RNP complex may direct correct 3'-end processing and/or influence the stability of petD mRNA in chloroplasts.
Collapse
Affiliation(s)
- Q Chen
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853
| | | | | | | | | | | |
Collapse
|
24
|
Lisitsky I, Liveanu V, Schuster G. RNA-binding activities of the different domains of a spinach chloroplast ribonucleoprotein. Nucleic Acids Res 1994; 22:4719-24. [PMID: 7984423 PMCID: PMC308523 DOI: 10.1093/nar/22.22.4719] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
An RNA-binding protein of 28 kD (28RNP) has been previously isolated from spinach chloroplasts and was found to be required for 3' end processing of chloroplast mRNAs. The amino acid sequence of 28RNP revealed two approximately 80 amino-acid RNA-binding domains, as well as an acidic and glycine-rich amino terminal domain. Each domain by itself, as well as in combination with other domains, was expressed in bacterial cells and the polypeptides were purified to homogeneity. We have investigated the RNA-binding properties of the different structural domains using UV-crosslinking, saturation binding and competition between the different domains on RNA-binding. It was found that the acidic domain does not bind RNA, but that each of the RNA-binding domains, expressed either individually or together, do bind RNA, although with differing affinities. When either the first or second RNA-binding domain was coupled to the acidic domain, the affinity for RNA was greatly reduced. However, the acidic domain has a positive effect on the binding of the full-length protein to RNA, because the mature protein binds RNA with a better affinity than the truncated protein which lacks the acidic domain. In addition, it was found that a stretch of two or three G residues is enough to mediate binding of the 28RNP, whereas four U residues were insufficient. The implications of the RNA-binding properties of 28RNP to its possible function in the processing of chloroplast RNA is discussed.
Collapse
Affiliation(s)
- I Lisitsky
- Department of Biology, Technion-Israel Institute of Technology, Haifa
| | | | | |
Collapse
|
25
|
Liere K, Link G. Structure and expression characteristics of the chloroplast DNA region containing the split gene for tRNA(Gly) (UCC) from mustard (Sinapis alba L.). Curr Genet 1994; 26:557-63. [PMID: 7874753 DOI: 10.1007/bf00309950] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The mustard chloroplast gene trnG-UCC is split by a 717-bp group-II intron. Northern hybridization and RNase protection experiments suggest cotranscription with the upstream psbK-psbI operon, but not with the downstream trnR-UCU gene. The ends of most RNase-protected fragments between psbI and trnG correlate with the position of two potential stem-loop structures in this region, which could act as RNA processing elements. However, one RNA 5' end, approximately 75 bp upstream of the trnG 5' exon, does not so correlate and is preceded by prokaryotic-type '-10' and '-35' sequence elements. This suggests the possibility that a fraction of the trnG transcripts is initiated here. All precursor transcripts spanning the trnG region seem to have a common 3' end, which was located 117 bp downstream from the 3' exon, immediately after a stem-loop region. During seedling development, the major 0.8-0.9-kb trnG precursor transcripts show a transient maximum level at around 48 h after sowing, at a time when the mature tRNA begins to accumulate to constant levels. No significant differences in transcript patterns were observed either in the light or in darkness.
Collapse
Affiliation(s)
- K Liere
- Arbeitsgruppe Pflanzliche Zellphysiologie und Molekularbiologie, Fakultät für Biologie, Ruhr-Universität Bochum, Germany
| | | |
Collapse
|
26
|
Breiteneder H, Michalowski CB, Bohnert HJ. Environmental stress-mediated differential 3' end formation of chloroplast RNA-binding protein transcripts. PLANT MOLECULAR BIOLOGY 1994; 26:833-849. [PMID: 7999998 DOI: 10.1007/bf00028852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We report the characterization of transcripts from the halophyte, Mesembryanthemum crystallinum, encoding a protein with high homology to chloroplast RNA-binding proteins (cRBP). In this plant chloroplast-related functions are largely protected against salt stress. cRBP transcripts are derived from a single gene, Mc32crbp, although three size classes of polyadenylated mRNAs are detected. Transcription rate and steady state amounts of mRNA are developmentally regulated and light controlled with strong transcriptional activity as functional chloroplasts are established, and with lower maintenance activity thereafter. Upon salt stress, the rate of transcription decreases, although transcript levels increase. Accompanying stress, a change in the distribution of transcript size classes is observed as the longest transcript with an untranslated 3' end of 381 nucleotides increases relative to transcripts with shorter 3' ends. The long transcript is characterized by the presence of five sequence elements in the 3'-untranslated region that are present in cRBP mRNAs from a variety of plants, although not all elements are found in each mRNA. The results may indicate a mechanism by which mRNA levels of constitutively light-regulated genes may be modulated without enhanced transcription in response to environmental cues.
Collapse
Affiliation(s)
- H Breiteneder
- Department of Biochemistry, University of Arizona, Tucson 85721
| | | | | |
Collapse
|
27
|
Richard M, Tremblay C, Bellemare G. Chloroplastic genomes of Ginkgo biloba and Chlamydomonas moewusii contain a chlB gene encoding one subunit of a light-independent protochlorophyllide reductase. Curr Genet 1994; 26:159-65. [PMID: 8001171 DOI: 10.1007/bf00313805] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have cloned and sequenced a Chlamydomonas moewusii chloroplastic DNA fragment that includes a 563 amino-acid open reading frame (ORF563, chlB) presenting 89% amino-acid homology with ORF513 from Marchantia polymorpha. It is also homologous to ORF510 from Pinus thunbergii but includes two insertions absent in both M. polymorphia and P. thunbergii. The derived polypeptide is 54% similar to the product of bchB from Rhodobacter capsulatus, identified as one subunit of a light-independent NADH-protochlorophyllide reductase. We also isolated and sequenced an homologous chloroplastic gene from the gymnosperm Ginkgo biloba. Northern hybridizations performed on RNA isolated from synchronized Chlamydomonas eugametos cells showed higher expression between the tenth hour of light and the eighth hour of darkness, peaking during the first 2 h of darkness.
Collapse
Affiliation(s)
- M Richard
- Département de Biochimie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
| | | | | |
Collapse
|
28
|
Affiliation(s)
- G Link
- University of Bochum, Plant Cell Physiology and Molecular Biology, FRG
| |
Collapse
|
29
|
Blowers AD, Klein U, Ellmore GS, Bogorad L. Functional in vivo analyses of the 3' flanking sequences of the Chlamydomonas chloroplast rbcL and psaB genes. MOLECULAR & GENERAL GENETICS : MGG 1993; 238:339-49. [PMID: 8388079 DOI: 10.1007/bf00291992] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Possible roles of untranslated sequences at the 3' ends of chloroplast genes, which include inverted repeat elements, were investigated in Chlamydomonas reinhardtii in vivo. Chlamydomonas chloroplast rbcL or psaB 3' flanking regions were coupled in various arrangements 3' to a chimeric gene consisting of a Chlamydomonas chloroplast atpB promoter sequence fused 5' to the Escherichia coli uidA (GUS) structural gene. These genes were introduced into the Chlamydomonas chloroplast genome at the same location by homologous recombination following microprojectile bombardment. Transformants harboring chimeric GUS genes fused to rbcL or psaB gene 3' inverted repeat sequences in their normal forward orientations accumulated GUS transcripts of a single size, whereas GUS transcripts of heterogenous sizes accumulated in transformants harboring the same gene lacking an inverted repeat sequence at its 3' end. Thus, the 3' flanking regions of the rbcL and psaB genes can define the location of the 3' terminus of a transcript in vivo. In chloroplast transformants harboring chimeric GUS genes fused to multiple inverted repeat sequences in their normal forward orientations, only GUS transcripts accumulated that were terminated by the first inverted repeat sequence. The latter data suggest that the 3' ends of these RNAs are the products of either transcription termination or endonucleolytic cleavage. Analyses of GUS transcripts in transformants harboring GUS genes terminated by rbcL or psaB gene 3' flanking regions in reversed orientations indicate that transcript 3' end formation in vivo requires nucleotide sequences located outside the inverted repeat elements. Inasmuch as decay rates of GUS transcripts were found to be independent of the presence of a 3' inverted repeat sequence, RNA stabilization does not appear to be a major in vivo function of these elements in the Chlamydomonas chloroplast transcripts studied.
Collapse
Affiliation(s)
- A D Blowers
- Department of Cellular and Developmental Biology, Harvard University, Cambridge, MA 02138
| | | | | | | |
Collapse
|
30
|
Salvador ML, Klein U, Bogorad L. 5' sequences are important positive and negative determinants of the longevity of Chlamydomonas chloroplast gene transcripts. Proc Natl Acad Sci U S A 1993; 90:1556-60. [PMID: 8434017 PMCID: PMC45913 DOI: 10.1073/pnas.90.4.1556] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We have found that sequences in the 5' leader of the Chlamydomonas chloroplast rbcL gene, when fused 5' to foreign genes, destabilize transcripts of these chimeric genes in the chloroplast of transgenic Chlamydomonas but that 5' sequences of the rbcL structural gene prevent this destabilization. Transcripts of the chloroplast rbcL gene are about equally abundant at all times in Chlamydomonas reinhardtii growing on an alternating 12-h light/12-h dark cycle. However, Chlamydomonas chloroplast transformants, harboring chimeric genes containing the same rbcL promoter with 63 or 92 bp of the rbcL 5' leader sequence fused upstream of the Escherichia coli uidA (beta-glucuronidase, GUS) gene, accumulated GUS transcripts only in the dark. Transcripts disappeared rapidly upon illumination of the cells. The same phenomenon was exhibited by transcripts of chimeric genes in which the GUS gene coding sequence was replaced by other unrelated genes. The precipitous light-induced drop in GUS transcript abundance was found to be due to an approximately 16-fold increase in the rate of degradation of GUS transcripts in light rather than to a decrease in the rate of transcription of the GUS gene. Transcripts of a chimeric rbcL-GUS construct in which the leader sequence of the rbcL gene was replaced by 103 bp of the leader sequence of the atpB gene were stable in illuminated cells. The destabilizing effect of the rbcL 5' leader sequence was reversed by adding 257 bp of the 5' coding region of the rbcL gene. The results show that chloroplast transcript levels in illuminated Chlamydomonas cells--and perhaps in other cases--can be determined, at least to some extent, by sequences and interactions of sequences transcribed from the 5' ends of genes.
Collapse
Affiliation(s)
- M L Salvador
- Biological Laboratories, Harvard University, Cambridge, MA 02138
| | | | | |
Collapse
|
31
|
Tiller K, Link G. Sigma-like transcription factors from mustard (Sinapis alba L.) etioplast are similar in size to, but functionally distinct from, their chloroplast counterparts. PLANT MOLECULAR BIOLOGY 1993; 21:503-513. [PMID: 8443343 DOI: 10.1007/bf00028807] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Three proteins resembling bacterial sigma factors were previously isolated from mustard chloroplasts (K. Tiller, A. Eisermann and G. Link, Eur J Biochem 198: 93-99, 1991). These sigma-like factors (SLFs) confer DNA-binding and transcription specificity to a system consisting of Escherichia coli core RNA polymerase and cloned DNA regions that carry a chloroplast promoter. Sigma-like activity was now isolated also from etioplasts and could be assigned to three polypeptides of M(r) 67,000 (SLF67), 52,000 (SLF52) and 29,000 (SLF29), i.e. the same sizes as for the chloroplast SLFs. The purification scheme for the factors from either plastid type included an initial heparin-Sepharose and a final gel filtration step. For the etioplast factors, however, an additional phosphocellulose step was required to release these polypeptides from the RNA polymerase. The etioplast SLFs have similar, but not identical, salt requirements for DNA binding as compared to their chloroplast counterparts. Under conditions of maximum binding activity there is overall preference of etioplast SLFs for the psbA promoter over the trnQ and rps16 promoters.
Collapse
Affiliation(s)
- K Tiller
- University of Bochum, Plant Cell Physiology and Molecular Biology, Germany
| | | |
Collapse
|
32
|
Ye L, Sugiura M. Domains required for nucleic acid binding activities in chloroplast ribonucleoproteins. Nucleic Acids Res 1992; 20:6275-9. [PMID: 1475188 PMCID: PMC334516 DOI: 10.1093/nar/20.23.6275] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Five ribonucleoproteins (or RNA-binding proteins) from tobacco chloroplasts have been identified to date; each of these contains an acidic N-terminal domain (24-64 amino acids) and two conserved RNA-binding domains (82-83 amino acids). All five ribonucleoproteins can bind to ssDNA and dsDNA but show high specificity for poly(G) and poly(U). Here we present the nucleic acid binding activity of each domain using a series of deletion mutant proteins made in vitro from the chloroplast 29 kDa ribonucleoproteins. The acidic domain does not have a positive effect on binding activities and proteins lacking this domain show higher affinities for nucleic acids than the wild-type proteins. Mutant proteins containing single RNA-binding domains can bind to poly(G) and poly(U), though with lower affinities than proteins containing two RNA-binding domains. The spacer region (11-37 amino acids) between the two RNA-binding domains does not interact with poly(G) or poly(U) by itself, but is required for the additive activity of the two RNA-binding domains. Proteins consisting of two RNA-binding domains but lacking the spacer have the same activity as those containing only one RNA-binding domain. Possible roles for each domain in chloroplast ribonucleoproteins are discussed.
Collapse
Affiliation(s)
- L Ye
- Center for Gene Research, Nagoya University, Japan
| | | |
Collapse
|
33
|
Monod C, Goldschmidt-Clermont M, Rochaix JD. Accumulation of chloroplast psbB RNA requires a nuclear factor in Chlamydomonas reinhardtii. ACTA ACUST UNITED AC 1992; 231:449-59. [PMID: 1371579 DOI: 10.1007/bf00292715] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We have isolated and characterized a nuclear mutant, 222E, in Chlamydomonas reinhardtii, which is defective in photosystem II (PSII). Polypeptide P5, the product of psbB, is not produced in this mutant, leading to a destabilization of other PSII components. The mutant specifically fails to accumulate psbB transcripts and displays an altered transcription pattern downstream of psbB. Pulse-labelling experiments suggest that mRNA stability and/or processing are affected by the alteration of a nuclear gene product in this mutant. We show that the C. reinhardtii psbB gene is co-transcribed with a small open reading frame that is highly conserved in location and amino acid sequence in land plants. The 5' and 3' termini of the psbB transcript have been mapped to 35 bases upstream of the initiation codon and approximately 600 bases downstream of the stop codon. The 3' flanking region contains two potential stem-loops, of which the larger (with an estimated free energy of -46 kcal) is near the 3' terminus of the transcript.
Collapse
Affiliation(s)
- C Monod
- Department of Molecular Biology, University of Geneva, Switzerland
| | | | | |
Collapse
|
34
|
|