1
|
Eckert C, Xu W, Xiong W, Lynch S, Ungerer J, Tao L, Gill R, Maness PC, Yu J. Ethylene-forming enzyme and bioethylene production. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:33. [PMID: 24589138 PMCID: PMC3946592 DOI: 10.1186/1754-6834-7-33] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/13/2014] [Indexed: 05/03/2023]
Abstract
Worldwide, ethylene is the most produced organic compound. It serves as a building block for a wide variety of plastics, textiles, and chemicals, and a process has been developed for its conversion into liquid transportation fuels. Currently, commercial ethylene production involves steam cracking of fossil fuels, and is the highest CO2-emitting process in the chemical industry. Therefore, there is great interest in developing technology for ethylene production from renewable resources including CO2 and biomass. Ethylene is produced naturally by plants and some microbes that live with plants. One of the metabolic pathways used by microbes is via an ethylene-forming enzyme (EFE), which uses α-ketoglutarate and arginine as substrates. EFE is a promising biotechnology target because the expression of a single gene is sufficient for ethylene production in the absence of toxic intermediates. Here we present the first comprehensive review and analysis of EFE, including its discovery, sequence diversity, reaction mechanism, predicted involvement in diverse metabolic modes, heterologous expression, and requirements for harvesting of bioethylene. A number of knowledge gaps and factors that limit ethylene productivity are identified, as well as strategies that could guide future research directions.
Collapse
Affiliation(s)
- Carrie Eckert
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70503, USA
| | - Wei Xiong
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA
| | - Sean Lynch
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Justin Ungerer
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA
| | - Ling Tao
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA
| | - Ryan Gill
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Pin-Ching Maness
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA
| | - Jianping Yu
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA
| |
Collapse
|
2
|
Qu Y, Shi S, Ma Q, Kong C, Zhou H, Zhang X, Zhou J. Multistep Conversion of para-Substituted Phenols by Phenol Hydroxylase and 2,3-Dihydroxybiphenyl 1,2-Dioxygenase. Appl Biochem Biotechnol 2013; 169:2064-75. [DOI: 10.1007/s12010-013-0112-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/14/2013] [Indexed: 10/27/2022]
|
3
|
Jeanjean R, Talla E, Latifi A, Havaux M, Janicki A, Zhang CC. A large gene cluster encoding peptide synthetases and polyketide synthases is involved in production of siderophores and oxidative stress response in the cyanobacterium Anabaena sp. strain PCC 7120. Environ Microbiol 2008; 10:2574-85. [PMID: 18557768 DOI: 10.1111/j.1462-2920.2008.01680.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) are necessary for the production of a variety of secondary metabolites, such as siderophores involved in iron acquisition. In response to iron limitation, the cyanobacterium Anabaena sp. strain PCC 7120 synthesizes several siderophores. The chromosome of this organism contains a large gene cluster of 76 kb with 24 open-reading frames from all2658 to all2635, including those that encode seven NRPSs and two PKSs. The function of this gene cluster was unknown, and one possibility could be the synthesis of siderophores. These genes were indeed activated under conditions of iron limitation. One mutant, MDelta41-49, bearing a large deletion of 43.4 kb in this gene cluster, synthesized considerably less siderophores and contained less iron as compared with the wild type. Its growth rate was similar to the wild type in the presence of iron, but was reduced when iron became limiting. Two other mutants, MDelta44-45 and MDelta47-49, lacking either all2644 and all2645, or all2647, all2648 and all2649 respectively, produced more siderophores than MDelta41-49, but less than the wild type. These genes were also activated under oxidative stress conditions to which MDelta41-49 was highly sensitive, consistent with the importance of iron in oxidative stress response. We propose that this gene cluster is involved in the synthesis of siderophores in Anabaena sp. PCC 7120 and plays an important role in defence against oxidative stress.
Collapse
Affiliation(s)
- Robert Jeanjean
- Université de la Méditerranée and Laboratoire de Chimie Bactérienne, CNRS-UPR9043, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France
| | | | | | | | | | | |
Collapse
|
4
|
Grimm B. Identification of a hemA gene from Synechocystis by complementation of an E. coli hemA mutant. Hereditas 2008; 117:195-7. [PMID: 1459859 DOI: 10.1111/j.1601-5223.1992.tb00174.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- B Grimm
- Carlsberg Laboratory, Department of Physiology, Copenhagen-Valby, Denmark
| |
Collapse
|
5
|
Abstract
This review is concerned specifically with the structures and biosynthesis of hemes in E. coli and serovar Typhimurium. However, inasmuch as all tetrapyrroles share a common biosynthetic pathway, much of the material covered here is applicable to tetrapyrrole biosynthesis in other organisms. Conversely, much of the available information about tetrapyrrole biosynthesis has been gained from studies of other organisms, such as plants, algae, cyanobacteria, and anoxygenic phototrophs, which synthesize large quantities of these compounds. This information is applicable to E. coli and serovar Typhimurium. Hemes play important roles as enzyme prosthetic groups in mineral nutrition, redox metabolism, and gas-and redox-modulated signal transduction. The biosynthetic steps from the earliest universal precursor, 5-aminolevulinic acid (ALA), to protoporphyrin IX-based hemes constitute the major, common portion of the pathway, and other steps leading to specific groups of products can be considered branches off the main axis. Porphobilinogen (PBG) synthase (PBGS; also known as ALA dehydratase) catalyzes the asymmetric condensation of two ALA molecules to form PBG, with the release of two molecules of H2O. Protoporphyrinogen IX oxidase (PPX) catalyzes the removal of six electrons from the tetrapyrrole macrocycle to form protoporphyrin IX in the last biosynthetic step that is common to hemes and chlorophylls. Several lines of evidence converge to support a regulatory model in which the cellular level of available or free protoheme controls the rate of heme synthesis at the level of the first step unique to heme synthesis, the formation of GSA by the action of GTR.
Collapse
|
6
|
Tsang EWT, Hu Z, Chang Q, McGregor DI, Keller WA. Expression of a Brassic napus glutamate 1-semialdehyde aminotransferase in Escherichia coli and characterization of the recombinant protein. Protein Expr Purif 2003; 29:193-201. [PMID: 12767809 DOI: 10.1016/s1046-5928(03)00010-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutamate 1-semialdehyde aminotransferase (GSA-AT) is a key regulatory enzyme, which converts glutamate 1-semialdehyde (GSA) to 5-aminolevulinic acid (ALA) in chlorophyll biosynthesis. ALA is the universal precursor for the synthesis of chlorophyll, heme, and other tetrapyrroles. To study the regulation of chlorophyll biosynthesis in Brassica napus, two cDNA clones of GSA-AT were isolated for genetic manipulation. A SalI-XbaI fragment from one of the two cDNA clones of GSA-AT was used for recombinant protein expression by inserting it at the 3' end of a calmodulin-binding-peptide (CBP) tag of the pCaln vector. The CBP tagged recombinant protein, expressed in Escherichia coli, was purified to apparent homogeneity in a one step purification process using a calmodulin affinity column. The purified CBP tagged GSA-AT is biologically active and has a specific activity of 16.6 nmol/min/mg. Cleavage of the CBP tag from the recombinant protein with thrombin resulted in 9.2% loss of specific activity. However, removal of the cleaved CBP tag from the recombinant protein solution resulted in 60% loss of specific activity, suggesting possible interactions between the recombinant protein and the CBP tag. The enzyme activity of the CBP tagless recombinant protein, referred as TR-GSA-AT hereafter, was not affected by the addition of pyridoxamine 5' phosphate (PMP). Addition of glutamate and pyridoxal 5' phosphate (PLP) to the TR-GSA-AT enhanced the enzyme activity by 3-fold and 3.6-fold, respectively. Addition of both glutamate and PLP increased the enzyme activity by 4.6-fold. Similar to the GSA-AT of B. napus, the active TR-GSA-AT is a dimeric protein of 88 kDa with 45.5 kDa subunits. As the SalI-XbaI fragment encodes a biologically active GSA-AT that has the same molecular mass as the native GSA-AT, it is concluded that the SalI-XbaI fragment is the coding sequence of GSA-AT. The highly active polyclonal antibodies generated from TR-GSA-AT were used for the detection of GSA-AT of B. napus.
Collapse
Affiliation(s)
- Edward W T Tsang
- Plant Biotechnology Institute, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan, Canada S7N 0W9.
| | | | | | | | | |
Collapse
|
7
|
Takahama K, Matsuoka M, Nagahama K, Ogawa T. Construction and analysis of a recombinant cyanobacterium expressing a chromosomally inserted gene for an ethylene-forming enzyme at the psbAI locus. J Biosci Bioeng 2003; 95:302-5. [PMID: 16233410 DOI: 10.1016/s1389-1723(03)80034-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2002] [Accepted: 10/23/2002] [Indexed: 11/16/2022]
Abstract
The coding sequence of a gene for a Pseudomonas syringae ethylene-forming enzyme was inserted at the psbAI locus in a cyanobacterium, Synechococcus elongatus PCC 7942 via rps12-mediated gene replacement. The recombinant strain photoautotrophically produced ethylene at 451 nl ml(-1) h(-1) OD730(-1), but showed a depressed specific growth rate as well as a yellow-green phenotype indicating a severe metabolic stress. The rate of ethylene production in the recombinant culture decreased as a result of competition with faster growing ethylene-non-forming mutants that carried short nucleotide insertions within the coding sequence of the gene for the ethylene-forming enzyme.
Collapse
Affiliation(s)
- Kazutaka Takahama
- Department of Applied Microbial Technology, Faculty of Engineering, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | | | | | | |
Collapse
|
8
|
Nishikawa S, Murooka Y. 5-Aminolevulinic acid: production by fermentation, and agricultural and biomedical applications. Biotechnol Genet Eng Rev 2002; 18:149-70. [PMID: 11530687 DOI: 10.1080/02648725.2001.10648012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- S Nishikawa
- New Products & Technology Laboratory, Cosmo Research Institute, 1134-2 Gongendo, Satte, Saitama 340-01931, Japan
| | | |
Collapse
|
9
|
Bishop K, Gough K, Mahoney S, Smith A, Rogers L. Synechococcus mutants resistant to an enamine mechanism inhibitor of glutamate-1-semialdehyde aminotransferase. FEBS Lett 1999; 450:57-60. [PMID: 10350057 DOI: 10.1016/s0014-5793(99)00465-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
An enamine mechanism-based inactivator of mammalian delta-aminobutyric acid aminotransferase, 4-amino 5-fluoropentanoic acid is a potent inhibitor of cell growth and pigment formation in the cyanobacterium Synechococcus PCC 6301. It was demonstrated that 4-amino 5-fluoropentanoic acid inhibits the aminolaevulinate synthesis at glutamate 1-semialdehyde aminotransferase and that in the mutant obtained by exposing cells to 40 microM 4-amino 5-fluoropentanoic acid, this enzyme was insensitive to the inhibitor. The specific activity of glutamate 1-semialdehyde aminotransferase in cell extracts was lower in the mutant, although the cell growth rate was unaffected. The decrease in sensitivity to 4-amino 5-fluoropentanoic acid in the mutant is due to a structural gene mutation, a single base change in the hemL gene resulting in a S162T substitution in the gene product.
Collapse
Affiliation(s)
- K Bishop
- Institute of Biological Sciences, University of Wales, Aberystwyth, Penglais, UK
| | | | | | | | | |
Collapse
|
10
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
11
|
Kafala B, Sasarman A. Isolation of the Staphylococcus aureus hemCDBL gene cluster coding for early steps in heme biosynthesis. Gene X 1997; 199:231-9. [PMID: 9358061 DOI: 10.1016/s0378-1119(97)00372-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have recently reported [Kafala, B., Sasarman, A., 1994. Can. J. Microbiol. 40, 651 657] the cloning and sequencing of the Staphylococcus aureus hemB gene. This gene purportedly encodes the delta-aminolevulinic acid dehydratase of the heme pathway. In this present communication, we report the sequences and identities of three putative hem genes. Two of these genes are located immediately upstream from hemB. Complementation analysis of Escherichia coli and Salmonella typhimurium hemC and hemD mutants and the comparison of the Sa nucleotide sequences with those of Bacillus subtilis and Ec showed that these two open reading frames, ORF1 and ORF2, are likely to be the hemC gene coding for porphobilinogen deaminase and the hemD gene coding for uroporphyrinogen III synthase, respectively. The third hem gene, hemL, is located immediately downstream of hemB, and encodes glutamate 1-semialdehyde 2,1-aminotransferase. Sequencing of the region which extends past hemL indicates that no further hem genes are located downstream of hemL. In Sa, hemC, hemD, hemB and hemL are proposed to constitute a hem cluster encoding enzymes required for the synthesis of uroporphyrinogen III from glutamate 1-semialdehyde (GSA).
Collapse
Affiliation(s)
- B Kafala
- Department of Microbiology and Immunology, Université de Montréal, Québec, Canada.
| | | |
Collapse
|
12
|
Cummings NJ, Connerton IF. The Bacillus subtilis 168 chromosome from sspE to katA. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 6):1855-1859. [PMID: 9202460 DOI: 10.1099/00221287-143-6-1855] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have cloned and sequenced a 24.5 kb region of the Bacillus subtilis 168 chromosome spanning the sspE and katA genes. The region contains a ribosomal RNA operon, rrnD, a tRNA gene set, trnD and 17 ORFs, 16 with putative ribosome-binding sites. Four of the ORFs (ORF2, ORF14, ORF16 and ORF17) match to known B. subtilis genes (sspE, thiA, senS and katA). Eight of the remaining ORF products show similarities with proteins present in the databases, including an ATP-binding transport protein, a glutamate-1-semialdehyde aminotransferase, a thiol-specific antioxidant protein, a mitomycin radical oxidase and a ferric uptake regulation protein.
Collapse
Affiliation(s)
- N J Cummings
- Department of Food Macromolecular Science, Institute of Food Research, Earley Gate, Whiteknights Road, Reading RG6 6BZ, UK
| | - I F Connerton
- Department of Food Macromolecular Science, Institute of Food Research, Earley Gate, Whiteknights Road, Reading RG6 6BZ, UK
| |
Collapse
|
13
|
Hennig M, Grimm B, Contestabile R, John RA, Jansonius JN. Crystal structure of glutamate-1-semialdehyde aminomutase: an alpha2-dimeric vitamin B6-dependent enzyme with asymmetry in structure and active site reactivity. Proc Natl Acad Sci U S A 1997; 94:4866-71. [PMID: 9144156 PMCID: PMC24597 DOI: 10.1073/pnas.94.10.4866] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The three-dimensional structure of glutamate-1-semialdehyde aminomutase (EC 5.4.3.8), an alpha2-dimeric enzyme from Synechococcus, has been determined by x-ray crystallography using heavy atom derivative phasing. The structure, refined at 2.4-A resolution to an R-factor of 18.7% and good stereochemistry, explains many of the enzyme's unusual specificity and functional properties. The overall fold is that of aspartate aminotransferase and related B6 enzymes, but it also has specific features. The structure of the complex with gabaculine, a substrate analogue, shows unexpectedly that the substrate binding site involves residues from the N-terminal domain of the molecule, notably Arg-32. Glu-406 is suitably positioned to repel alpha-carboxylic acids, thereby suggesting a basis for the enzyme's reaction specificity. The subunits show asymmetry in cofactor binding and in the mobilities of the residues 153-181. In the unliganded enzyme, one subunit has the cofactor bound as an aldimine of pyridoxal phosphate with Lys-273 and, in this subunit, residues 153-181 are disordered. In the other subunit in which the cofactor is not covalently bound, residues 153-181 are well defined. Consistent with the crystallographically demonstrated asymmetry, a form of the enzyme in which both subunits have pyridoxal phosphate bound to Lys-273 through a Schiff base showed biphasic reduction by borohydride in solution. Analysis of absorption spectra during reduction provided evidence of communication between the subunits. The crystal structure of the reduced form of the enzyme shows that, despite identical cofactor binding in each monomer, the structural asymmetry at residues 153-181 remains.
Collapse
Affiliation(s)
- M Hennig
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
14
|
Palmieri G, Di Palo M, Scaloni A, Orru S, Marino G, Sannia G. Glutamate-1-semialdehyde aminotransferase from Sulfolobus solfataricus. Biochem J 1996; 320 ( Pt 2):541-5. [PMID: 8973563 PMCID: PMC1217962 DOI: 10.1042/bj3200541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glutamate-1-semialdehyde aminotransferase (GSA-AT) from the extremely thermophilic bacterium Sulfolobus solfataricus has been purified to homogeneity and characterized. GSA-AT is the last enzyme in the C5 pathway for the conversion of glutamate into the tetrapyrrole precursor delta-aminolaevulinate (ALA) in plants, algae and several bacteria. The active form of GSA-AT from S. solfataricus seems to be a homodimer with a molecular mass of 87 kDa. The absorption spectrum of the purified aminotransferase is indicative of the presence of pyridoxamine 5'-phosphate (PMP) cofactor, and the catalytic activity of the enzyme is further stimulated by addition of PMP. 3-Amino-2,3-dihydrobenzoic acid is an inhibitor of the aminotransferase activity. The N-terminal amino acid sequence of GSA-AT from S. solfataricus was found to share significant similarity with the eukaryotic and eubacterial enzymes. Evidence is provided that ALA synthesis in S. solfataricus follows the C5 pathway characteristic of plants, algae, cyanobacteria and many other bacteria.
Collapse
Affiliation(s)
- G Palmieri
- Dipartimento di Chimica Organica e Biologica, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Jahn D, Hungerer C, Troup B. Ungew�hnliche Wege und umweltregulierte Gene der bakteriellen H�mbiosynthese. Naturwissenschaften 1996. [DOI: 10.1007/bf01142065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Yang HS, Hoober JK. Divergent pathways for δ-aminolevulinic acid synthesis in two species ofArthrobacter. FEMS Microbiol Lett 1995. [DOI: 10.1111/j.1574-6968.1995.tb07948.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
17
|
Fujino E, Fujino T, Karita S, Sakka K, Ohmiya K. Cloning and sequencing of some genes responsible for porphyrin biosynthesis from the anaerobic bacterium Clostridium josui. J Bacteriol 1995; 177:5169-75. [PMID: 7665501 PMCID: PMC177302 DOI: 10.1128/jb.177.17.5169-5175.1995] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The 6.2-kbp DNA fragment encoding the enzymes in the porphyrin synthesis pathway of a cellulolytic anaerobe, Clostridium josui, was cloned into Escherichia coli and sequenced. This fragment contained four hem genes, hemA, hemC, hemD, and hemB, in order, which were homologous to the corresponding genes from E. coli and Bacillus subtilis. A typical promoter sequence was found only upstream of hemA, suggesting that these four genes were under the control of this promoter as an operon. The hemA and hemD genes cloned from C. josui were able to complement the hemA and hemD mutations, respectively, of E. coli. The COOH-terminal region of C. josui HemA and the NH2-terminal region of C. josui HemD were homologous to E. coli CysG (Met-1 to Leu-151) and to E. coli CysG (Asp-213 to Phe-454) and Pseudomonas denitrificans CobA, respectively. Furthermore, the cloned 6.2-kbp DNA fragment complemented E. coli cysG mutants. These results suggested that both C. josui hemA and hemD encode bifunctional enzymes.
Collapse
Affiliation(s)
- E Fujino
- School of Bioresources, Mie University, Tsu, Japan
| | | | | | | | | |
Collapse
|
18
|
Avissar YJ, Moberg PA. The common origins of the pigments of life-early steps of chlorophyll biosynthesis. PHOTOSYNTHESIS RESEARCH 1995; 44:221-242. [PMID: 24307093 DOI: 10.1007/bf00048596] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/1994] [Accepted: 03/30/1995] [Indexed: 06/02/2023]
Abstract
The complex pathway of tetrapyrrole biosynthesis can be dissected into five sections: the pathways that produce 5-aminolevulinate (the C-4 and the C-5 pathways), the steps that transform ALA to uroporphyrinogen III, which are ubiquitous in the biosynthesis of all tetrapyrroles, and the three branches producing specialized end products. These end products include corrins and siroheme, chlorophylls and hemes and linear tetrapyrroles. These branches have been subjects of recent reviews. This review concentrates on the early steps leading up to uroporphyrinogen III formation which have been investigated intensively in recent years in animals, in plants, and in a wide range of bacteria.
Collapse
Affiliation(s)
- Y J Avissar
- Department of Biology, Rhode Island College, 02908, Providence, RI, USA
| | | |
Collapse
|
19
|
Hungerer C, Troup B, Römling U, Jahn D. Regulation of the hemA gene during 5-aminolevulinic acid formation in Pseudomonas aeruginosa. J Bacteriol 1995; 177:1435-43. [PMID: 7883699 PMCID: PMC176757 DOI: 10.1128/jb.177.6.1435-1443.1995] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The general tetrapyrrole precursor 5-aminolevulinic acid is formed in bacteria via two different biosynthetic pathways. Members of the alpha group of the proteobacteria use 5-aminolevulinic acid synthase for the condensation of succinyl-coenzyme A and glycine, while other bacteria utilize a two-step pathway from aminoacylated tRNA(Glu). The tRNA-dependent pathway, involving the enzymes glutamyl-tRNA reductase (encoded by hemA) and glutamate-1-semialdehyde-2,1-aminomutase (encoded by hemL), was demonstrated to be used by Pseudomonas aeruginosa, Pseudomonas putida, Pseudomonas stutzeri, Comamonas testosteroni, Azotobacter vinelandii, and Acinetobacter calcoaceticus. To study the regulation of the pathway, the glutamyl-tRNA reductase gene (hemA) from P. aeruginosa was cloned by complementation of an Escherichia coli hemA mutant. The hemA gene was mapped to the SpeI A fragment and the DpnIL fragment of the P. aeruginosa chromosome corresponding to min 24.1 to 26.8. The cloned hemA gene, coding for a protein of 423 amino acids with a calculated molecular mass of 46,234 Da, forms an operon with the gene for protein release factor 1 (prf1). This translational factor mediates the termination of the protein chain at the ribosome at amber and ochre codons. Since the cloned hemA gene did not possess one of the appropriate stop codons, an autoregulatory mechanism such as that postulated for the enterobacterial system was ruled out. Three open reading frames of unknown function transcribed in the opposite direction to the hemA gene were found. hemM/orf1 and orf2 were found to be homologous to open reading frames located in the 5' region of enterobacterial hemA genes. Utilization of both transcription start sites was changed in a P. aeruginosa mutant missing the oxygen regulator Anr (Fnr analog), indicating the involvement of the transcription factor in hemA expression. DNA sequences homologous to one half of an Anr binding site were detected at one of the determined transcription start sites.
Collapse
Affiliation(s)
- C Hungerer
- Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität Marburg, Germany
| | | | | | | |
Collapse
|
20
|
Sasikala C, Ramana CV. Biotechnological potentials of anoxygenic phototrophic bacteria. II. Biopolyesters, biopesticide, biofuel, and biofertilizer. ADVANCES IN APPLIED MICROBIOLOGY 1995; 41:227-78. [PMID: 7572334 DOI: 10.1016/s0065-2164(08)70311-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- C Sasikala
- Department of Botany, Osmania University, Hyderabad, India
| | | |
Collapse
|
21
|
Pontoppidan B, Kannangara CG. Purification and partial characterisation of barley glutamyl-tRNA(Glu) reductase, the enzyme that directs glutamate to chlorophyll biosynthesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 225:529-37. [PMID: 7957167 DOI: 10.1111/j.1432-1033.1994.00529.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
5-Aminolevulinic acid for chlorophyll synthesis in greening barley is formed from glutamate. One of the steps involved in the conversion of glutamate to 5-aminolevulinic acid involves a reduction of glutamyl-tRNA(Glu) to glutamate 1-semialdehyde and tRNA(Glu). An enzyme catalysing this reduction was purified from the stroma of greening barley chloroplasts. An approximately 270-kDa protein composed of 54-kDa identical subunits was identified as the barley glutamyl-tRNA(Glu) reductase after purification by Sephacryl S-300, Cibacron Blue-Sepharose, 2'-5'-ADP-Sepharose, Mono S, Mini Q and Superose 12 chromatography. The sequence of 18 amino acids from the N-terminus of the reductase is 50% identical to a cDNA-deduced domain of the Arabidopsis thaliana hemA protein and encoded in a barley hemA cDNA sequence. This is an unequivocal demonstration that the glutamyl-tRNA(Glu) reductase subunit of higher plants is encoded in a hemA gene of the nuclear genome. Heme at 4 microM concentration or glutamate 1-semialdehyde at 200 microM caused a 50% inhibition of the reductase activity. Micromolar concentrations of Zn2+, Cu2+ and Cd2+ also inhibited barley glutamyl-tRNA(Glu) reductase.
Collapse
Affiliation(s)
- B Pontoppidan
- Carlsberg Laboratory, Department of Physiology, Copenhagen-Valby, Denmark
| | | |
Collapse
|
22
|
Höfgen R, Axelsen KB, Kannangara CG, Schüttke I, Pohlenz HD, Willmitzer L, Grimm B, von Wettstein D. A visible marker for antisense mRNA expression in plants: inhibition of chlorophyll synthesis with a glutamate-1-semialdehyde aminotransferase antisense gene. Proc Natl Acad Sci U S A 1994; 91:1726-30. [PMID: 8127872 PMCID: PMC43236 DOI: 10.1073/pnas.91.5.1726] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Glutamate 1-semialdehyde aminotransferase [(S)-4-amino-5-oxopentanoate 4,5-aminomutase, EC 5.4.3.8] catalyzes the last step in the conversion of glutamate to delta-aminolevulinate of which eight molecules are needed to synthesize a chlorophyll molecule. Two full-length cDNA clones that probably represent the homeologous Gsa genes of the two tobacco (Nicotiana tabacum) genomes have been isolated. The deduced amino acid sequences of the 468-residue-long precursor polypeptides differ by 10 amino acids. The cDNA sequence of isoenzyme 2 was inserted in reverse orientation under the control of a cauliflower mosaic virus 35S promoter derivative in an expression vector and was introduced by Agrobacterium-mediated transformation into tobacco plants. Antisense gene expression decreased the steady-state mRNA level of glutamate 1-semialdehyde aminotransferase, the translation of the enzyme, and chlorophyll synthesis. Remarkably, partial or complete suppression of the aminotransferase mimics in tobacco a wide variety of chlorophyll variegation patterns caused by nuclear or organelle gene mutations in different higher plants. The antisense gene is inherited as a dominant marker.
Collapse
Affiliation(s)
- R Höfgen
- Schering AG, Pflanzenschutzforschung, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Tong H, Davis L. 2-Amino-3-ketobutyrate-CoA ligase from beef liver mitochondria. Purification and partial sequence. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41742-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
24
|
Matters GL, Beale SI. Structure and light-regulated expression of the gsa gene encoding the chlorophyll biosynthetic enzyme, glutamate 1-semialdehyde aminotransferase, in Chlamydomonas reinhardtii. PLANT MOLECULAR BIOLOGY 1994; 24:617-629. [PMID: 8155881 DOI: 10.1007/bf00023558] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The gsa gene, which encodes glutamate 1-semialdehyde (GSA) aminotransferase (GSAT), an enzyme in the chlorophyll and heme biosynthetic pathway, has been cloned from Chlamydomonas reinhardtii by complementation of an Escherichia coli hemL mutant. The deduced C. reinhardtii GSAT amino acid sequence has a high degree of similarity to GSAT sequences from barley, tobacco, soybean and various prokaryotic sources. In vitro enzyme activity assays from E. coli transformed with the C. reinhardtii GSAT cDNA showed that higher levels of GSAT activity are associated with the expression of the cDNA insert. Analysis of changes in mRNA levels in light:dark synchronized C. reinhardtii cultures was done by northern blotting. The level of GSAT mRNA nearly doubled during the first 0.5 h in the light and increased over 26-fold after 2 h in the light. This increase is comparable to previously reported increases in GSAT activity in dark-grown cultures transferred to the light, and is the first report of induction by light of a gene encoding an ALA biosynthetic enzyme in plant or algal cells. The accumulation of GSAT mRNA follows the pattern of chlorophyll accumulation and the pattern of chlorophyll a/b-binding protein (cabII-1) mRNA accumulation in these cells, suggesting that the two genes may be regulated by light through a common mechanism. Additional evidence that the GSAT mRNA may be transcriptionally regulated by light is found in the genomic sequence of the gsa gene.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G L Matters
- Division of Biology and Medicine, Brown University, Providence, RI 02912
| | | |
Collapse
|
25
|
Jones MC, Jenkins JM, Smith AG, Howe CJ. Cloning and characterisation of genes for tetrapyrrole biosynthesis from the cyanobacterium Anacystis nidulans R2. PLANT MOLECULAR BIOLOGY 1994; 24:435-448. [PMID: 8123787 DOI: 10.1007/bf00024112] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The genes for 5-aminolevulinic acid dehydratase (ALAD) and uroporphyrinogen III synthase (UROS), two enzymes in the biosynthetic pathway for tetrapyrroles, were independently isolated from a plasmid-based genomic library of Anacystis nidulans R2 (also called Synechococcus sp. PCC7942), by their ability to complement Escherichia coli strains carrying mutations in the equivalent genes (hemB and hemD respectively). The identity of the genes was confirmed by comparing the appropriate enzyme activities in complemented and mutant strains. Subclones of the original plasmids that were also capable of complementing the mutants were sequenced. The inferred amino acid sequence of the cyanobacterial HemB protein indicates a significant difference in the metal cofactor requirement from the higher-plant enzymes, which was confirmed by overexpression and biochemical analysis. The organisation of the cyanobacterial hemD locus differs markedly from other prokaryotes. Two open reading frames were found immediately upstream of hemD. The product of one shows considerable similarity to published sequences from other organisms for uroporphyrinogen III methylase (UROM), an enzyme involved in the production of sirohaem and cobalamins (including vitamin B-12). The product of the other shows motifs which are similar to those found in proteins responsible for metabolic regulation in yeast and indicates that this family of transcription control proteins, which has previously been reported only from eukaryotes, is also represented in prokaryotes.
Collapse
Affiliation(s)
- M C Jones
- Department of Biochemistry, University of Cambridge, UK
| | | | | | | |
Collapse
|
26
|
Frustaci JM, O'Brian MR. The Escherichia coli visA gene encodes ferrochelatase, the final enzyme of the heme biosynthetic pathway. J Bacteriol 1993; 175:2154-6. [PMID: 8458858 PMCID: PMC204334 DOI: 10.1128/jb.175.7.2154-2156.1993] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
An Escherichia coli mutant with a disrupted visA gene was defective in ferrochelatase activity but expressed wild-type levels of protoporphyrinogen oxidase activity. The visA coding region was placed under the transcriptional control of T7 RNA polymerase in an E. coli expression system, and the product was expressed as a 38-kDa protein. The overexpressed protein was purified to near homogeneity and was found to contain ferrochelatase activity. The data show that the visA gene encodes ferrochelatase, and we propose that it be renamed hemH to reflect that conclusion.
Collapse
Affiliation(s)
- J M Frustaci
- Department of Biochemistry, State University of New York, Buffalo 14214
| | | |
Collapse
|
27
|
Murakami K, Hashimoto Y, Murooka Y. Cloning and characterization of the gene encoding glutamate 1-semialdehyde 2,1-aminomutase, which is involved in delta-aminolevulinic acid synthesis in Propionibacterium freudenreichii. Appl Environ Microbiol 1993; 59:347-50. [PMID: 8439165 PMCID: PMC202104 DOI: 10.1128/aem.59.1.347-350.1993] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The gene from Propionibacterium freudenreichii that encodes glutamate 1-semialdehyde 2,1-aminomutase (EC 5.4.3.8), which is involved in the C5 pathway for synthesis of delta-aminolevulinic acid (ALA), a precursor in heme and cobalamin biosynthesis, was cloned onto a multicopy plasmid, pUC18, via complementation of an ALA-deficient mutant (hemL) of Escherichia coli. Subcloning of fragments from the initial 3.3-kb chromosomal fragment allowed the isolation of a 1.9-kb fragment which could complement the hemL mutation. Nucleotide sequence analysis of the 1.9-kb DNA fragment revealed an open reading frame (ORF) that was located downstream from a potential ribosome-binding site. The ORF encoded a polypeptide of 441 amino acid residues, and the deduced molecular mass of this polypeptide is 45,932 Da. A high G+C content (70 mol%) of the codons of the ORF was found and was consistent with the taxonomic features of Propionibacterium species. The amino acid sequence showed a high degree of homology with those of the HemL proteins from other organisms, and a putative binding site for pyridoxal 5'-phosphate was conserved, with the exception of a single substitution of phenylalanine for leucine. These results suggest that ALA is synthesized via the C5 pathway in a producer of vitamin B12, P. freudenreichii.
Collapse
Affiliation(s)
- K Murakami
- Department of Fermentation Technology, Faculty of Engineering, Hiroshima University, Japan
| | | | | |
Collapse
|
28
|
Murakami K, Korbsrisate S, Asahara N, Hashimoto Y, Murooka Y. Cloning and characterization of the glutamate 1-semialdehyde aminomutase gene from Xanthomonas campestris pv. phaseoli. Appl Microbiol Biotechnol 1993; 38:502-6. [PMID: 7763385 DOI: 10.1007/bf00242945] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The gene from Xanthomonas campestris pv. phaseoli for glutamate 1-semialdehyde (GSA) aminomutase, which is involved in the C5 pathway for synthesis of delta-aminolevulinic acid (ALA), was cloned onto a multicopy plasmid, pUC18, by the complementation of an ALA-deficient mutant (hemL) of Escherichia coli. Subcloning of deletion fragments from the initial 3.5-kb chromosomal fragment allowed the isolation of a 1.7-kb fragment which could complement the hemL mutation. Nucleotide sequence analysis of the 1.7-kb DNA fragment revealed an open reading frame (ORF) that is located downstream from a potential promoter sequence and a ribosome-binding site. The ORF encodes a polypeptide of 429 amino acid residues, and the deduced molecular mass of this polypeptide is 45,043 Da. The amino acid sequence shows a high degree of homology to the HemL proteins from other organisms, and a putative binding site for pyridoxal 5'-phosphate is conserved.
Collapse
Affiliation(s)
- K Murakami
- Department of Fermentation Technology, Faculty of Engineering, Hiroshima University, Japan
| | | | | | | | | |
Collapse
|
29
|
|
30
|
Tandeau de Marsac N, Houmard J. Adaptation of cyanobacteria to environmental stimuli: new steps towards molecular mechanisms. FEMS Microbiol Lett 1993. [DOI: 10.1111/j.1574-6968.1993.tb05866.x] [Citation(s) in RCA: 270] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
31
|
Ikemi M, Murakami K, Hashimoto M, Murooka Y. Cloning and characterization of genes involved in the biosynthesis of delta-aminolevulinic acid in Escherichia coli. Gene X 1992; 121:127-32. [PMID: 1427085 DOI: 10.1016/0378-1119(92)90170-t] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Several mutants of Escherichia coli that had lost their ability to synthesize delta-aminolevulinic acid (ALA) via the C5 pathway were isolated. Their defective loci were classified into two groups, AlaA- and AlaB-. The genes that complemented these mutations were cloned. Nucleotide sequencing indicated that the gene that complemented AlaA- was identical to hemL which is located at 4 min on the E. coli chromosome and encodes glutamate 1-semialdehyde aminotransferase. The gene complementing AlaB- contained an open reading frame (ORF) encoding a polypeptide of 207 amino acids that was found to be a new gene involved in the synthesis of ALA via the C5 pathway. Thus, we designated the gene hemM. The hemM gene was adjacent to hemA that is located at 27 min and previously thought to encode glutamyl-tRNA dehydrogenase. However, we found that hemA complemented both the AlaA- (hemL) and AlaB- (hemM) mutants defective in the C5 pathway although the transformants showed small colonies on the selective medium without ALA. These results suggest that hemA is not involved in the C5 pathway, but controls a second, minor pathway for the synthesis of ALA.
Collapse
Affiliation(s)
- M Ikemi
- Biochemistry Department, Denki Kagaku Kogyo Co. Ltd., Tokyo, Japan
| | | | | | | |
Collapse
|
32
|
Grimm B, Smith MA, von Wettstein D. The role of Lys272 in the pyridoxal 5-phosphate active site of Synechococcus glutamate-1-semialdehyde aminotransferase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 206:579-85. [PMID: 1597195 DOI: 10.1111/j.1432-1033.1992.tb16962.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glutamate-1-semialdehyde (GSA) aminotransferase catalyzes transfer of the C2 amino group of glutamate 1-semialdehyde to the C1 position to yield the tetrapyrrole precursor 5-aminolevulinate. Based on spectrophotometric and steady-state data, GSA aminotransferase is a B6-containing enzyme which uses a ping-pong bi-bi mechanism described for other aminotransferases. A putative active-site lysine at position 272 of Synechococcus GSA aminotransferase was replaced by Arg, Ile or Glu, and genes encoding the corresponding three site directed mutants were expressed in Escherichia coli. The catalytic competence of the resulting enzymes was determined. The similarity of the absorbance spectra of pyridoxal-P-treated forms of Lys272----Arg, Lys272----Ile, Lys272----Glu with free pyridoxal-P indicates that enzyme-bound pyridoxal-P does not form an internal aldimine in in these three site-directed mutants. Whereas Lys----Ile and Lys----Glu form only stable ketimines and aldimines with GSA and its analogues, addition of these compounds to the pyridoxamine-P and pyridoxal-P forms of Lys----Arg induces slow spectral changes, indicating the catalysis of a half-reaction with GSA, 4,5-dioxovalerate and 4,5-diaminovalerate. 5-Aminolevulinate apparently binds with both coenzyme forms of Lys272----Arg, however significant tautomeric rearrangement is only observed with the pyridoxal-P form. It is suggested that Lys272 is the covalent pyridoxal-P-binding site and that this catalytically active lysine residue channels the overall transamination reaction towards 5-aminolevulinate. The second-half reaction (4,5-diaminovalerate in equilibrium with 5-aminolevulinate) is possibly supported by the formation of an internal aldimine which correctly positions the C4 amino group of 4,5-diaminovalerate relative to the enzyme-bound pyridoxal-P.
Collapse
Affiliation(s)
- B Grimm
- Department of Physiology, Carlsberg Laboratory, Copenhagen Valby, Denmark
| | | | | |
Collapse
|
33
|
Xu K, Delling J, Elliott T. The genes required for heme synthesis in Salmonella typhimurium include those encoding alternative functions for aerobic and anaerobic coproporphyrinogen oxidation. J Bacteriol 1992; 174:3953-63. [PMID: 1317844 PMCID: PMC206104 DOI: 10.1128/jb.174.12.3953-3963.1992] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Insertion mutagenesis has been used to isolate Salmonella typhimurium strains that are blocked in the conversion of 5-aminolevulinic acid (ALA) to heme. These mutants define the steps of the heme biosynthetic pathway after ALA. Insertions were recovered at five unlinked loci: hemB, hemCD, and hemE, which have been mapped previously in S. typhimurium, and hemG and hemH, which have been described only for Escherichia coli. No other simple hem mutants were found. However, double mutants are described that are auxotrophic for heme during aerobic growth and fail to convert coproporphyrinogen III to protoporphyrinogen IX. These mutant strains are defective in two genes, hemN and hemF. Single mutants defective only in hemN require heme for anaerobic growth on glycerol plus nitrate but not for aerobic growth on glycerol. Mutants defective only in hemF have no apparent growth defect. We suggest that these two genes encode alternative forms of coproporphyrinogen oxidase. Anaerobic heme synthesis requires hemN function, while either hemN or hemF is sufficient for aerobic heme synthesis. These phenotypes are consistent with the requirement of a well-characterized class of coproporphyrinogen oxidase for molecular oxygen.
Collapse
Affiliation(s)
- K Xu
- Department of Microbiology, University of Alabama, Birmingham 35294
| | | | | |
Collapse
|
34
|
Jahn D, Verkamp E, Söll D. Glutamyl-transfer RNA: a precursor of heme and chlorophyll biosynthesis. Trends Biochem Sci 1992; 17:215-8. [PMID: 1502723 DOI: 10.1016/0968-0004(92)90380-r] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In green plants, archaebacteria and many eubacteria, the porphyrin ring that is common to both chlorophyll and heme is synthesized from 5-aminolevulinic acid (ALA) via an interesting pathway. This two-step process involves the unusual enzymes glutamyl-tRNA reductase and glutamate-1-semialdehyde 2,1-aminomutase. Interest in this pathway has increased since it was discovered that a tRNA cofactor was required for the formation of ALA. This tRNA(Glu) is common to the biosyntheses of both porphyrins and proteins.
Collapse
Affiliation(s)
- D Jahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | | | | |
Collapse
|
35
|
Friedmann HC, Duban ME, Valasinas A, Frydman B. The enantioselective participation of (S)- and (R)-diaminovaleric acids in the formation of delta-aminolevulinic acid in cyanobacteria. Biochem Biophys Res Commun 1992; 185:60-8. [PMID: 1599490 DOI: 10.1016/s0006-291x(05)80955-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although it is recognized that 4,5-diaminovaleric acid, formed from glutamate 1-semialdehyde, functions as the intermediate in the last step of delta-aminolevulinic acid formation from glutamate, the enantioselectivity of the participating glutamate 1-semialdehyde aminotransferase for 4,5-diaminovaleric acid has remained unknown. In the present work the involvement of (S)- and (R)-4,5-diaminovaleric acids, newly available by organic synthesis, was investigated, using glutamate 1-semialdehyde aminotransferase from Synechococcus. The preferred enantiomer was (S)-4,5-diaminovalerate. In experiments on the transformation of (S)-4,5-diaminovalerate to delta-aminolevulinate it was found that glutamate 1-semialdehyde aminotransferase was unusual among aminotransferases in that the common amino acceptors pyruvate, oxaloacetate, alpha-ketoglutarate were inactive, while 4,5-dioxovaleric acid could be utilized as a sluggish amino acceptor in place of glutamate 1-semialdehyde. In conclusion, glutamate 1-semialdehyde aminotransferase is highly but not absolutely enantioselective for (S)-4,5-diaminovaleric acid, and 4,5-dioxovaleric acid can function as amino acceptor not because of a physiological role in the C5 pathway of delta-aminolevulinic acid formation, but because of its structural resemblance to glutamate 1-semialdehyde.
Collapse
Affiliation(s)
- H C Friedmann
- Department of Biochemistry and Molecular Biology, University of Chicago, IL 60637
| | | | | | | |
Collapse
|
36
|
Smith MA, Grimm B. Gabaculine resistance of Synechococcus glutamate 1-semialdehyde aminotransferase. Biochemistry 1992; 31:4122-7. [PMID: 1567858 DOI: 10.1021/bi00131a031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glutamate 1-semialdehyde aminotransferase (GSA-AT) catalyzes the transfer of the C2 amino group of glutamate 1-semialdehyde (GSA) to the C1 position. Nucleic acid sequences encoding this enzyme from wild type and a gabaculine (GAB) resistant strain of Synechococcus have been cloned and overexpressed in Escherichia coli. Tolerance to GAB of the mutant GSA-AT resulted from a point mutation, Met-248-Ile, in the middle of the polypeptide chain accompanied by a deletion of three amino acids close to the NH2 terminus but can also be effected by the point mutation alone. Purified enzymes from these two strains contain vitamin B6 and use a typical ping-pong Bi-Bi mechanism, in which 4,5-diaminovalerate (DAVA) is a likely intermediate. The catalytic efficiency (Kcat/Km) of wild-type GSA-AT for GSA is about 3 times larger than that of the mutant enzyme. Comparison of substrate specificities (kmax/Km) for GSA and various analogues reveals that wild-type GSA-AT has values that are about 2-20 times larger than those of the mutant enzyme, except in the case of GAB for which the specificity is 2-3 orders of magnitude larger. These differences are attributed to impaired prototropic rearrangement and transaldimination by mutant GSA-AT. They lead to accumulation of quinonoid and other intermediates upon addition of various substrates such as ALA and DOVA, as well as to instability of their aldimines (418 nm) upon Sephadex gel filtration.
Collapse
Affiliation(s)
- M A Smith
- Carlsberg Laboratory, Department of Physiology, Copenhagen Valby, Denmark
| | | |
Collapse
|
37
|
Verkamp E, Jahn M, Jahn D, Kumar A, Söll D. Glutamyl-tRNA reductase from Escherichia coli and Synechocystis 6803. Gene structure and expression. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42438-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
van Heeswijk W, Kuppinger O, Merrick M, Kahn D. Localization of the glnD gene on a revised map of the 200-kilobase region of the Escherichia coli chromosome. J Bacteriol 1992; 174:1702-3. [PMID: 1537813 PMCID: PMC206572 DOI: 10.1128/jb.174.5.1702-1703.1992] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- W van Heeswijk
- E.C. Slater Institute for Biochemical Research, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
39
|
Smith MA, Kannangara CG, Grimm B, von Wettstein D. Characterization of glutamate-1-semialdehyde aminotransferase of Synechococcus. Steady-state kinetic analysis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 202:749-57. [PMID: 1765090 DOI: 10.1111/j.1432-1033.1991.tb16429.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Synechococcus glutamate-1-semialdehyde aminotransferase was expressed in large amounts in transformed cells of Escherichia coli. The resulting purified enzyme has an absorption spectrum characteristic of B6-containing enzymes and could be converted to the pyridoxal-phosphate form with excess dioxovalerate (O2Val), and back to the pyridoxamine-phosphate form with diaminovalerate (A2Val). Both enzyme forms are similarly active in the conversion of glutamate 1-semialdehyde (GSA) to 5-aminolevulinate (ALev), suggesting that A2Val and O2Val are intermediates. Initial rates of ALev synthesis at various fixed concentrations of GSA followed typical Michaelis-Menten kinetics (Km of GSA for the pyridoxamine-phosphate form of GSA aminotransferase = 12 microM, kcat = 0.23 s-1). In submicromolar amounts A2Val stimulates ALev synthesis, and in a series of concentrations with various fixed concentrations of GSA, gives a family of parallel lines in Lineweaver-Burk plots (Km for A2Val = 1.0 microM). On the other hand, O2Val gives competitive inhibition of the pyridoxamine-phosphate form of GSA-aminotransferase and mixed-type inhibition of the pyridoxal-phosphate form (Ki for O2Val = 1.4 mM). In general the kinetics were typical of ping-pong bi-bi mechanisms in which A2Val is the second substrate (intermediate) and O2Val is an alternative first substrate. There is no compelling evidence that O2Val accepts an amino group at its C5 position resulting in the direct formation of ALev, or the reverse involving the apparent formation of O2Val from ALev. These results are consistent with the hypothesis that the mechanism of GSA aminotransferase mimics that of other aminotransferases and that A2Val is the intermediate.
Collapse
Affiliation(s)
- M A Smith
- Graduate School of Biochemistry, Brigham Young University, Provo, Utah
| | | | | | | |
Collapse
|
40
|
Smith MA, Grimm B, Kannangara CG, von Wettstein D. Spectral kinetics of glutamate-1-semialdehyde aminomutase of Synechococcus. Proc Natl Acad Sci U S A 1991; 88:9775-9. [PMID: 11607231 PMCID: PMC52803 DOI: 10.1073/pnas.88.21.9775] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Purified Synechococcus glutamate-1-semialdehyde aminotransferase (GSA-AT; EC 5.4.3.8) has absorption maxima characteristic of vitamin B6-containing enzymes and can be converted to the pyridoxamine 5'-phosphate or pyridoxal 5'-phosphate form by reaction with diaminovalerate or dioxovalerate, respectively, suggesting that these two analogues are intermediates in the conversion of glutamate 1-semialdehyde (GSA) to 5-aminolevulinate (ALA). Values for Km and kmax were calculated for GSA, diaminovalerate, ALA, and gabaculine from absorption change rates during conversion of one coenzyme form of GSA-AT to the other, upon addition of one of these compounds. The substrate specificity (kmax/Km) of diaminovalerate is about 3 orders of magnitude larger than that of dioxovalerate, making the latter an unlikely intermediate in the enzymic conversion of GSA to ALA. GSA reacts with both coenzyme forms, whereas ALA only reacts with the pyridoxamine 5'-phosphate form of the enzyme. However, ALA does form a complex with the pyridoxal 5'-phosphate form of GSA-AT and inhibits reactions between gabaculine and GSA-AT. This relatively stable complex (Ki = 8 M) may have significance in enzyme inhibition. Both L and D enantiomers of GSA react with GSA-AT. Spectral changes observed upon addition of DL-GSA are apparently due to reaction with the less reactive D-isomer. L-GSA is converted to ALA prior to major spectral changes induced by the racemic mixture.
Collapse
Affiliation(s)
- M A Smith
- Department of Physiology, Carlsberg Laboratory, Copenhagen, Denmark
| | | | | | | |
Collapse
|
41
|
Gabaculine-resistant glutamate 1-semialdehyde aminotransferase of Synechococcus. Deletion of a tripeptide close to the NH2 terminus and internal amino acid substitution. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98926-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
42
|
Ilag LL, Jahn D, Eggertsson G, Söll D. The Escherichia coli hemL gene encodes glutamate 1-semialdehyde aminotransferase. J Bacteriol 1991; 173:3408-13. [PMID: 2045363 PMCID: PMC207952 DOI: 10.1128/jb.173.11.3408-3413.1991] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
delta-Aminolevulinic acid (ALA), the first committed precursor of porphyrin biosynthesis, is formed in Escherichia coli by the C5 pathway in a three-step, tRNA-dependent transformation from glutamate. The first two enzymes of this pathway, glutamyl-tRNA synthetase and Glu-tRNA reductase, are known in E. coli (J. Lapointe and D. Söll, J. Biol. Chem. 247:4966-4974, 1972; D. Jahn, U. Michelsen, and D. Söll, J. Biol. Chem. 266:2542-2548, 1991). Here we present the mapping and cloning of the gene for the third enzyme, glutamate 1-semialdehyde (GSA) aminotransferase, and an initial characterization of the purified enzyme. Ethylmethane sulfonate-induced mutants of E. coli AB354 which required ALA for growth were isolated by selection for respiration-defective strains resistant to the aminoglycoside antibiotic kanamycin. Two mutations were mapped to min 4 at a locus named hemL. Map positions and resulting phenotypes suggest that hemL may be identical with the earlier described porphyrin biosynthesis mutation popC. Complementation of the auxotrophic phenotype by wild-type DNA from the corresponding clone pLC4-43 of the Clarke-Carbon bank (L. Clarke and J. Carbon, Cell 9:91-99, 1976) allowed the isolation of the gene. Physical mapping showed that hemL mapped clockwise next to fhuB. The hemL gene product was overexpressed and purified to apparent homogeneity. The pure protein efficiently converted GSA to ALA. The reaction was stimulated by the addition of pyridoxal 5' -phosphate or pyridoxamine 5' -phosphate and inhibited by gabaculine or aminooxyacetic acid. The molecular mass of the purified GSA aminotransferase under denaturing conditions was 40,000 Da, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme has apparent native molecular mass of approximately 80,000 Da, as determined by rate zonal sedimentation on glycerol gradients and molecular sieving through Superose 12, which indicates a homodimeric alpha2, structure of the protein.
Collapse
Affiliation(s)
- L L Ilag
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | | | | | | |
Collapse
|
43
|
Hansson M, Rutberg L, Schröder I, Hederstedt L. The Bacillus subtilis hemAXCDBL gene cluster, which encodes enzymes of the biosynthetic pathway from glutamate to uroporphyrinogen III. J Bacteriol 1991; 173:2590-9. [PMID: 1672867 PMCID: PMC207825 DOI: 10.1128/jb.173.8.2590-2599.1991] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have recently reported (M. Petricek, L. Rutberg, I. Schröder, and L. Hederstedt, J. Bacteriol. 172: 2250-2258, 1990) the cloning and sequence of a Bacillus subtilis chromosomal DNA fragment containing hemA proposed to encode the NAD(P)H-dependent glutamyl-tRNA reductase of the C5 pathway for 5-aminolevulinic acid (ALA) synthesis, hemX encoding a hydrophobic protein of unknown function, and hemC encoding hydroxymethylbilane synthase. In the present communication, we report the sequences and identities of three additional hem genes located immediately downstreatm of hemC, namely, hemD encoding uroporphyrinogen III synthase, hemB encoding porphobilinogen synthase, and hemL encoding glutamate-1-semialdehyde 2,1-aminotransferase. The six genes are proposed to constitute a hem operon encoding enzymes required for the synthesis of uroporphyrinogen III from glutamyl-tRNA. hemA, hemB, hemC, and hemD have all been shown to be essential for heme synthesis. However, deletion of an internal 427-bp fragment of hemL did not create a growth requirement for ALA or heme, indicating that formation of ALA from glutamate-1-semialdehyde can occur spontaneously in vivo or that this reaction may also be catalyzed by other enzymes. An analysis of B. subtilis carrying integrated plasmids or deletions-substitutions in or downstream of hemL indicates that no further genes in heme synthesis are part of the proposed hem operon.
Collapse
Affiliation(s)
- M Hansson
- Department of Microbiology, University of Lund, Lund, Sweden
| | | | | | | |
Collapse
|
44
|
Beale SI, Weinstein JD. Chapter 5 Biochemistry and regulation of photosynthetic pigment formation in plants and algae. BIOSYNTHESIS OF TETRAPYRROLES 1991. [DOI: 10.1016/s0167-7306(08)60112-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|