1
|
Abstract
Plasmids are selfish genetic elements that normally constitute a burden for the bacterial host cell. This burden is expected to favor plasmid loss. Therefore, plasmids have evolved mechanisms to control their replication and ensure their stable maintenance. Replication control can be either mediated by iterons or by antisense RNAs. Antisense RNAs work through a negative control circuit. They are constitutively synthesized and metabolically unstable. They act both as a measuring device and a regulator, and regulation occurs by inhibition. Increased plasmid copy numbers lead to increasing antisense-RNA concentrations, which, in turn, result in the inhibition of a function essential for replication. On the other hand, decreased plasmid copy numbers entail decreasing concentrations of the inhibiting antisense RNA, thereby increasing the replication frequency. Inhibition is achieved by a variety of mechanisms, which are discussed in detail. The most trivial case is the inhibition of translation of an essential replication initiator protein (Rep) by blockage of the rep-ribosome binding site. Alternatively, ribosome binding to a leader peptide mRNA whose translation is required for efficient Rep translation can be prevented by antisense-RNA binding. In 2004, translational attenuation was discovered. Antisense-RNA-mediated transcriptional attenuation is another mechanism that has, so far, only been detected in plasmids of Gram-positive bacteria. ColE1, a plasmid that does not need a plasmid-encoded replication initiator protein, uses the inhibition of primer formation. In other cases, antisense RNAs inhibit the formation of an activator pseudoknot that is required for efficient Rep translation.
Collapse
|
2
|
Brantl S. Antisense-RNA mediated control of plasmid replication - pIP501 revisited. Plasmid 2014; 78:4-16. [PMID: 25108234 DOI: 10.1016/j.plasmid.2014.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/24/2014] [Accepted: 07/26/2014] [Indexed: 02/02/2023]
Abstract
Over the past decade, a wealth of small noncoding RNAs (sRNAs) have been discovered in the genomes of almost all bacterial species, where they constitute the most abundant class of posttranscriptional regulators. These sRNAs are key-players in prokaryotic metabolism, stress response and virulence. However, the first bona-fide antisense RNAs had been found already in 1981 in plasmids, where they regulate replication or maintenance. Antisense RNAs involved in plasmid replication control - meanwhile investigated in depth for almost 35 years - employ a variety of mechanisms of action: They regulate primer maturation, inhibit translation of essential replication initiator proteins (Rep proteins) as well as leader peptides or the formation of activator pseudoknots required for efficient rep translation. Alternatively they attenuate transcription or translation of rep mRNAs. Some antisense RNAs collaborate with transcriptional repressors to ensure proper copy-number control. Here, I summarize our knowledge on replication control of the broad-host range plasmid pIP501 that was originally isolated from Streptococcus agalactiae. Plasmid pIP501 uses two copy number-control elements, RNAIII, a cis-encoded antisense RNA, and transcriptional repressor CopR. RNA III mediates transcription attenuation, a rather widespread concept that found its culmination in the recent discovery of riboswitches. A peculiarity of pIP501 is the unusual stability of RNA III, which requires a second function of CopR: CopR does not only repress transcription from the essential repR promoter, but also prevents convergent transcription between rep mRNA and RNAIII, thereby indirectly increasing the amount of RNAIII. The concerted action of these two control elements is necessary to prevent plasmid loss at dangerously low copy numbers.
Collapse
Affiliation(s)
- Sabine Brantl
- Friedrich-Schiller-Universität Jena, Lehrstuhl für Genetik, AG Bakteriengenetik, Philosophenweg 12, D-07743 Jena, Germany.
| |
Collapse
|
3
|
Venkova-Canova T, Pátek M, Nesvera J. Control of rep gene expression in plasmid pGA1 from Corynebacterium glutamicum. J Bacteriol 2003; 185:2402-9. [PMID: 12670963 PMCID: PMC152619 DOI: 10.1128/jb.185.8.2402-2409.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cryptic multicopy plasmid pGA1 (4,826 bp) from Corynebacterium glutamicum LP-6 belongs to the fifth group of rolling-circle-replicating plasmids. A determinant, which negatively controls pGA1 replication, was localized in the leader region of the rep gene coding for the initiator of plasmid replication. This region, when cloned into the compatible vector pEC6, was found to cause decrease of segregational stability of the pGA1 derivative pKG48. A promoter and a single transcriptional start site were found in the rep leader region in orientation opposite to the rep gene. These results suggest that a small countertranscribed RNA (ctRNA) (ca. 89 nucleotides in length), which might inhibit translation of pGA1 rep gene, is formed. Analysis of predicted secondary structure of the pGA1-encoded ctRNA revealed features common with the known ctRNAs in bacteria. Inactivation of the promoter P-ctRNA caused a dramatic increase of copies of the respective plasmid, which proved a negative role of the ctRNA in control of pGA1 copy number. A region between the promoters Prep and P-ctRNA with a potential to form secondary structures on both ctRNA and rep mRNA was found to cause low activity of the rep promoter even when promoter P-ctRNA was deleted. Thus, the sequence within the rep leader region itself seems to act, in addition to the ctRNA, as a second regulatory element of a novel type, negatively influencing expression of the pGA1 rep gene.
Collapse
Affiliation(s)
- Tatiana Venkova-Canova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, CZ-14220 Prague 4, Czech Republic
| | | | | |
Collapse
|
4
|
Abstract
Lactobacilli play a substantial role in food biotechnology and influence our quality of life by their fermentative and probiotic properties. Despite their obvious importance in fermentation ecology and biotechnology only recent years have brought some insight into the genetics of lactobacilli. These genetic investigations allow the elucidation of traits determinative for competitiveness and ecology and thus product safety and quality. They have concentrated only on a small selection of lactobacilli whereas others are hardly touched or remained recalcitrant to genetic analysis and manipulation. The knowledge gained on the biochemistry, physiology, ecology and especially genetics is a prerequisite for the deliberate application and improved handling of lactobacilli in traditional and novel applications. In this review, the achievements in the genetics of lactobacilli are described including detection systems, genetic elements, host vector systems, gene cloning and expression and risk assessment of genetically engineered lactobacilli.
Collapse
Affiliation(s)
- R F Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising-Weihenstephan, Germany
| | | |
Collapse
|
5
|
del Solar G, Giraldo R, Ruiz-Echevarría MJ, Espinosa M, Díaz-Orejas R. Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev 1998; 62:434-64. [PMID: 9618448 PMCID: PMC98921 DOI: 10.1128/mmbr.62.2.434-464.1998] [Citation(s) in RCA: 697] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
An essential feature of bacterial plasmids is their ability to replicate as autonomous genetic elements in a controlled way within the host. Therefore, they can be used to explore the mechanisms involved in DNA replication and to analyze the different strategies that couple DNA replication to other critical events in the cell cycle. In this review, we focus on replication and its control in circular plasmids. Plasmid replication can be conveniently divided into three stages: initiation, elongation, and termination. The inability of DNA polymerases to initiate de novo replication makes necessary the independent generation of a primer. This is solved, in circular plasmids, by two main strategies: (i) opening of the strands followed by RNA priming (theta and strand displacement replication) or (ii) cleavage of one of the DNA strands to generate a 3'-OH end (rolling-circle replication). Initiation is catalyzed most frequently by one or a few plasmid-encoded initiation proteins that recognize plasmid-specific DNA sequences and determine the point from which replication starts (the origin of replication). In some cases, these proteins also participate directly in the generation of the primer. These initiators can also play the role of pilot proteins that guide the assembly of the host replisome at the plasmid origin. Elongation of plasmid replication is carried out basically by DNA polymerase III holoenzyme (and, in some cases, by DNA polymerase I at an early stage), with the participation of other host proteins that form the replisome. Termination of replication has specific requirements and implications for reinitiation, studies of which have started. The initiation stage plays an additional role: it is the stage at which mechanisms controlling replication operate. The objective of this control is to maintain a fixed concentration of plasmid molecules in a growing bacterial population (duplication of the plasmid pool paced with duplication of the bacterial population). The molecules involved directly in this control can be (i) RNA (antisense RNA), (ii) DNA sequences (iterons), or (iii) antisense RNA and proteins acting in concert. The control elements maintain an average frequency of one plasmid replication per plasmid copy per cell cycle and can "sense" and correct deviations from this average. Most of the current knowledge on plasmid replication and its control is based on the results of analyses performed with pure cultures under steady-state growth conditions. This knowledge sets important parameters needed to understand the maintenance of these genetic elements in mixed populations and under environmental conditions.
Collapse
Affiliation(s)
- G del Solar
- Centro de Investigaciones Biológicas, CSIC, E-28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
6
|
Chaillou S, Lokman BC, Leer RJ, Posthuma C, Postma PW, Pouwels PH. Cloning, sequence analysis, and characterization of the genes involved in isoprimeverose metabolism in Lactobacillus pentosus. J Bacteriol 1998; 180:2312-20. [PMID: 9573180 PMCID: PMC107170 DOI: 10.1128/jb.180.9.2312-2320.1998] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Two genes, xylP and xylQ, from the xylose regulon of Lactobacillus pentosus were cloned and sequenced. Together with the repressor gene of the regulon, xylR, the xylPQ genes form an operon which is inducible by xylose and which is transcribed from a promoter located 145 bp upstream of xylP. A putative xylR binding site (xylO) and a cre-like element, mediating CcpA-dependent catabolite repression, were found in the promoter region. L. pentosus mutants in which both xylP and xylQ (LPE1) or only xylQ (LPE2) was inactivated retained the ability to ferment xylose but were impaired in their ability to ferment isoprimeverose (alpha-D-xylopyranosyl-(1,6)-D-glucopyranose). Disruption of xylQ resulted specifically in the loss of a membrane-associated alpha-xylosidase activity when LPE1 or LPE2 cells were grown on xylose. In the membrane fraction of wild-type bacteria, alpha-xylosidase could catalyze the hydrolysis of isoprimeverose and p-nitrophenyl-alpha-D-xylopyranoside with apparent Km and Vmax values of 0.2 mM and 446 nmol/min/mg of protein, and 1.3 mM and 54 nmol/min/mg of protein, respectively. The enzyme could also hydrolyze the alpha-xylosidic linkage in xyloglucan oligosaccharides, but neither methyl-alpha-D-xylopyranoside nor alpha-glucosides were substrates. Glucose repressed the synthesis of alpha-xylosidase fivefold, and 80% of this repression was released in an L. pentosus delta ccpA mutant. The alpha-xylosidase gene was also expressed in the absence of xylose when xylR was disrupted.
Collapse
Affiliation(s)
- S Chaillou
- EC Slater Institute, Biocentrum, University of Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
Many bacterial plasmids replicate by a rolling-circle (RC) mechanism. Their replication properties have many similarities to as well as significant differences from those of single-stranded DNA (ssDNA) coliphages, which also replicate by an RC mechanism. Studies on a large number of RC plasmids have revealed that they fall into several families based on homology in their initiator proteins and leading-strand origins. The leading-strand origins contain distinct sequences that are required for binding and nicking by the Rep proteins. Leading-strand origins also contain domains that are required for the initiation and termination of replication. RC plasmids generate ssDNA intermediates during replication, since their lagging-strand synthesis does not usually initiate until the leading strand has been almost fully synthesized. The leading- and lagging-strand origins are distinct, and the displaced leading-strand DNA is converted to the double-stranded form by using solely the host proteins. The Rep proteins encoded by RC plasmids contain specific domains that are involved in their origin binding and nicking activities. The replication and copy number of RC plasmids, in general, are regulated at the level of synthesis of their Rep proteins, which are usually rate limiting for replication. Some RC Rep proteins are known to be inactivated after supporting one round of replication. A number of in vitro replication systems have been developed for RC plasmids and have provided insight into the mechanism of plasmid RC replication.
Collapse
Affiliation(s)
- S A Khan
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA.
| |
Collapse
|
8
|
Abstract
Rolling circle DNA replication is inherently continuous and unregulated. This 'go-for-broke' strategy works well for lytic phages but is suicidal for plasmids that must coexist with their host. Plasmids have consequently evolved elaborate copy number control systems that operate at the transcriptional, translational and post-translational levels.
Collapse
Affiliation(s)
- A Rasooly
- CFSAN Divn of Microbiological Studies, US Food and Drug Administration, Washington, DC 20204, USA.
| | | |
Collapse
|
9
|
Abstract
This review describes Lactobacillus plasmids on distribution, structure, function, vector construction, vector stability, application, and prospective. About 38% of species of the genus Lactobacillus were found to contain plasmids with different sizes (from 1.2 to 150 kb) and varied numbers (1 or more). Some Lactobacillus plasmids with small sizes were highly similar to those of single strand plasmids from other Gram-positive bacteria. The extensive sequence homologies of plus origins, replication initiation proteins, minus origins, cointegration sites, and the presence of single strand intermediates supported the fact that these small Lactobacillus plasmids replicate with a rolling-circle replication mechanism. Some Lactobacillus plasmid replicons were of broad host range that could function in other Gram-positive bacteria, and even in Escherichia coli, while replicons of other Gram-positive bacteria also function in Lactobacillus. Although most Lactobacillus plasmids are cryptic, some plasmid-encoded functions have been discovered and applied to vector construction and Lactobacillus identification, detection, and modification.
Collapse
Affiliation(s)
- T T Wang
- Department of Food Science and Agricultural Chemistry, McGill University, Quebec, Canada
| | | |
Collapse
|
10
|
Lokman BC, Heerikhuisen M, Leer RJ, van den Broek A, Borsboom Y, Chaillou S, Postma PW, Pouwels PH. Regulation of expression of the Lactobacillus pentosus xylAB operon. J Bacteriol 1997; 179:5391-7. [PMID: 9286992 PMCID: PMC179408 DOI: 10.1128/jb.179.17.5391-5397.1997] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The xylose cluster of Lactobacillus pentosus consists of five genes, two of which, xylAB, form an operon and code for the enzymes involved in the catabolism of xylose, while a third encodes a regulatory protein, XylR. By introduction of a multicopy plasmid carrying the xyl operator and by disruption of the chromosomal xylR gene, it was shown that L. pentosus xylR encodes a repressor. Constitutive expression of xylAB in the xylR mutant is repressed by glucose, indicating that glucose repression does not require XylR. The xylR mutant displayed a prolonged lag phase compared to wild-type bacteria when bacteria were shifted from glucose to xylose medium. Differences in the growth rate in xylose medium at different stages of growth are not correlated with differences in levels of xylAB transcription in L. pentosus wild-type or xylR mutant bacteria but are positively correlated in Lactobacillus casei with a plasmid containing xylAB. Glucose repression was further investigated with a ccpA mutant. An 875-bp internal fragment of the ccpA gene of L. pentosus was isolated by PCR and used to construct a ccpA knockout mutant. Transcription analysis of L. pentosus xylA showed that CcpA is involved in glucose repression. CcpA was also shown to be involved in glucose repression of the alpha-amylase promoter of Lactobacillus amylovorus by demonstrating that glucose repression of the chloramphenicol acetyltransferase gene under control of the alpha-amylase promoter is strongly reduced in the L. pentosus ccpA mutant strain.
Collapse
Affiliation(s)
- B C Lokman
- Department of Molecular Genetics and Gene-Technology, TNO Nutrition and Food Research Institute, Zeist, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Le Chatelier E, Ehrlich SD, Jannière L. Countertranscript-driven attenuation system of the pAM beta 1 repE gene. Mol Microbiol 1996; 20:1099-112. [PMID: 8809762 DOI: 10.1111/j.1365-2958.1996.tb02550.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The plasmid-encoded RepE protein is absolutely essential and rate-limiting for replication of the promiscuous plasmid pAM beta 1 originating from Enterococcus faecalis. We previously showed that the rep gene is transcribed from a promoter that is negatively regulated (approximately 10-fold reduction) by the CopF repressor. In this report, we show that this transcription is decreased a further approximately 10-times by a countertranscript-driven transcriptional attenuation system. Extensive mutagenesis revealed that this system operates by a mechanism similar to that previously described for the unrelated repC gene of plasmid pT181.
Collapse
Affiliation(s)
- E Le Chatelier
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, Jouy en Josas, France
| | | | | |
Collapse
|
12
|
Khan SA. Mechanism of replication and copy number control of plasmids in gram-positive bacteria. GENETIC ENGINEERING 1996; 18:183-201. [PMID: 8785121 DOI: 10.1007/978-1-4899-1766-9_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- S A Khan
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, PA 15261, USA
| |
Collapse
|
13
|
Espinosa M, del Solar G, Rojo F, Alonso JC. Plasmid rolling circle replication and its control. FEMS Microbiol Lett 1995; 130:111-20. [PMID: 7649431 DOI: 10.1111/j.1574-6968.1995.tb07707.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
This review summarises current information on rolling circle replicating plasmids originally isolated from Gram-positive bacteria with a low guanine and cytosine content in their DNA. It focuses on the peculiar biological features of these small, high copy number plasmids that replicate via an asymmetric RC mechanism. The regulation of plasmid copy number is also discussed.
Collapse
Affiliation(s)
- M Espinosa
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
14
|
Lokman BC, Leer RJ, van Sorge R, Pouwels PH. Promoter analysis and transcriptional regulation of Lactobacillus pentosus genes involved in xylose catabolism. MOLECULAR & GENERAL GENETICS : MGG 1994; 245:117-25. [PMID: 7845354 DOI: 10.1007/bf00279757] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The xyl genes in Lactobacillus pentosus are induced by xylose and repressed by glucose, ribose, and arabinose. Northern blot analysis showed that regulation is mediated at the transcriptional level. Under inducing conditions, two xylA transcripts were detected, a major transcript of 1.5 kb and a minor transcript of 3 kb. The 3 kb transcript also comprises sequences from xylB, suggesting that xylA and xylB are transcribed together. A 1.2 kb xylR transcript was found under inducing and non-inducing conditions. In the presence of xylose, a second xylR transcript (> 7 kb) was detected, which includes sequences from two upstream genes, xylQ and xylP. The transcription start sites for xylA and xylR were mapped by primer extension and S1 nuclease experiments at 42 and 83 nucleotides, respectively upstream of the translation start sites. Induction by xylose of the chloramphenicol acetyltransferase (CAT) gene under control of the xylA promoter, on a multicopy plasmid, was 60 to 80-fold, but only 3 to 10-fold in the presence of glucose and xylose. Expression of CAT under control of the xylR promoter was constitutive at a level tenfold less than that observed under control of the xylA promoter. Sequence analysis suggests the presence of two operator-like elements, one overlapping with the promoter -35 region of xylA and controlling the expression of xylA by binding factors involved in catabolite repression, and a second operator downstream of the promoter -10 region of xylA, which may bind the product of xylR, the repressor.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- B C Lokman
- TNO Nutrition and Food Research, Department of Molecular Genetics and Genetechnology, Rijswijk, The Netherlands
| | | | | | | |
Collapse
|
15
|
Abstract
This paper reviews the present knowledge of the structure and properties of small (< 5 kb) plasmids present in Lactobacillus spp. The data show that plasmids from Lactobacillus spp., like many plasmids from other Gram-positive bacteria, display a modular organization and replicate by a mechanism of rolling circle replication. Structurally, plasmids from lactobacilli are closely related to plasmids from other Gram-positive bacteria. They contain elements (plus- and minus origin of replication, element(s) for control of plasmid replication, mobilization function) showing extensive similarity to analogous elements in plasmids from these other organisms. It is believed that lactobacilli have acquired such elements by intra- and/or intergenic transfer mechanisms. The first part of the review is concluded with a description of plasmid vectors with a Lactobacillus replicon and integrative vectors, including data concerning their structural and segregational stability. In the second part of this review we describe the progress that has been made during the last few years in identifying and characterizing elements that control expression of genetic information in lactobacilli. Based on the sequence of eleven identified and twenty presumed promoters, some preliminary conclusions can be drawn regarding the structure of Lactobacillus promoters. A typical Lactobacillus promoter shows significant similarity to promoters from E. coli and B. subtilis. An analysis of published sequences of seventy genes indicates that the region encompassing the translation start codon AUG also shows extensive similarity to that of E. coli and B. subtilis. Codon usage of Lactobacillus genes is not random and shows interspecies as well as intraspecies heterogeneity. Interspecies differences may, in part, be explained by differences in G+C content of different lactobacilli. Differences in gene expression levels can, to a large extent, account for intraspecies differences of codon usage bias. Finally, we review the knowledge that has become available concerning protein secretion and heterologous gene expression in lactobacilli. This part is concluded with a compilation of data on the expression in Lactobacillus of heterologous genes under the control of their own promoter or under control of a Lactobacillus promoter.
Collapse
Affiliation(s)
- P H Pouwels
- Department Molecular Genetics and Gene-Technology, TNO Medical Biological Laboratory, Rijswijk, The Netherlands
| | | |
Collapse
|