1
|
Chmielewska M, Kaźmierczak M, Rozenblut-Kościsty B, Kolenda K, Dudzik A, Dedukh D, Ogielska M. Genome elimination from the germline cells in diploid and triploid male water frogs Pelophylax esculentus. Front Cell Dev Biol 2022; 10:1008506. [PMID: 36313575 PMCID: PMC9615423 DOI: 10.3389/fcell.2022.1008506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Hybridogenesis is a hemiclonal reproductive strategy in diploid and triploid hybrids. Our study model is a frog P. esculentus (diploid RL and triploids RLL and RRL), a natural hybrid between P. lessonae (LL) and P. ridibundus (RR). Hybridogenesis relies on elimination of one genome (L or R) from gonocytes (G) in tadpole gonads during prespermatogenesis, but not from spermatogonial stem cells (SSCs) in adults. Here we provide the first comprehensive study of testis morphology combined with chromosome composition in the full spectrum of spermatogenic cells. Using genomic in situ hybridization (GISH) and FISH we determined genomes in metaphase plates and interphase nuclei in Gs and SSCs. We traced genomic composition of SSCs, spermatocytes and spermatozoa in individual adult males that were crossed with females of the parental species and gave progeny. Degenerating gonocytes (24%–39%) and SSCs (18%–20%) led to partial sterility of juvenile and adult gonads. We conclude that elimination and endoreplication not properly completed during prespermatogenesis may be halted when gonocytes become dormant in juveniles. After resumption of mitotic divisions by SSCs in adults, these 20% of cells with successful genome elimination and endoreplication continue spermatogenesis, while in about 80% spermatogenesis is deficient. Majority of abnormal cells are eliminated by cell death, however some of them give rise to aneuploid spermatocytes and spermatozoa which shows that hybridogenesis is a wasteful process.
Collapse
Affiliation(s)
- Magdalena Chmielewska
- Amphibian Biology Group, Department of Evolutionary Biology and Conservation of Vertebrates, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
- *Correspondence: Magdalena Chmielewska,
| | - Mikołaj Kaźmierczak
- Amphibian Biology Group, Department of Evolutionary Biology and Conservation of Vertebrates, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
- Department of Medicine Biology, The Cardinal Wyszyński National Institute of Cardiology, Warsaw, Poland
| | - Beata Rozenblut-Kościsty
- Amphibian Biology Group, Department of Evolutionary Biology and Conservation of Vertebrates, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | - Krzysztof Kolenda
- Amphibian Biology Group, Department of Evolutionary Biology and Conservation of Vertebrates, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | - Anna Dudzik
- Amphibian Biology Group, Department of Evolutionary Biology and Conservation of Vertebrates, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | - Dmitrij Dedukh
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Maria Ogielska
- Amphibian Biology Group, Department of Evolutionary Biology and Conservation of Vertebrates, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| |
Collapse
|
2
|
Stöck M, Dedukh D, Reifová R, Lamatsch DK, Starostová Z, Janko K. Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: along the 'extended speciation continuum'. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200103. [PMID: 34304588 PMCID: PMC8310718 DOI: 10.1098/rstb.2020.0103] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
We review knowledge about the roles of sex chromosomes in vertebrate hybridization and speciation, exploring a gradient of divergences with increasing reproductive isolation (speciation continuum). Under early divergence, well-differentiated sex chromosomes in meiotic hybrids may cause Haldane-effects and introgress less easily than autosomes. Undifferentiated sex chromosomes are more susceptible to introgression and form multiple (or new) sex chromosome systems with hardly predictable dominance hierarchies. Under increased divergence, most vertebrates reach complete intrinsic reproductive isolation. Slightly earlier, some hybrids (linked in 'the extended speciation continuum') exhibit aberrant gametogenesis, leading towards female clonality. This facilitates the evolution of various allodiploid and allopolyploid clonal ('asexual') hybrid vertebrates, where 'asexuality' might be a form of intrinsic reproductive isolation. A comprehensive list of 'asexual' hybrid vertebrates shows that they all evolved from parents with divergences that were greater than at the intraspecific level (K2P-distances of greater than 5-22% based on mtDNA). These 'asexual' taxa inherited genetic sex determination by mostly undifferentiated sex chromosomes. Among the few known sex-determining systems in hybrid 'asexuals', female heterogamety (ZW) occurred about twice as often as male heterogamety (XY). We hypothesize that pre-/meiotic aberrations in all-female ZW-hybrids present Haldane-effects promoting their evolution. Understanding the preconditions to produce various clonal or meiotic allopolyploids appears crucial for insights into the evolution of sex, 'asexuality' and polyploidy. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries - IGB (Forschungsverbund Berlin), Müggelseedamm 301, 12587 Berlin, Germany
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Dmitrij Dedukh
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, 277 21 Libechov, Czech Republic
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Dunja K. Lamatsch
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Zuzana Starostová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Karel Janko
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, 277 21 Libechov, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic
| |
Collapse
|
3
|
Affiliation(s)
- J.P. Bogart
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
4
|
Miniscule differences between sex chromosomes in the giant genome of a salamander. Sci Rep 2018; 8:17882. [PMID: 30552368 PMCID: PMC6294749 DOI: 10.1038/s41598-018-36209-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/12/2018] [Indexed: 11/08/2022] Open
Abstract
In the Mexican axolotl (Ambystoma mexicanum), sex is determined by a single Mendelian factor, yet its sex chromosomes do not exhibit morphological differentiation typical of many vertebrate taxa that possess a single sex-determining locus. As sex chromosomes are theorized to differentiate rapidly, species with undifferentiated sex chromosomes provide the opportunity to reconstruct early events in sex chromosome evolution. Whole genome sequencing of 48 salamanders, targeted chromosome sequencing and in situ hybridization were used to identify the homomorphic sex chromosome that carries an A. mexicanum sex-determining factor and sequences that are present only on the W chromosome. Altogether, these sequences cover ~300 kb of validated female-specific (W chromosome) sequence, representing ~1/100,000th of the 32 Gb genome. Notably, a recent duplication of ATRX, a gene associated with mammalian sex-determining pathways, is one of few functional (non-repetitive) genes identified among these W-specific sequences. This duplicated gene (ATRW) was used to develop highly predictive markers for diagnosing sex and represents a strong candidate for a recently-acquired sex determining locus (or sexually antagonistic gene) in A. mexicanum.
Collapse
|
5
|
Spolsky C, Phillips CA, Uzzell T. GYNOGENETIC REPRODUCTION IN HYBRID MOLE SALAMANDERS (GENUS
AMBYSTOMA
). Evolution 2017; 46:1935-1944. [DOI: 10.1111/j.1558-5646.1992.tb01179.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/1991] [Accepted: 04/15/1992] [Indexed: 12/01/2022]
Affiliation(s)
- Christina Spolsky
- Department of Ecology, Ethology and Evolution University of Illinois Urbana IL 61801 USA
| | | | - Thomas Uzzell
- Department of Ecology, Ethology and Evolution University of Illinois Urbana IL 61801 USA
| |
Collapse
|
6
|
Sessions SK, Bizjak Mali L, Green DM, Trifonov V, Ferguson-Smith M. Evidence for Sex Chromosome Turnover in Proteid Salamanders. Cytogenet Genome Res 2016; 148:305-13. [PMID: 27351721 DOI: 10.1159/000446882] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2016] [Indexed: 11/19/2022] Open
Abstract
A major goal of genomic and reproductive biology is to understand the evolution of sex determination and sex chromosomes. Species of the 2 genera of the Salamander family Proteidae - Necturus of eastern North America, and Proteus of Southern Europe - have similar-looking karyotypes with the same chromosome number (2n = 38), which differentiates them from all other salamanders. However, Necturus possesses strongly heteromorphic X and Y sex chromosomes that Proteus lacks. Since the heteromorphic sex chromosomes of Necturus were detectable only with C-banding, we hypothesized that we could use C-banding to find sex chromosomes in Proteus. We examined mitotic material from colchicine-treated intestinal epithelium, and meiotic material from testes in specimens of Proteus, representing 3 genetically distinct populations in Slovenia. We compared these results with those from Necturus. We performed FISH to visualize telomeric sequences in meiotic bivalents. Our results provide evidence that Proteus represents an example of sex chromosome turnover in which a Necturus-like Y-chromosome has become permanently translocated to another chromosome converting heteromorphic sex chromosomes to homomorphic sex chromosomes. These results may be key to understanding some unusual aspects of demographics and reproductive biology of Proteus, and are discussed in the context of models of the evolution of sex chromosomes in amphibians.
Collapse
|
7
|
Abstract
This review summarizes the current status of the known extant genuine polyploid anuran and urodelan species, as well as spontaneously originated and/or experimentally produced amphibian polyploids. The mechanisms by which polyploids can originate, the meiotic pairing configurations, the diploidization processes operating in polyploid genomes, the phenomenon of hybridogenesis, and the relationship between polyploidization and sex chromosome evolution are discussed. The polyploid systems in some important amphibian taxa are described in more detail.
Collapse
|
8
|
|
9
|
Hermaniuk A, Pruvost NBM, Kierzkowski P, Ogielska M. Genetic and Cytogenetic Characteristics of Pentaploidy in Water Frogs. HERPETOLOGICA 2013. [DOI: 10.1655/herpetologica-d-12-00037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Stenberg P, Saura A. Meiosis and Its Deviations in Polyploid Animals. Cytogenet Genome Res 2013; 140:185-203. [DOI: 10.1159/000351731] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
11
|
Bickham JW, Tucker PK, Legler JM. Diploid-Triploid Mosaicism: An Unusual Phenomenon in Side-Necked Turtles (Platemys platycephala). Science 2010; 227:1591-3. [PMID: 17795351 DOI: 10.1126/science.227.4694.1591] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Diploid and diploid-triploid mosaic individuals of Platemys platycephala were found in natural populations. In mosaic specimens, the blood, spleen, liver, and testis contained both diploid and triploid cells. The ratio of triploid to diploid cells was more variable among individuals than among somatic tissues within an individual. Only diploid cells underwent meiosis in males; haploid gametes were produced. There appears to be geographic variation for mosaicism in that only diploids were found in Bolivia, whereas diploids and diploid-triploid mosaics occured in Surinam.
Collapse
|
12
|
Smith JJ, Voss SR. Amphibian sex determination: segregation and linkage analysis using members of the tiger salamander species complex (Ambystoma mexicanum and A. t. tigrinum). Heredity (Edinb) 2009; 102:542-8. [PMID: 19259115 PMCID: PMC2684942 DOI: 10.1038/hdy.2009.15] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Little is known about the genetic basis of sex determination in vertebrates though considerable progress has been made in recent years. In this study, segregation analysis and linkage mapping were performed to localize an amphibian sex-determining locus (ambysex) in the tiger salamander (Ambystoma) genome. Segregation of sex phenotypes (male and female) among the second generation individuals of interspecific crosses (Ambystoma mexicanum x Ambystoma tigrinum tigrinum) was consistent with Mendelian expectations, although a slight female bias was observed. Individuals from these same crosses were typed for single-nucleotide polymorphisms distributed throughout the genome to identify molecular markers for ambysex. A marker (E24C3) was identified approximately 5.9 cM from ambysex. Linkage of E24C3 to ambysex was independently validated in a second, intraspecific cross (A. mexicanum). Interestingly, ambysex locates to the tip of one of the larger linkage groups of the Ambystoma meiotic map. Considering that this location does not show reduced recombination, we speculate that the ambysex locus may have arisen quite recently, within the last few million years. Localization of ambysex sets the stage for gene identification and provides important tools for studying the effect of sex in laboratory and natural populations of this model amphibian system.
Collapse
Affiliation(s)
- J J Smith
- Department of Biology and Spinal Cord, Brian Injury Research Center, University of Kentucky, Lexington, KY, USA.
| | | |
Collapse
|
13
|
Ramsden C. Population Genetics of Ambystoma jeffersonianum and Sympatric Unisexuals Reveal Signatures of Both Gynogenetic and Sexual Reproduction. COPEIA 2008. [DOI: 10.1643/ce-06-280] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Abstract
Salamanders (Amphibia: Caudata/Urodela) have been the subject of numerous cytogenetic studies, and data on karyotypes and genome sizes are available for most groups. Salamanders show a more-or-less distinct dichotomy between families with large chromosome numbers and interspecific variation in chromosome number, relative size, and shape (i.e. position of the centromere), and those that exhibit very little variation in these karyological features. This dichotomy is the basis of a major model of karyotype evolution in salamanders involving a kind of 'karyotypic orthoselection'. Salamanders are also characterized by extremely large genomes (in terms of absolute mass of nuclear DNA) and extensive variation in genome size (and overall size of the chromosomes), which transcends variation in chromosome number and shape. The biological significance and evolution of chromosome number and shape within the karyotype is not yet understood, but genome size variation has been found to have strong phenotypic, biogeographic, and phylogenetic correlates that reveal information about the biological significance of this cytogenetic variable. Urodeles also present the advantage of only 10 families and less than 600 species, which facilitates the analysis of patterns within the entire order. The purpose of this review is to present a summary of what is currently known about overall patterns of variation in karyology and genome size in salamanders. These patterns are discussed within an evolutionary context.
Collapse
|
15
|
Noël S, Dumoulin J, Ouellet M, Galois P, Lapointe FJ. Rapid Identification of Salamanders from the Jefferson Complex with Taxon-Specific Primers. COPEIA 2008. [DOI: 10.1643/cg-06-255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
|
17
|
Bi K, Bogart JP, Fu J. Genealogical relationships of southern Ontario polyploid unisexual salamanders (genus Ambystoma) inferred from intergenomic exchanges and major rDNA cytotypes. Chromosome Res 2008; 16:275-89. [DOI: 10.1007/s10577-007-1192-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 11/28/2007] [Accepted: 11/28/2007] [Indexed: 11/30/2022]
|
18
|
Robertson AV, Ramsden C, Niedzwiecki J, Fu J, Bogart JP. An unexpected recent ancestor of unisexual Ambystoma. Mol Ecol 2006; 15:3339-51. [PMID: 16968274 DOI: 10.1111/j.1365-294x.2006.03005.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous research has shown that members of the unisexual hybrid complex of the genus Ambystoma possess a mitochondrial genome that is unrelated to their nuclear parental species, but the origin of this mitochondrion has remained unclear. We used a 744-bp fragment of the mitochondrial gene cytochrome b within a comparative phylogenetic framework to infer the maternal ancestor of this unisexual lineage. By examining a broader range of species than has previously been compared, we were able to uncover a recent maternal ancestor to this complex. Unexpectedly, Ambystoma barbouri, a species whose nuclear DNA has not been identified in the unisexuals, was found to be the recent maternal ancestor of the individuals examined through the discovery of a shared mtDNA haplotype between the unisexuals and A. barbouri. Based on a combination of sequence data and glacial patterning, we estimate that the unisexual lineage probably originated less than 25 000 years ago. In addition, all unisexuals examined showed extremely similar mtDNA sequences and the resultant phylogeny was consistent with a single origin for this lineage. These results confirm previous suggestions that the unisexual Ambystoma complex was formed from a hybridization event in which the nuclear DNA of the original maternal species was subsequently lost.
Collapse
|
19
|
Bi K, Bogart JP. Identification of intergenomic recombinations in unisexual salamanders of the genus Ambystoma by genomic in situ hybridization (GISH). Cytogenet Genome Res 2006; 112:307-12. [PMID: 16484787 DOI: 10.1159/000089885] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 08/22/2005] [Indexed: 11/19/2022] Open
Abstract
Unisexual salamanders in the genus Ambystoma (Amphibia, Caudata) are endemic to eastern North America and are mostly all-female polyploids. Two to four of the bisexual species, A. laterale, A. jeffersonianum, A. texanum and A. tigrinum, contribute to the nuclear genome of unisexuals and more than 20 combinations that range from diploid to pentaploid have been identified in this complex. Because the karyotypes of the four bisexual species are similar, homologous and homoeologous chromosomes in the unisexuals can not be distinguished by conventional or banded karyotypes. We chose two widespread unisexual genomic combinations (A.laterale-2 jeffersonianum [or LJJ] and A. 2 laterale-jeffersonianum [or LLJ]) and employed genomic in situ hybridization (GISH) to identify the genomes in these unisexuals. Under optimum conditions, GISH reliably distinguishes the respective chromosomes attributed to both A.laterale and A. jeffersonianum. Of four populations examined, two were found to have independently evolved homoeologous recombinants that persist in both LJJ and LLJ individuals. Our results refute the previous hypothesis of clonal integrity and independent evolution of the genome combinations in these unisexuals. Our data provide evidence for intergenomic interactions between maternal chromosomes during meiosis in unisexuals and help to explain previously observed non-homologous bivalents and/or quadrivalents among lampbrush chromosomes that were possibly initiated by partial homosequential pairing among the homo(eo)logues. To explore the utility of GISH in other members of the complex, probes developed from A. laterale were also applied to unisexuals that contained A. tigrinum and A. texanum genomes. GISH is an effective tool that can be used to identify and to quantify genomic constituents and to investigate intergenomic interactions in unisexual salamanders. GISH also has potential application to examine possible genomic evolution in other unisexuals.
Collapse
Affiliation(s)
- K Bi
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
20
|
Beçak ML, Beçak W, Pereira A. Somatic pairing, endomitosis and chromosome aberrations in snakes (Viperidae and Colubridae). AN ACAD BRAS CIENC 2003; 75:285-300. [PMID: 12947479 DOI: 10.1590/s0001-37652003000300004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The positioning of macrochromosomes of Bothrops jararaca and Bothrops insularis (Viperidae) was studied in undistorted radial metaphases of uncultured cells (spermatogonia and oogonia) not subjected to spindle inhibitors. Colchicinized metaphases from uncultured (spleen and intestine) and cultured tissues (blood) were also analyzed. We report two antagonic non-random chromosome arrangements in untreated premeiotic cells: the parallel configuration with homologue chromosomes associated side by side in the metaphase plate and the antiparallel configuration having homologue chromosomes with antipolar distribution in the metaphase ring. The antiparallel aspect also appeared in colchicinized cells. The spatial chromosome arrangement in both configurations is groupal size-dependent and maintained through meiosis. We also describe, in untreated gonia cells, endomitosis followed by reductional mitosis which restores the diploid number. In B. jararaca males we observed that some gonad regions present changes in the meiotic mechanism. In this case, endoreduplicated cells segregate the diplochromosomes to opposite poles forming directly endoreduplicated second metaphases of meiosis with the suppression of first meiosis. By a successive division, these cells form nuclei with one set of chromosomes. Chromosome doubling in oogonia is known in hybrid species and in parthenogenetic salamanders and lizards. This species also presented chromosome rearrangements leading to aneuploidies in mitosis and meiosis. It is suggested that somatic pairing, endomitosis, meiotic alterations, and chromosomal aberrations can be correlated processes. Similar aspects of nuclei configurations, endomitosis and reductional mitosis were found in other Viperidae and Colubridae species.
Collapse
Affiliation(s)
- Maria Luiza Beçak
- Laboratório de Genética, Instituto Butantan, São Paulo, SP, 05503-900, Brasil.
| | | | | |
Collapse
|
21
|
Bogart JP, Hedges SB. Rapid chromosome evolution in Jamaican frogs of the genusEleutherodactylus(Leptodactylidae). J Zool (1987) 1995. [DOI: 10.1111/j.1469-7998.1995.tb05124.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Elinson RP, Bogart JP, Licht LE, Lowcock LA. Gynogenetic mechanisms in polyploid hybrid salamanders. ACTA ACUST UNITED AC 1992. [DOI: 10.1002/jez.1402640114] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Abstract
In eastern North America there are populations of all-female salamanders that incorporate the nuclear genomes of two or three of four sympatric bisexual species. The hybrids can be diploid, triploid, tetraploid or pentaploid, and 18 different combinations have been reported. All hybrids require sperm from a sympatric male of one of the bisexual species to reproduce, but the sperm may or may not be incorporated in the egg. Some of the hybrids are believed to represent separate, clonal species, but little is known of the origin of this hybrid complex. Vertebrate mitochondrial DNA is inherited maternally, allowing identification of the female parent that gave rise to hybrid lineages. A portion of the cytochrome b gene was sequenced from diploid and triploid hybrids that represent combinations of all four species. Nearly all hybrids had a similar mitochondrial genome sequence, independent of nuclear genome composition and ploidy, and the sequence was distinct from that of any of the four bisexual species. The hybrids maintain a mitochondrial lineage that has evolved independently of their nuclear genome and represent the most ancient known unisexual vertebrate lineage.
Collapse
Affiliation(s)
- S B Hedges
- Department of Biology, Pennsylvania State University 16802
| | | | | |
Collapse
|
24
|
Tunner HG, Heppich-Tunner S. Genome exclusion and two strategies of chromosome duplication in oogenesis of a hybrid frog. Naturwissenschaften 1991. [DOI: 10.1007/bf01134041] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
|
26
|
Kezer J, Sessions SK, Le�n P. The meiotic structure and behavior of the strongly heteromorphic X/Y sex chromosomes of neotropical plethodontid salamanders of the genus Oedipina. Chromosoma 1989. [DOI: 10.1007/bf00292789] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Abstract
Although most animals reproduce sexually, a number of all-female groups exist. Triploid hybrid salamanders appear to maintain themselves by using a male's sperm to activate their eggs, after which the sperm nucleus is eliminated (gynogenesis). The incidence of sperm nuclear incorporation in eggs of these salamanders depends on temperature. Triploid offspring derived gynogenetically are more frequent at lower temperature, whereas tetraploid offspring derived sexually are far more frequent at higher temperatures. Temperature-dependent variability in sperm nuclear incorporation helps explain the variability in reproductive modes reported for hybrid salamanders.
Collapse
Affiliation(s)
- J P Bogart
- Department of Zoology, College of Biological Science, University of Guelph, Ontario, Canada
| | | | | |
Collapse
|
28
|
|
29
|
Green DM, Kezer J, Nussbaum RA. Triploidy in Hochstetter's frog,Leiopelma hochstetteri, from New Zealand. NEW ZEALAND JOURNAL OF ZOOLOGY 1984. [DOI: 10.1080/03014223.1984.10428261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
30
|
|
31
|
|