Fantel AG, Juchau MR, Tracy JW, Burroughs CJ, Person RE. Studies of mechanisms of niridazole-elicited embryotoxicity: evidence against a major role for covalent binding.
TERATOLOGY 1989;
39:63-74. [PMID:
2718141 DOI:
10.1002/tera.1420390108]
[Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Studies reported here were designed to examine the hypothesis that covalent binding of reactive intermediates to macromolecules of the conceptus represents a major mechanism for the embryotoxicity of niridazole (NDZ). The roles of embryonic thiol content and oxygenation on: 1) malformation incidence; 2) reductive metabolism; and 3) covalent binding to embryonic macromolecules of metabolites resulting from reductive biotransformation of NDZ were studied. Results were compared with those from studies with the nondysmorphogenic analog of NDZ, 4'-methylniridazole (MNDZ). Day 10 rat embryos were pretreated for 5 hours in vitro with either L-buthionine-S, R-sulfoximine (BSO) or N-acetylcysteine (NAC) to modulate their glutathione (GSH) content. BSO reduced GSH levels, but NAC was ineffective. Following pretreatment, embryos were cultured for an additional 15 hours in the presence of [14C]NDZ or [14C]MNDZ with an initial oxygen concentration of 5%. At the end of the culture period (day 11, AM), those embryos with active heartbeat and vitelline circulation were examined for asymmetric malformations. Drug metabolites were subjected to multiple extractions from the culture medium and subjected to quantitative high-performance liquid chromatography (HPLC) analysis. Homogenates of the embryos were extracted with trichloroacetic acid (TCA) to estimate the covalent binding of radiolabeled parent compound/metabolites. Autoradiographic analyses were performed on other embryos. BSO pretreatment, which reduces embryonic GSH tissue levels, dramatically increased both the conversion of NDZ to 1-thiocarbamoyl-2-imidazolidinone (TCI) (generated via reductive metabolism of NDZ) and covalently bound label but failed to increase embryotoxicity. NAC, by contrast, did not significantly affect embryonic GSH levels, TCI generation, or covalent binding. Because both rates of metabolism of NDZ to TCI and covalent binding could vary independently of malformation incidence, we concluded that they do not represent critical mechanistic factors for the embryotoxicity of NDZ and related nitroheterocycles.
Collapse