1
|
Type II secretion system: A magic beanstalk or a protein escalator. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1568-77. [DOI: 10.1016/j.bbamcr.2013.12.020] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/13/2013] [Accepted: 12/23/2013] [Indexed: 12/12/2022]
|
2
|
Douzi B, Filloux A, Voulhoux R. On the path to uncover the bacterial type II secretion system. Philos Trans R Soc Lond B Biol Sci 2012; 367:1059-72. [PMID: 22411978 DOI: 10.1098/rstb.2011.0204] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gram-negative bacteria have evolved several secretory pathways to release enzymes or toxins into the surrounding environment or into the target cells. The type II secretion system (T2SS) is conserved in Gram-negative bacteria and involves a set of 12 to 16 different proteins. Components of the T2SS are located in both the inner and outer membranes where they assemble into a supramolecular complex spanning the bacterial envelope, also called the secreton. The T2SS substrates transiently go through the periplasm before they are translocated across the outer membrane and exposed to the extracellular milieu. The T2SS is unique in its ability to promote secretion of large and sometimes multimeric proteins that are folded in the periplasm. The present review describes recently identified protein-protein interactions together with structural and functional advances in the field that have contributed to improve our understanding on how the type II secretion apparatus assembles and on the role played by individual proteins of this highly sophisticated system.
Collapse
Affiliation(s)
- Badreddine Douzi
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (CNRS-LISM-UPR 9027), Aix-Marseille Universités, Institut de Microbiologie de la Méditerranée, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | |
Collapse
|
3
|
Specificity of the type II secretion systems of enterotoxigenic Escherichia coli and Vibrio cholerae for heat-labile enterotoxin and cholera toxin. J Bacteriol 2010; 192:1902-11. [PMID: 20097854 DOI: 10.1128/jb.01542-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The Gram-negative type II secretion (T2S) system is a multiprotein complex mediating the release of virulence factors from a number of pathogens. While an understanding of the function of T2S components is emerging, little is known about what identifies substrates for export. To investigate T2S substrate recognition, we compared mutations affecting the secretion of two highly homologous substrates: heat-labile enterotoxin (LT) from enterotoxigenic Escherichia coli (ETEC) and cholera toxin (CT) from Vibrio cholerae. Each toxin consists of one enzymatic A subunit and a ring of five B subunits mediating the toxin's secretion. Here, we report two mutations in LT's B subunit (LTB) that reduce its secretion from ETEC without global effects on the toxin. The Q3K mutation reduced levels of secreted LT by half, and as with CT (T. D. Connell, D. J. Metzger, M. Wang, M. G. Jobling, and R. K. Holmes, Infect. Immun. 63:4091-4098, 1995), the E11K mutation impaired LT secretion. Results in vitro and in vivo show that these mutants are not degraded more readily than wild-type LT. The Q3K mutation did not significantly affect CT B subunit (CTB) secretion from V. cholerae, and the E11A mutation altered LT and CTB secretion to various extents, indicating that these toxins are identified as secretion substrates in different ways. The levels of mutant LTB expressed in V. cholerae were low or undetectable, but each CTB mutant expressed and secreted at wild-type levels in ETEC. Therefore, ETEC's T2S system seems to accommodate mutations in CTB that impair the secretion of LTB. Our results highlight the exquisitely fine-tuned relationship between T2S substrates and their coordinate secretion machineries in different bacterial species.
Collapse
|
4
|
Genetic mapping of secretion and functional determinants of the Vibrio cholerae TcpF colonization factor. J Bacteriol 2009; 191:3665-76. [PMID: 19304855 DOI: 10.1128/jb.01724-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colonization of the human small intestine by Vibrio cholerae requires the type IV toxin-coregulated pilus (TCP). TcpF, which is encoded within the tcp operon, is secreted from the bacterial cell by the TCP apparatus and is also essential for colonization. Bacteria lacking tcpF are deficient in colonization, and anti-TcpF antibodies are protective in the infant mouse cholera model. In order to elucidate the regions of the protein that are required for secretion through the TCP apparatus and for its function in colonization, random mutagenesis of tcpF was performed. Analysis of these mutants suggests that multiple regions throughout the protein influence extracellular secretion and that determinants near the C terminus are important for the function of TcpF in colonization. The TcpF proteins of certain environmental V. cholerae isolates with 31% to 66% identity to pathogenic V. cholerae TcpF showed higher similarity in regions identified as secretion determinants but diverged in regions found to be important for colonization. These environmental TcpF proteins are secreted from the pathogenic strain; however, they do not mediate colonization in the infant mouse model. Here we provide genetic evidence pointing toward regions of TcpF that influence secretion, as well as regions that play an important role in in vivo colonization.
Collapse
|
5
|
Filloux A. The underlying mechanisms of type II protein secretion. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1694:163-79. [DOI: 10.1016/j.bbamcr.2004.05.003] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Accepted: 05/07/2004] [Indexed: 10/26/2022]
|
6
|
Palomäki T, Pickersgill R, Riekki R, Romantschuk M, Saarilahti HT. A putative three-dimensional targeting motif of polygalacturonase (PehA), a protein secreted through the type II (GSP) pathway in Erwinia carotovora. Mol Microbiol 2002; 43:585-96. [PMID: 11929517 DOI: 10.1046/j.1365-2958.2002.02793.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intramolecular information specifying protein secretion through the type II (GSP) pathway of Gram-negative bacteria was investigated. Two regions of the polygalacturonase (PehA) of Erwinia carotovora containing residues proposed to be included in a targeting motif were located, one close to the C-terminus between residues 342 and 369 and another between residues 84 and 135 in the large central loops. The regions were required together to promote secretion. Further residues in the middle of the protein were required for proper positioning of the regions, suggesting that they were both involved in interaction with the GSP. To our knowledge, this is the first time that a possible three-dimensional targeting motif has been defined. At least one of the motifs comprises a cluster on the surface of the protein. The two motifs are structurally dissimilar, suggesting that there are two distinct recognition regions in the GSP apparatus. Finally, we propose that the targeting motifs are of a complex conformational nature with some variability accommodated, as illustrated by the observation that many mutations exhibited no clear phenotype individually but, in combination, severely compromised secretion.
Collapse
Affiliation(s)
- Tiina Palomäki
- Department of Biosciences, Division of Genetics, Viikki Biocenter, University of Helsinki, PO Box 56, FIN-00014 Finland
| | | | | | | | | |
Collapse
|
7
|
Abstract
The type II secretion pathway or the main terminal branch of the general secretion pathway, as it has also been referred to, is widely distributed among Proteobacteria, in which it is responsible for the extracellular secretion of toxins and hydrolytic enzymes, many of which contribute to pathogenesis in both plants and animals. Secretion through this pathway differs from most other membrane transport systems, in that its substrates consist of folded proteins. The type II secretion apparatus is composed of at least 12 different gene products that are thought to form a multiprotein complex, which spans the periplasmic compartment and is specifically required for translocation of the secreted proteins across the outer membrane. This pathway shares many features with the type IV pilus biogenesis system, including the ability to assemble a pilus-like structure. This review discusses recent findings on the organization of the secretion apparatus and the role of its various components in secretion. Different models for pilus-mediated secretion through the gated pore in the outer membrane are also presented, as are the possible properties that determine whether a protein is recognized and secreted by the type II pathway.
Collapse
Affiliation(s)
- M Sandkvist
- Department of Biochemistry, American Red Cross, Jerome H. Holland Laboratory, 15601 Crabbs Branch Way, Rockville, MD 20855, USA.
| |
Collapse
|
8
|
Abstract
Gram-negative bacteria have developed a variety of secretion pathways to secrete toxins and enzymes into the extracellular medium. These pathways are very different with respect to their functional mechanism and complexity, and each system has its own advantages and limitations, regarding the number, size, folding state and fate of their substrates. Pseudomonas aeruginosa secretes many different proteins into the extracellular medium, using at least four secretion pathways. Most of the exoproteins are secreted via the type II system, composed of the 12 Xcp proteins. The only outer membrane protein of the system, XcpQ, belongs to a large family of proteins, designated secretins, which participate in a variety of different transport processes. Other Xcp proteins, XcpT-X, show homology to the subunits of the retractile type IV pili. Further analogies between the type II system and the assembly of retractile pili suggest a mechanism for type II secretion, in which a pilus-like structure, composed of XcpT-X, facilitates the transport of exoproteins through the channel formed by the secretin XcpQ.
Collapse
Affiliation(s)
- M Koster
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, The Netherlands
| | | | | |
Collapse
|
9
|
Voulhoux R, Taupiac MP, Czjzek M, Beaumelle B, Filloux A. Influence of deletions within domain II of exotoxin A on its extracellular secretion from Pseudomonas aeruginosa. J Bacteriol 2000; 182:4051-8. [PMID: 10869085 PMCID: PMC94592 DOI: 10.1128/jb.182.14.4051-4058.2000] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2000] [Accepted: 04/21/2000] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a gram-negative bacterium that secretes many proteins into the extracellular medium via the Xcp machinery. This pathway, conserved in gram-negative bacteria, is called the type II pathway. The exoproteins contain information in their amino acid sequence to allow targeting to their secretion machinery. This information may be present within a conformational motif. The nature of this signal has been examined for P. aeruginosa exotoxin A (PE). Previous studies failed to identify a common minimal motif required for Xcp-dependent recognition and secretion of PE. One study identified a motif at the N terminus of the protein, whereas another one found additional information at the C terminus. In this study, we assess the role of the central PE domain II composed of six alpha-helices (A to F). The secretion behavior of PE derivatives, individually deleted for each helix, was analyzed. Helix E deletion has a drastic effect on secretion of PE, which accumulates within the periplasm. The conformational rearrangement induced in this variant is predicted from the three-dimensional PE structure, and the molecular modification is confirmed by gel filtration experiments. Helix E is in the core of the molecule and creates close contact with other domains (I and III). Deletion of the surface-exposed helix F has no effect on secretion, indicating that no secretion information is contained in this helix. Finally, we concluded that disruption of a structured domain II yields an extended form of the molecule and prevents formation of the conformational secretion motif.
Collapse
Affiliation(s)
- R Voulhoux
- Laboratoire d'Ingéniérie des Systèmes Macromoléculaires, UPR9027, France
| | | | | | | | | |
Collapse
|
10
|
Filloux A, Michel G, Bally M. GSP-dependent protein secretion in gram-negative bacteria: the Xcp system of Pseudomonas aeruginosa. FEMS Microbiol Rev 1998; 22:177-98. [PMID: 9818381 DOI: 10.1111/j.1574-6976.1998.tb00366.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Bacteria have evolved several secretory pathways to release proteins into the extracellular medium. In Gram-negative bacteria, the exoproteins cross a cell envelope composed of two successive hydrophobic barriers, the cytoplasmic and outer membranes. In some cases, the protein is translocated in a single step across the cell envelope, directly from the cytoplasm to the extracellular medium. In other cases, outer membrane translocation involves an extension of the signal peptide-dependent pathway for translocation across the cytoplasmic membrane via the Sec machinery. By analogy with the so-called general export pathway (GEP), this latter route, including two separate steps across the inner and the outer membrane, was designated as the general secretory pathway (GSP) and is widely conserved among Gram-negative bacteria. In their great majority, exoproteins use the main terminal branch (MTB) of the GSP, namely the Xcp machinery in Pseudomonas aeruginosa, to reach the extracellular medium. In this review, we will use the P. aeruginosa Xcp system as a basis to discuss multiple aspects of the GSP mechanism, including machinery assembly, exoprotein recognition, energy requirement and pore formation for driving through the outer membrane.
Collapse
Affiliation(s)
- A Filloux
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires/UPR9027, IBSM-CNRS, Marseille, France.
| | | | | |
Collapse
|
11
|
Russel M. Macromolecular assembly and secretion across the bacterial cell envelope: type II protein secretion systems. J Mol Biol 1998; 279:485-99. [PMID: 9641973 DOI: 10.1006/jmbi.1998.1791] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A decade ago, Pugsley and colleagues reported the existence of a large region of Klebsiella DNA, distinct from the Klebsiella gene encoding pullulanase, which was necessary for secretion of this enzyme to the cell surface in Escherichia coli (d'Enfert et al., 1987a,b). The pul genes it contained proved to be the tip of an iceberg. The sequences reported before 1992 (d'Enfert et al., 1987a,b; d'Enfert & Pugsley, 1989; Pugsley & Reyss, 1990; Reyss & Pugsley, 1990) included only one gene (pulD) that matched any sequence in the data base; a 220 amino acid residue segment of PulD was 32% identical with a portion of the filamentous phage-encoded protein, pIV. But by the time the sequence of the 18.8 kb DNA fragment that contained the pul genes had been completed (Possot et al., 1992), reports of sets of homologous genes in several species of Gram-negative plant and animal pathogens had appeared. For the most part, these gene clusters were cloned by their ability to complement mutants that produced, but failed to secrete, proteins normally found in the extracellular milieu; when tested, the mutants showed reduced pathogenicity or were totally avirulent. The secreted proteins included hydrolytic enzymes such as cellulase and pectinase from plant pathogens, and proteases and toxins from animal pathogens. The multi-gene family necessary for secretion of these enzymes is now known as the type II system or the main terminal branch (MTB) of the general secretion pathway (GSP). As summarized by Pugsley et al. (1997), the current tally includes type II systems from Klebsiella oxytoca (pul), Erwinia chrysanthemi and carotovora (out), Xanthomonas campestris (xps), Pseudomonas aeruginosa (xcp), Aeromonas hydrophila (exe), and Vibrio cholerae (eps). A second type II system (sps) necessary for deposition of the S-layer on the cell surface in A. hydrophila is more similar to the X. campestris than A. hydrophila genes (Thomas & Trust, 1995). The biggest surprise has been the discovery of a complete set of type II secretion genes in E. coli K12. The E. coli genes are not expressed under normal growth conditions, and a search is underway to find inducing conditions and secretion substrates (Francetic & Pugsley, 1996). Impressive progress has already been made in defining components of the pathway. What remains to be understood in mechanistic detail is how this protein secretion system functions.
Collapse
Affiliation(s)
- M Russel
- Rockefeller University, New York, NY 10021, USA
| |
Collapse
|
12
|
Lindeberg M, Boyd CM, Keen NT, Collmer A. External loops at the C terminus of Erwinia chrysanthemi pectate lyase C are required for species-specific secretion through the out type II pathway. J Bacteriol 1998; 180:1431-7. [PMID: 9515910 PMCID: PMC107041 DOI: 10.1128/jb.180.6.1431-1437.1998] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The type II secretion system (main terminal branch of the general secretion pathway) is used by diverse gram-negative bacteria to secrete extracellular proteins. Proteins secreted by this pathway are synthesized with an N-terminal signal peptide which is removed upon translocation across the inner membrane, but the signals which target the mature proteins for secretion across the outer membrane are unknown. The plant pathogens Erwinia chrysanthemi and Erwinia carotovora secrete several isozymes of pectate lyase (Pel) by the out-encoded type II pathway. However, these two bacteria cannot secrete Pels encoded by heterologously expressed pel genes from the other species, suggesting the existence of species-specific secretion signals within these proteins. The functional cluster of E. chrysanthemi out genes carried on cosmid pCPP2006 enables Escherichia coli to secrete E. chrysanthemi, but not E. carotovora, Pels. We exploited the high sequence similarity between E. chrysanthemi PelC and E. carotovora Pel1 to construct 15 hybrid proteins in which different regions of PelC were replaced with homologous sequences from Pell. The differential secretion of these hybrid proteins by E. coli(pCPP2006) revealed M118 to D175 and V215 to C329 as regions required for species-specific secretion of PelC. We propose that the primary targeting signal is contained within the external loops formed by G274 to C329 but is dependent on residues in M118 to D170 and V215 to G274 for proper positioning.
Collapse
Affiliation(s)
- M Lindeberg
- Department of Plant Pathology, Cornell University, Ithaca, New York 14853-4203, USA
| | | | | | | |
Collapse
|
13
|
Lory S. Secretion of proteins and assembly of bacterial surface organelles: shared pathways of extracellular protein targeting. Curr Opin Microbiol 1998; 1:27-35. [PMID: 10066461 DOI: 10.1016/s1369-5274(98)80139-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Extracellular or surface localization of virulence determinants is an important attribute of pathogenic microorganisms. The past decade has seen significant research advances in defining the steps and identifying the necessary machinery for protein secretion from bacterial cells. In Gram-negative pathogens, four distinct classes of secretion pathways have been identified that deliver virulence factors to their sites of action. These pathways are responsible for the delivery of soluble extracellular enzymes into the surrounding medium, or for specifically targeting proteins to the host cell. In several instances protein secretion pathways are similar to those involved in assembly of bacterial appendages. Combination of biochemical and genetic analyses has recently revealed that the pathways of protein secretion and surface localization of various organelles are mechanistically similar which was not apparent simply by comparing amino acid sequences of related proteins. The choice of the pathway that a protein will utilize may not be dictated only by the specific requirement of the secreted protein to traverse the cell envelope in the functional form, but also by the need to assure its delivery to the correct site of action outside the bacterial cell.
Collapse
Affiliation(s)
- S Lory
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
14
|
Pugsley AP, Francetic O, Possot OM, Sauvonnet N, Hardie KR. Recent progress and future directions in studies of the main terminal branch of the general secretory pathway in Gram-negative bacteria--a review. Gene 1997; 192:13-9. [PMID: 9224869 DOI: 10.1016/s0378-1119(96)00803-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The main terminal branch (MTB) of the general secretory pathway is used by a wide variety of Gram- bacteria to transport exoproteins from the periplasm to the outside milieu. Recent work has led to the identification of the function of two of its 14 (or more) components: an enzyme with type-IV prepilin peptidase activity and a chaperone-like protein required for the insertion of another of the MTB components into the outer membrane. Despite these important discoveries, little tangible progress has been made towards identifying MTB components that determine secretion specificity (presumably by binding to cognate exoproteins) or which form the putative channel through which exoproteins are transported across the outer membrane. However, the idea that the single integral outer membrane component of the MTB could line the wall of this channel, and the intriguing possibility that other components of the MTB form a rudimentary type-IV pilus-like structure that might span the periplasm both deserve more careful examination. Although Escherichia coli K-12 does not normally secrete exoproteins, its chromosome contains an apparently complete set of genes coding for MTB components. At least two of these genes code for functional proteins, but the operon in which twelve of the genes are located does not appear to be expressed. We are currently searching for conditions which allow these genes to be expressed with the eventual aim of identifying the protein(s) that E. coli K-12 can secrete.
Collapse
Affiliation(s)
- A P Pugsley
- Unité de Génétique Moléculaire, CNRS URA 1149, Institut Pasteur, Paris, France.
| | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
- G P Salmond
- Dept of Biochemistry, University of Cambridge, UK.
| |
Collapse
|
16
|
Sauvonnet N, Pugsley AP. Identification of two regions of Klebsiella oxytoca pullulanase that together are capable of promoting beta-lactamase secretion by the general secretory pathway. Mol Microbiol 1996; 22:1-7. [PMID: 8899703 DOI: 10.1111/j.1365-2958.1996.tb02650.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Pullulanase (PulA) is a 116 kDa amylolytic lipoprotein secreted by the Gram-negative bacterium Klebsiella oxytoca via the general secretory pathway. A deletion strategy was used in an attempt to determine the nature and the location of the secretion signal(s) in PulA presumed to be necessary for its specific secretion. The starting material was a gene fusion coding for an efficiently secreted PulA-beta-lactamase hybrid protein. Successive series of exonuclease III-generated deletions were used to remove internal segments of PulA from this hybrid. A simple plate test allowed the identification of truncated hybrids that retained beta-lactamase activity and that were secreted. Two non-adjacent regions, A and B (78 and 80 amino acids, respectively), were together necessary and sufficient to promote beta-lactamase translocation across the outer membrane. Secretion of PulA itself was markedly reduced when either of these regions was deleted, and was completely abolished when both regions were eliminated.
Collapse
Affiliation(s)
- N Sauvonnet
- Unité de Génétique Moléculaire, CNRS URA 1149, Institut Pasteur, Paris, France
| | | |
Collapse
|