1
|
Pacher M, Puchta H. From classical mutagenesis to nuclease-based breeding - directing natural DNA repair for a natural end-product. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:819-833. [PMID: 28027431 DOI: 10.1111/tpj.13469] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 05/18/2023]
Abstract
Production of mutants of crop plants by the use of chemical or physical genotoxins has a long tradition. These factors induce the natural DNA repair machinery to repair damage in an error-prone way. In the case of radiation, multiple double-strand breaks (DSBs) are induced randomly in the genome, leading in very rare cases to a desirable phenotype. In recent years the use of synthetic, site-directed nucleases (SDNs) - also referred to as sequence-specific nucleases - like the CRISPR/Cas system has enabled scientists to use exactly the same naturally occurring DNA repair mechanisms for the controlled induction of genomic changes at pre-defined sites in plant genomes. As these changes are not necessarily associated with the permanent integration of foreign DNA, the obtained organisms per se cannot be regarded as genetically modified as there is no way to distinguish them from natural variants. This applies to changes induced by DSBs as well as single-strand breaks, and involves repair by non-homologous end-joining and homologous recombination. The recent development of SDN-based 'DNA-free' approaches makes mutagenesis strategies in classical breeding indistinguishable from SDN-derived targeted genome modifications, even in regard to current regulatory rules. With the advent of new SDN technologies, much faster and more precise genome editing becomes available at reasonable cost, and potentially without requiring time-consuming deregulation of newly created phenotypes. This review will focus on classical mutagenesis breeding and the application of newly developed SDNs in order to emphasize similarities in the context of the regulatory situation for genetically modified crop plants.
Collapse
Affiliation(s)
- Michael Pacher
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, PO 6980, 76049, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, PO 6980, 76049, Karlsruhe, Germany
| |
Collapse
|
2
|
Sun Y, Li J, Xia L. Precise Genome Modification via Sequence-Specific Nucleases-Mediated Gene Targeting for Crop Improvement. FRONTIERS IN PLANT SCIENCE 2016; 7:1928. [PMID: 28066481 PMCID: PMC5167731 DOI: 10.3389/fpls.2016.01928] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/05/2016] [Indexed: 05/17/2023]
Abstract
Genome editing technologies enable precise modifications of DNA sequences in vivo and offer a great promise for harnessing plant genes in crop improvement. The precise manipulation of plant genomes relies on the induction of DNA double-strand breaks by sequence-specific nucleases (SSNs) to initiate DNA repair reactions that are based on either non-homologous end joining (NHEJ) or homology-directed repair (HDR). While complete knock-outs and loss-of-function mutations generated by NHEJ are very valuable in defining gene functions, their applications in crop improvement are somewhat limited because many agriculturally important traits are conferred by random point mutations or indels at specific loci in either the genes' encoding or promoter regions. Therefore, genome modification through SSNs-mediated HDR for gene targeting (GT) that enables either gene replacement or knock-in will provide an unprecedented ability to facilitate plant breeding by allowing introduction of precise point mutations and new gene functions, or integration of foreign genes at specific and desired "safe" harbor in a predefined manner. The emergence of three programmable SSNs, such as zinc finger nucleases, transcriptional activator-like effector nucleases, and the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems has revolutionized genome modification in plants in a more controlled manner. However, while targeted mutagenesis is becoming routine in plants, the potential of GT technology has not been well realized for traits improvement in crops, mainly due to the fact that NHEJ predominates DNA repair process in somatic cells and competes with the HDR pathway, and thus HDR-mediated GT is a relative rare event in plants. Here, we review recent research findings mainly focusing on development and applications of precise GT in plants using three SSNs systems described above, and the potential mechanisms underlying HDR events in plant cells. We then address the challenges and propose future perspectives in order to facilitate the implementation of precise genome modification through SSNs-mediated GT for crop improvement in a global context.
Collapse
|
3
|
Abstract
Homologous recombination (HR) is a central cellular process involved in many aspects of genome maintenance such as DNA repair, replication, telomere maintenance, and meiotic chromosomal segregation. HR is highly conserved among eukaryotes, contributing to genome stability as well as to the generation of genetic diversity. It has been intensively studied, for almost a century, in plants and in other organisms. In this antireview, rather than reviewing existing knowledge, we wish to underline the many open questions in plant HR. We will discuss the following issues: how do we define homology and how the degree of homology affects HR? Are there any plant-specific HR qualities, how extensive is functional conservation and did HR proteins acquire new functions? How efficient is HR in plants and what are the cis and the trans factors that regulate it? Finally, we will give the prospects for enhancing the rates of gene targeting and meiotic HR for plant breeding purposes.
Collapse
|
4
|
Kathiria P, Kovalchuk I. Reporter gene-based recombination lines for studies of genome stability. Methods Mol Biol 2010; 631:243-52. [PMID: 20204880 DOI: 10.1007/978-1-60761-646-7_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Homologous recombination is a double-strand break repair mechanism operating in somatic cells and involved in meiotic crossovers in plants. It is responsible for the maintenance of genome stability and thus plays a crucial role in adaptation to stress. Recombination between homologous loci is believed to be regulated in part by epigenetic machinery such as methylation. Therefore, the recombination frequency at a specific locus can reflect the chromatin status.Several reporter gene-based recombination constructs have been developed to study HR frequencies in plants. Among them, the luciferase and beta-glucuronidase-based recombination reporter systems are the most widely used. Here, we explain how reporter gene recombination assays operate and in which applications they are used. We also present a conceptually new system for analysis of sequence-specific recombination frequency. These assays can be effectively used for analysis of locus-specific endogenous and stress-induced recombination frequencies.
Collapse
Affiliation(s)
- Palak Kathiria
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | | |
Collapse
|
5
|
Pacher M, Schmidt-Puchta W, Puchta H. Two unlinked double-strand breaks can induce reciprocal exchanges in plant genomes via homologous recombination and nonhomologous end joining. Genetics 2007; 175:21-9. [PMID: 17057227 PMCID: PMC1775016 DOI: 10.1534/genetics.106.065185] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 10/06/2006] [Indexed: 11/18/2022] Open
Abstract
Using the rare-cutting endonuclease I-SceI we were able to demonstrate before that the repair of a single double-strand break (DSB) in a plant genome can be mutagenic due to insertions and deletions. However, during replication or due to irradiation several breaks might be induced simultaneously. To analyze the mutagenic potential of such a situation we established an experimental system in tobacco harboring two unlinked transgenes, each carrying an I-SceI site. After transient expression of I-SceI a kanamycin-resistance marker could be restored by joining two previously unlinked broken ends, either by homologous recombination (HR) or by nonhomologous end joining (NHEJ). Indeed, we were able to recover HR and NHEJ events with similar frequencies. Despite the fact that no selection was applied for joining the two other ends, the respective linkage could be detected in most cases tested, demonstrating that the respective exchanges were reciprocal. The frequencies obtained indicate that DSB-induced translocation is up to two orders of magnitude more frequent in somatic cells than ectopic gene conversion. Thus, DSB-induced reciprocal exchanges might play a significant role in plant genome evolution. The technique applied in this study may also be useful for the controlled exchange of unlinked sequences in plant genomes.
Collapse
Affiliation(s)
- Michael Pacher
- Botany II, University of Karlsruhe, D-76128 Karlsruhe, Germany
| | | | | |
Collapse
|
6
|
Cotsaftis O, Guiderdoni E. Enhancing gene targeting efficiency in higher plants: rice is on the move. Transgenic Res 2005; 14:1-14. [PMID: 15865044 DOI: 10.1007/s11248-004-4066-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Meeting the challenge of routine gene targeting (GT) in higher plants is of crucial interest to researchers and plant breeders who are currently in need of a powerful tool to specifically modify a given locus in a genome. Higher plants have long been considered the last lineage resistant to targeting technology. However, a recent report described an efficient method of T-DNA-mediated targeted disruption of a non-selectable locus in rice [Terada et al., Nat Biotechnol 20: 1030-1034 (2002)]. Though this study was an obvious breakthrough, further improvement of GT frequencies may derive from a better understanding of the natural mechanisms that control homologous recombination (HR) processes. In this review, we will focus on what is known about HR and the factors which may hamper the development of routine GT by HR in higher plants. We will also present the current strategies envisaged to overcome these limitations, such as expression of recombination proteins and refinements in the design of the transformation vector.
Collapse
Affiliation(s)
- Olivier Cotsaftis
- UMR1096 PIA, Biotrop Program, Cirad-Amis, Avenue Agropolis, F-34398 Montpellier Cedex 5, France.
| | | |
Collapse
|
7
|
Jelesko JG, Carter K, Thompson W, Kinoshita Y, Gruissem W. Meiotic recombination between paralogous RBCSB genes on sister chromatids of Arabidopsis thaliana. Genetics 2004; 166:947-57. [PMID: 15020479 PMCID: PMC1470745 DOI: 10.1534/genetics.166.2.947] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Paralogous genes organized as a gene cluster can rapidly evolve by recombination between misaligned paralogs during meiosis, leading to duplications, deletions, and novel chimeric genes. To model unequal recombination within a specific gene cluster, we utilized a synthetic RBCSB gene cluster to isolate recombinant chimeric genes resulting from meiotic recombination between paralogous genes on sister chromatids. Several F1 populations hemizygous for the synthRBCSB1 gene cluster gave rise to Luc+ F2 plants at frequencies ranging from 1 to 3 x 10(-6). A nonuniform distribution of recombination resolution sites resulted in the biased formation of recombinant RBCS3B/1B::LUC genes with nonchimeric exons. The positioning of approximately half of the mapped resolution sites was effectively modeled by the fractional length of identical DNA sequences. In contrast, the other mapped resolution sites fit an alternative model in which recombination resolution was stimulated by an abrupt transition from a region of relatively high sequence similarity to a region of low sequence similarity. Thus, unequal recombination between paralogous RBCSB genes on sister chromatids created an allelic series of novel chimeric genes that effectively resulted in the diversification rather than the homogenization of the synthRBCSB1 gene cluster.
Collapse
Affiliation(s)
- John G Jelesko
- Plant Pathology, Physiology, and Weed Science Department, Fralin Biotechnology Center, Virginia Polytechnic Institute and State University, Blacksburg 24061-0346, USA.
| | | | | | | | | |
Collapse
|
8
|
Dube T, Kovalchuk I, Hohn B, Thomson JA. Agrobacterium tumefaciens-mediated transformation of plants by the pTF-FC2 plasmid is efficient and strictly dependent on the MobA protein. PLANT MOLECULAR BIOLOGY 2004; 55:531-539. [PMID: 15604698 DOI: 10.1007/s11103-004-1159-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the transformation of plants by Agrobacterium tumefaciens the VirD2 protein has been shown to pilot T-DNA during its transfer to the plant cell nucleus. Other studies have shown that the MobA protein of plasmid RSF1010 is capable of mediating its transfer from Agrobacterium cells to plant cells by a similar process. We have demonstrated previously that plasmid pTF-FC2, which has some similarity to RSF1010, is also able to transfer DNA efficiently. In this study, we performed a mutational analysis of the roles played by A . tumefaciens VirD2 and pTF-FC2 MobA in DNA transfer-mediated by A. tumefaciens carrying pTF-FC2. We show that MobA+/VirD2+ and MobA+/VirD2- strains were equally proficient in their ability to transfer a pTF-FC2-derived plasmid DNA to plants and to transform them. However, the MobA-/VirD2+ strain showed a DNA transfer efficiency of 0.03% compared with that of the other two strains. This sharply contrasts with our results that VirD2 can rather efficiently cleave the oriT sequence of pFT-FC2 in vitro . We therefore conclude that MobA plays a major VirD2-independent role in plant transformation by pTF-FC2.
Collapse
Affiliation(s)
- Thabani Dube
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag Rondebosch, South Africa
| | | | | | | |
Collapse
|
9
|
Jelesko JG, Carter K, Thompson W, Kinoshita Y, Gruissem W. Meiotic Recombination Between Paralogous RBCSB Genes on Sister Chromatids of Arabidopsis thaliana. Genetics 2004. [DOI: 10.1093/genetics/166.2.947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Abstract
Paralogous genes organized as a gene cluster can rapidly evolve by recombination between misaligned paralogs during meiosis, leading to duplications, deletions, and novel chimeric genes. To model unequal recombination within a specific gene cluster, we utilized a synthetic RBCSB gene cluster to isolate recombinant chimeric genes resulting from meiotic recombination between paralogous genes on sister chromatids. Several F1 populations hemizygous for the synthRBCSB1 gene cluster gave rise to Luc+ F2 plants at frequencies ranging from 1 to 3 × 10-6. A nonuniform distribution of recombination resolution sites resulted in the biased formation of recombinant RBCS3B/1B::LUC genes with nonchimeric exons. The positioning of approximately half of the mapped resolution sites was effectively modeled by the fractional length of identical DNA sequences. In contrast, the other mapped resolution sites fit an alternative model in which recombination resolution was stimulated by an abrupt transition from a region of relatively high sequence similarity to a region of low sequence similarity. Thus, unequal recombination between paralogous RBCSB genes on sister chromatids created an allelic series of novel chimeric genes that effectively resulted in the diversification rather than the homogenization of the synthRBCSB1 gene cluster.
Collapse
Affiliation(s)
- John G Jelesko
- Plant Pathology, Physiology, and Weed Science Department, Fralin Biotechnology Center, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0346
| | - Kristy Carter
- Plant Pathology, Physiology, and Weed Science Department, Fralin Biotechnology Center, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0346
| | - Whitney Thompson
- Plant Pathology, Physiology, and Weed Science Department, Fralin Biotechnology Center, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0346
| | - Yuki Kinoshita
- National Institute of Genetics, Agricultural Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Wilhelm Gruissem
- Institute of Plant Sciences, Swiss Federal Institute of Technology, ETH Zentrum, CH-8092, Zurich, Switzerland
| |
Collapse
|
10
|
Orel N, Kyryk A, Puchta H. Different pathways of homologous recombination are used for the repair of double-strand breaks within tandemly arranged sequences in the plant genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 35:604-12. [PMID: 12940953 DOI: 10.1046/j.1365-313x.2003.01832.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Different DNA repair pathways that use homologous sequences in close proximity to genomic double-strand breaks (DSBs) result in either an internal deletion or a gene conversion. We determined the efficiency of these pathways in somatic plant cells of transgenic Arabidopsis lines by monitoring the restoration of the beta-glucuronidase (GUS) marker gene. The transgenes contain a recognition site for the restriction endonuclease I-SceI either between direct GUS repeats to detect deletion formation (DGU.US), or within the GUS gene to detect gene conversion using a nearby donor sequence in direct or inverted orientation (DU.GUS and IU.GUS). Without expression of I-SceI, the frequency of homologous recombination (HR) was low and similar for all three constructs. By crossing the different lines with an I-SceI expressing line, DSB repair was induced, and resulted in one to two orders of magnitude higher recombination frequency. The frequencies obtained with the DGU.US construct were about five times higher than those obtained with DU.GUS and IU.GUS, irrespective of the orientation of the donor sequence. Our results indicate that recombination associated with deletions is the most efficient pathway of homologous DSB repair in plants. However, DSB-induced gene conversion seems to be frequent enough to play a significant role in the evolution of tandemly arranged gene families like resistance genes.
Collapse
Affiliation(s)
- Nadiya Orel
- Institute of Plant Genetics and Crop Plant Research, Corrensstrasse 3, D-06466 Gatersleben, Germany
| | | | | |
Collapse
|
11
|
Reiss B. Homologous recombination and gene targeting in plant cells. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 228:85-139. [PMID: 14667043 DOI: 10.1016/s0074-7696(03)28003-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Gene targeting has become an indispensable tool for functional genomics in yeast and mouse; however, this tool is still missing in plants. This review discusses the gene targeting problem in plants in the context of general knowledge on recombination and gene targeting. An overview on the history of gene targeting is followed by a general introduction to genetic recombination of bacteria, yeast, and vertebrates. This abridged discussion serves as a guide to the following sections, which cover plant-specific aspects of recombination assay systems, the mechanism of recombination, plant recombination genes, the relationship of recombination to the environment, approaches to stimulate homologous recombination and gene targeting, and a description of two plant systems, the moss Physcomitrella patens and the chloroplast, that naturally have high efficiencies of gene targeting. The review concludes with a discussion of alternatives to gene targeting.
Collapse
Affiliation(s)
- Bernd Reiss
- Max-Planck-Institut für Zuechtungsforschung, Carl-von-Linne-Weg 10, D-50829 Köln, Germany
| |
Collapse
|
12
|
Tomso DJ, Kreuzer KN. Double-strand break repair in tandem repeats during bacteriophage T4 infection. Genetics 2000; 155:1493-504. [PMID: 10924452 PMCID: PMC1461217 DOI: 10.1093/genetics/155.4.1493] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recombinational repair of double-strand breaks in tandemly repeated sequences often results in the loss of one or more copies of the repeat. The single-strand annealing (SSA) model for repair has been proposed to account for this nonconservative recombination. In this study we present a plasmid-based physical assay that measures SSA during bacteriophage T4 infection and apply this assay to the genetic analysis of break repair. SSA occurs readily in broken plasmid DNA and is independent of the strand exchange protein UvsX and its accessory factor UvsY. We use the unique features of T4 DNA metabolism to examine the link between SSA repair and DNA replication and demonstrate directly that the DNA polymerase and the major replicative helicase of the phage are not required for SSA repair. We also show that the Escherichia coli RecBCD enzyme can mediate the degradation of broken DNA during early, but not late, times of infection. Finally, we consider the status of broken ends during the course of the infection and propose a model for SSA during T4 infections.
Collapse
Affiliation(s)
- D J Tomso
- Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
13
|
Jelesko JG, Harper R, Furuya M, Gruissem W. Rare germinal unequal crossing-over leading to recombinant gene formation and gene duplication in Arabidopsis thaliana. Proc Natl Acad Sci U S A 1999; 96:10302-7. [PMID: 10468603 PMCID: PMC17883 DOI: 10.1073/pnas.96.18.10302] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Small, multigene families organized in a tandem array can facilitate the rapid evolution of the gene cluster by a process of meiotic unequal crossing-over. To study this process in a multicellular organism, we created a synthetic RBCSB gene cluster in Arabidopsis thaliana and used this to measure directly the frequency of meiotic, intergenic unequal crossing-over between sister chromatids. The synthetic RBCSB gene cluster was composed of a silent DeltaRBCS1B::LUC chimeric gene fusion, lacking all 5' transcription and translation signals, followed by RBCS2B and RBC3B genomic DNA. Expression of luciferase activity (luc(+)) required a homologous recombination event between the DeltaRBCS1B::LUC and the RBCS3B genes, yielding a novel recombinant RBCS3B/ 1B::LUC chimeric gene whose expression was driven by RBCS3B 5' transcription and translation signals. Using sensitive, single-photon-imaging equipment, three luc(+) seedlings were identified in more than 1 million F2 seedlings derived from self-fertilized F1 plants hemizygous for the synthetic RBCSB gene cluster. The F2 luc(+) seedlings were isolated, and molecular and genetic analysis indicated that the luc(+) trait was caused by the formation of a recombinant chimeric RBCS3B/1B::LUC gene. A predicted duplication of the RBCS2B gene also was present. The recombination resolution break points mapped adjacent to a region of intron I at which a disjunction in sequence similarity between RBCS1B and RBCS3B occurs; this provided evidence supporting models of gene cluster evolution by exon-shuffling processes. In contrast to most measures of meiotic unequal crossing-over that require the deletion of a gene in a gene cluster, these results directly measured the frequency of meiotic unequal crossing-over (approximately 3 x 10(-6)), leading to the expansion of the gene cluster and the formation of a novel recombinant gene.
Collapse
Affiliation(s)
- J G Jelesko
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102, USA
| | | | | | | |
Collapse
|
14
|
Mengiste T, Paszkowski J. Prospects for the precise engineering of plant genomes by homologous recombination. Biol Chem 1999; 380:749-58. [PMID: 10494824 DOI: 10.1515/bc.1999.095] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The targeting of chromosomal genes via homologous recombination (HR) is an essential tool of reverse genetics as applied for the functional assay of genes within complex genomes. However, in higher plants, foreign DNA integrates almost exclusively at random, non-homologous sites. A variety of environmental parameters known to influence levels of HR do not increase targeting frequencies when combined in gene-targeting experiments. The identification of cellular factors that may control the level of chromosomal HR in plant somatic cells is required. Plant genes encoding proteins similar to those involved in HR in other organisms can be found in the expanding sequence databases. Evidence for evolutionary conservation should help to decipher mechanisms of plant HR and possibly detect limiting factors. At present, however, only one genetic locus influencing levels of chromosomal recombination in plants has been well defined. Here we summarise current knowledge of HR and the status of gene targeting (GT) in plants, focusing on genetic approaches to molecular factors regulating HR levels.
Collapse
Affiliation(s)
- T Mengiste
- Friedrich Miescher Institute, Basel, Switzerland
| | | |
Collapse
|
15
|
Gorbunova V, Levy AA. How plants make ends meet: DNA double-strand break repair. TRENDS IN PLANT SCIENCE 1999; 4:263-269. [PMID: 10407442 DOI: 10.1016/s1360-1385(99)01430-2] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
DNA double-strand breaks (DSBs) lead to serious genomic deficiencies if left unrepaired. Recent studies have provided new insight into the mechanisms, the mutants and the genes involved in DSB repair in plants. These studies indicate that high fidelity DSB repair via homologous recombination is less frequent than non-homologous end-joining. Interestingly, non-homologous end-joining in plants is more error-prone than in other species, being associated with various rearrangements that often include deletions and insertions (filler DNA). We discuss the mechanism of error-prone DSB repair, which is probably an important driving force in plant genome evolution.
Collapse
Affiliation(s)
- V Gorbunova
- Plant Sciences Dept, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
16
|
Masson JE, Paszkowski J. Arabidopsis thaliana mutants altered in homologous recombination. Proc Natl Acad Sci U S A 1997; 94:11731-5. [PMID: 9326679 PMCID: PMC23619 DOI: 10.1073/pnas.94.21.11731] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Homologous recombination contributes both to the generation of allelic diversity and to the preservation of genetic information. In plants, a lack of suitable experimental material has prevented studies of the regulatory and enzymatic aspects of recombination in somatic and meiotic cells. We have isolated nine Arabidopsis thaliana mutants hypersensitive to x-ray irradiation (xrs) and examined their recombination properties. For the three xrs loci described here, single recessive mutations were found to confer simultaneous hypersensitivities to the DNA-damaging chemicals mitomycin C (MMCs) and/or methyl methanesulfonate (MMSs) and alterations in homologous recombination. Mutant xrs9 (Xrays, MMSs) is reduced in both somatic and meiotic recombination and resembles yeast mutants of the rad52 epistatic group. xrs11 (Xrays, MMCs) is deficient in the x-ray-mediated stimulation of homologous recombination in somatic cells in a manner suggesting a specific signaling defect. xrs4 (Xrays, MMSs, MMCs) has a significant deficiency in somatic recombination, but this is accompanied by meiotic hyper-recombination. A corresponding phenotype has not been reported in other systems and thus this indicates a novel, plant-specific regulatory circuit linking mitotic and meiotic recombination.
Collapse
Affiliation(s)
- J E Masson
- Friedrich Miescher Institute, P. O. Box 2543, 4002 Basel, Switzerland.
| | | |
Collapse
|
17
|
Puchta H, Hohn B. From centiMorgans to base pairs: homologous recombination in plants. TRENDS IN PLANT SCIENCE 1996. [PMID: 0 DOI: 10.1016/s1360-1385(96)82595-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
|
18
|
Tinland B, Hohn B, Puchta H. Agrobacterium tumefaciens transfers single-stranded transferred DNA (T-DNA) into the plant cell nucleus. Proc Natl Acad Sci U S A 1994; 91:8000-4. [PMID: 11607492 PMCID: PMC44532 DOI: 10.1073/pnas.91.17.8000] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transferred DNA (T-DNA) is transferred as a single-stranded derivative from Agrobacterium to the plant cell nucleus. This conclusion is drawn from experiments exploiting the different properties of single- and double-stranded DNA to perform extrachromosomal homologous recombination in plant cells. After transfer from Agrobacterium to plant cells, T-DNA molecules recombined much more efficiently if the homologous sequences were of opposite polarity than if they were of the same polarity. This observation reflects the properties of single-stranded DNA; single-stranded DNA molecules of opposite polarity can anneal directly, whereas single-stranded DNA molecules of the same polarity first have to become double stranded to anneal. Judging from the relative amounts of single- to double-stranded T-DNA derivatives undergoing recombination, we infer that the T-DNA derivatives enter the plant nucleus in their single-stranded form.
Collapse
Affiliation(s)
- B Tinland
- Friedrich Miescher-Institute, Basel, Switzerland
| | | | | |
Collapse
|
19
|
Buising CM, Benbow RM. Molecular analysis of transgenic plants generated by microprojectile bombardment: effect of petunia transformation booster sequence. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:71-81. [PMID: 8190073 DOI: 10.1007/bf00283878] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/1993] [Accepted: 10/08/1993] [Indexed: 01/29/2023]
Abstract
Supercoiled plasmid expression vectors containing the petunia transformation booster sequence (TBS) were introduced by microprojectile bombardment into dicotyledenous (tobacco) and monocotyledonous (maize) cells. TBS effected a 7.8- to 16-fold increase in transformation frequencies in tobacco, and a 1.7- to 2.4-fold increase in maize. Although TBS contains a well-defined transcription enhancer element, no increases in plasmid gene expression were observed. TBS did not alter integration patterns in transformants, and did not affect segregation of linkage in R1 progeny. Computer analyses of the TBS sequence revealed numerous modular elements previously shown to be associated with putative chromosomal replication origin regions in eukaryotes, including DNA unwinding elements, scaffold-associated regions and pyrimidine tracts.
Collapse
Affiliation(s)
- C M Buising
- Department of Zoology and Genetics, Iowa State University, Ames 50011-3223
| | | |
Collapse
|
20
|
|
21
|
Puchta H, Dujon B, Hohn B. Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res 1993; 21:5034-40. [PMID: 8255757 PMCID: PMC310614 DOI: 10.1093/nar/21.22.5034] [Citation(s) in RCA: 179] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Induction of double strand breaks (DSBs) is coupled to meiotic and mitotic recombination in yeast. We show that also in a higher eukaryote induction of DSBs is directly correlated with a strong enhancement of recombination frequencies. We cotransfected Nicotiana plumbaginifolia protoplasts with a plasmid carrying a synthetic I-SceI gene, coding for a highly sequence specific endonuclease, together with recombination substrates carrying an I-SceI-site adjacent to their homologous sequences. We measured efficiencies of extrachromosomal recombination, using a well established transient beta-glucuronidase (GUS) assay. GUS enzyme activities were strongly increased when a plasmid carrying the I-SceI gene in sense but not in antisense orientation with respect to the promoter was included in the transfections. The in vivo induced DSBs were detected in the recombination substrates by Southern blotting, demonstrating that the yeast enzyme is functional in plant cells. At high ratios of transfected I-SceI-genes to I-SceI-sites the majority of the I-SceI-sites in the recombination substrates are cleaved, indicating that the induction of the DSBs is the rate limiting step in the described recombination reaction. These results imply that in vivo induction of transient breaks at specific sites in the plant genome could allow foreign DNA to be targeted to these sites via homologous recombination.
Collapse
Affiliation(s)
- H Puchta
- Friedrich Miescher-Institut, Basel, Switzerland
| | | | | |
Collapse
|
22
|
Lichtenstein C, Barrena E. Prospects for reverse genetics in plants using recombination. PLANT MOLECULAR BIOLOGY 1993; 21:v-xii. [PMID: 8490123 DOI: 10.1007/bf00023619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
23
|
Extrachromosomal homologous DNA recombination in plant cells is fast and is not affected by CpG methylation. Mol Cell Biol 1992. [PMID: 1630452 DOI: 10.1128/mcb.12.8.3372] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using a sensitive transient assay, we investigated extrachromosomal homologous DNA recombination (ECR) in plant cells. As the plant genome is highly C methylated, we addressed the question of whether CpG methylation has an influence on DNA recombination efficiencies. Whereas the expression level of the fully CpG-methylated DNA molecules was reduced drastically, we found no significant changes in ECR efficiencies between two partly CpG-methylated plasmids or between one fully CpG-methylated and one nonmethylated plasmid. Using a modified polymerase chain reaction analysis, we were able to detect recombination between two fully CpG-methylated plasmids. Furthermore, we characterized the kinetics of the ECR reaction. Cotransfection of plasmids carrying truncated copies of the beta-glucuronidase (GUS) gene resulted in enzyme activity with a delay of only half an hour compared with that of the plasmid carrying the functional marker gene. This indicates that the ECR reaction itself requires no more than 30 min. By polymerase chain reaction, we were able to detect the recombined GUS gene as early as 2 h after transfection. This result and the time course of the transient GUS activity indicate that ECR occurs mainly early after transfection. The biological significance of this finding is discussed, and properties of ECR and intrachromosomal recombination are compared.
Collapse
|
24
|
Puchta H, Kocher S, Hohn B. Extrachromosomal homologous DNA recombination in plant cells is fast and is not affected by CpG methylation. Mol Cell Biol 1992; 12:3372-9. [PMID: 1630452 PMCID: PMC364585 DOI: 10.1128/mcb.12.8.3372-3379.1992] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Using a sensitive transient assay, we investigated extrachromosomal homologous DNA recombination (ECR) in plant cells. As the plant genome is highly C methylated, we addressed the question of whether CpG methylation has an influence on DNA recombination efficiencies. Whereas the expression level of the fully CpG-methylated DNA molecules was reduced drastically, we found no significant changes in ECR efficiencies between two partly CpG-methylated plasmids or between one fully CpG-methylated and one nonmethylated plasmid. Using a modified polymerase chain reaction analysis, we were able to detect recombination between two fully CpG-methylated plasmids. Furthermore, we characterized the kinetics of the ECR reaction. Cotransfection of plasmids carrying truncated copies of the beta-glucuronidase (GUS) gene resulted in enzyme activity with a delay of only half an hour compared with that of the plasmid carrying the functional marker gene. This indicates that the ECR reaction itself requires no more than 30 min. By polymerase chain reaction, we were able to detect the recombined GUS gene as early as 2 h after transfection. This result and the time course of the transient GUS activity indicate that ECR occurs mainly early after transfection. The biological significance of this finding is discussed, and properties of ECR and intrachromosomal recombination are compared.
Collapse
Affiliation(s)
- H Puchta
- Friedrich Miescher-Institut, Basel, Switzerland
| | | | | |
Collapse
|
25
|
de Groot MJ, Offringa R, Does MP, Hooykaas PJ, van den Elzen PJ. Mechanisms of intermolecular homologous recombination in plants as studied with single- and double-stranded DNA molecules. Nucleic Acids Res 1992; 20:2785-94. [PMID: 1319574 PMCID: PMC336923 DOI: 10.1093/nar/20.11.2785] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To elucidate the mechanism for intermolecular homologous recombination in plants we cotransformed Nicotiana tabacum cv Petit Havana SR1 protoplasts with constructs carrying different defective derivatives of the NPTII gene. The resulting kanamycin resistant clones were screened for possible recombination products by PCR, which proved to be a valuable technique for this analysis. Our results show that the double-stranded circular DNA molecules used in this study recombine predominantly via a pathway consistent with the single-strand annealing (SSA) model as proposed for extrachromosomal recombination in mammalian cells. In the remaining cases recombination occurred via a single reciprocal recombination, gene conversion and possibly double reciprocal recombination. Since single-stranded DNA is considered to be an important intermediate in homologous recombination we also established the recombination ability of single-stranded DNA in intermolecular recombination. We found that single-stranded DNA enters in recombination processes more efficiently than the corresponding double-stranded DNA. This was also reflected in the recombination mechanisms that generated the functional NPTII gene. Recombination between a single-stranded DNA and the complementing DNA duplex occurred at similar rates via a single reciprocal recombination and the SSA pathway.
Collapse
|
26
|
Gal S, Pisan B, Hohn T, Grimsley N, Hohn B. Agroinfection of transgenic plants leads to viable cauliflower mosaic virus by intermolecular recombination. Virology 1992; 187:525-33. [PMID: 1546451 DOI: 10.1016/0042-6822(92)90455-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Intermolecular reconstitution of a plant virus has been detected in whole plants in a system using a defective cauliflower mosaic virus genome and transgenic host plants containing the missing viral gene. The information for the gene VI protein of the virus was integrated into the chromosome of host Brassica napus plants and leaves of these plants were inoculated with Agrobacterium tumefaciens containing the complementing viral sequences. In several cases, upper leaves contained replicating viral DNA which was able to incite CaMV symptoms on turnip plants. The sequence of the resultant recombinant viral molecules suggested that both DNA and RNA recombination events may have been involved in the production of functional virus, one event being gene targeting of the T-DNA.
Collapse
Affiliation(s)
- S Gal
- Friedrich Miescher-Institut, Basel, Switzerland
| | | | | | | | | |
Collapse
|