1
|
Niccum BA, Coplen CP, Lee H, Mohammed Ismail W, Tang H, Foster PL. New complexities of SOS-induced "untargeted" mutagenesis in Escherichia coli as revealed by mutation accumulation and whole-genome sequencing. DNA Repair (Amst) 2020; 90:102852. [PMID: 32388005 DOI: 10.1016/j.dnarep.2020.102852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/19/2020] [Accepted: 04/06/2020] [Indexed: 01/23/2023]
Abstract
When its DNA is damaged, Escherichia coli induces the SOS response, which consists of about 40 genes that encode activities to repair or tolerate the damage. Certain alleles of the major SOS-control genes, recA and lexA, cause constitutive expression of the response, resulting in an increase in spontaneous mutations. These mutations, historically called "untargeted", have been the subject of many previous studies. Here we re-examine SOS-induced mutagenesis using mutation accumulation followed by whole-genome sequencing (MA/WGS), which allows a detailed picture of the types of mutations induced as well as their sequence-specificity. Our results confirm previous findings that SOS expression specifically induces transversion base-pair substitutions, with rates averaging about 60-fold above wild-type levels. Surprisingly, the rates of G:C to C:G transversions, normally an extremely rare mutation, were induced an average of 160-fold above wild-type levels. The SOS-induced transversion showed strong sequence specificity, the most extreme of which was the G:C to C:G transversions, 60% of which occurred at the middle base of 5'GGC3'+5'GCC3' sites, although these sites represent only 8% of the G:C base pairs in the genome. SOS-induced transversions were also DNA strand-biased, occurring, on average, 2- to 4- times more often when the purine was on the leading-strand template and the pyrimidine on the lagging-strand template than in the opposite orientation. However, the strand bias was also sequence specific, and even of reverse orientation at some sites. By eliminating constraints on the mutations that can be recovered, the MA/WGS protocol revealed new complexities of SOS "untargeted" mutations.
Collapse
Affiliation(s)
- Brittany A Niccum
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | | | - Heewook Lee
- Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Wazim Mohammed Ismail
- Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Haixu Tang
- Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Patricia L Foster
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
2
|
Maslowska KH, Makiela‐Dzbenska K, Fijalkowska IJ. The SOS system: A complex and tightly regulated response to DNA damage. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:368-384. [PMID: 30447030 PMCID: PMC6590174 DOI: 10.1002/em.22267] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/29/2018] [Accepted: 11/13/2018] [Indexed: 05/10/2023]
Abstract
Genomes of all living organisms are constantly threatened by endogenous and exogenous agents that challenge the chemical integrity of DNA. Most bacteria have evolved a coordinated response to DNA damage. In Escherichia coli, this inducible system is termed the SOS response. The SOS global regulatory network consists of multiple factors promoting the integrity of DNA as well as error-prone factors allowing for survival and continuous replication upon extensive DNA damage at the cost of elevated mutagenesis. Due to its mutagenic potential, the SOS response is subject to elaborate regulatory control involving not only transcriptional derepression, but also post-translational activation, and inhibition. This review summarizes current knowledge about the molecular mechanism of the SOS response induction and progression and its consequences for genome stability. Environ. Mol. Mutagen. 60:368-384, 2019. © 2018 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Katarzyna H. Maslowska
- Cancer Research Center of Marseille, CNRS, UMR7258Inserm, U1068; Institut Paoli‐Calmettes, Aix‐Marseille UniversityMarseilleFrance
- Institute of Biochemistry and Biophysics, Polish Academy of SciencesWarsawPoland
| | | | - Iwona J. Fijalkowska
- Institute of Biochemistry and Biophysics, Polish Academy of SciencesWarsawPoland
| |
Collapse
|
3
|
Nevin P, Gabbai CC, Marians KJ. Replisome-mediated translesion synthesis by a cellular replicase. J Biol Chem 2017. [PMID: 28642369 DOI: 10.1074/jbc.m117.800441] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genome integrity relies on the ability of the replisome to navigate ubiquitous DNA damage during DNA replication. The Escherichia coli replisome transiently stalls at leading-strand template lesions and can either reinitiate replication downstream of the lesion or recruit specialized DNA polymerases that can bypass the lesion via translesion synthesis. Previous results had suggested that the E. coli replicase might play a role in lesion bypass, but this possibility has not been tested in reconstituted DNA replication systems. We report here that the DNA polymerase III holoenzyme in a stalled E. coli replisome can directly bypass a single cyclobutane pyrimidine dimer or abasic site by translesion synthesis in the absence of specialized translesion synthesis polymerases. Bypass efficiency was proportional to deoxynucleotide concentrations equivalent to those found in vivo and was dependent on the frequency of primer synthesis downstream of the lesion. Translesion synthesis came at the expense of lesion-skipping replication restart. Replication of a cyclobutane pyrimidine dimer was accurate, whereas replication of an abasic site resulted in mainly -1 frameshifts. Lesion bypass was accompanied by an increase in base substitution frequency for the base preceding the lesion. These findings suggest that DNA damage at the replication fork can be replicated directly by the replisome without the need to activate error-prone pathways.
Collapse
Affiliation(s)
- Philip Nevin
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Carolina C Gabbai
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Kenneth J Marians
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
4
|
Curti E, McDonald JP, Mead S, Woodgate R. DNA polymerase switching: effects on spontaneous mutagenesis in Escherichia coli. Mol Microbiol 2008; 71:315-31. [PMID: 19019142 PMCID: PMC2680738 DOI: 10.1111/j.1365-2958.2008.06526.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Escherichia coli possesses five known DNA polymerases (pols). Pol III holoenzyme is the cell's main replicase, while pol I is responsible for the maturation of Okazaki fragments and filling gaps generated during nucleotide excision repair. Pols II, IV and V are significantly upregulated as part of the cell's global SOS response to DNA damage and under these conditions, may alter the fidelity of DNA replication by potentially interfering with the ability of pols I and III to complete their cellular functions. To test this hypothesis, we determined the spectrum of rpoB mutations arising in an isogenic set of mutL strains differentially expressing the chromosomally encoded pols. Interestingly, mutagenic hot spots in rpoB were identified that are susceptible to the actions of pols I–V. For example, in a recA730 lexA(Def) mutL background most transversions were dependent upon pols IV and V. In contrast, transitions were largely dependent upon pol I and to a lesser extent, pol III. Furthermore, the extent of pol I-dependent mutagenesis at one particular site was modulated by pols II and IV. Our observations suggest that there is considerable interplay among all five E. coli polymerases that either reduces or enhances the mutagenic load on the E. coli chromosome.
Collapse
Affiliation(s)
- Elena Curti
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | | | | | | |
Collapse
|
5
|
Schlacher K, Pham P, Cox MM, Goodman MF. Roles of DNA polymerase V and RecA protein in SOS damage-induced mutation. Chem Rev 2006; 106:406-19. [PMID: 16464012 DOI: 10.1021/cr0404951] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Katharina Schlacher
- Department of Biological Sciences, University of Southern California, Los Angeles, 90089-1340, USA
| | | | | | | |
Collapse
|
6
|
Sutton MD, Smith BT, Godoy VG, Walker GC. The SOS response: recent insights into umuDC-dependent mutagenesis and DNA damage tolerance. Annu Rev Genet 2001; 34:479-497. [PMID: 11092836 DOI: 10.1146/annurev.genet.34.1.479] [Citation(s) in RCA: 221] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Be they prokaryotic or eukaryotic, organisms are exposed to a multitude of deoxyribonucleic acid (DNA) damaging agents ranging from ultraviolet (UV) light to fungal metabolites, like Aflatoxin B1. Furthermore, DNA damaging agents, such as reactive oxygen species, can be produced by cells themselves as metabolic byproducts and intermediates. Together, these agents pose a constant threat to an organism's genome. As a result, organisms have evolved a number of vitally important mechanisms to repair DNA damage in a high fidelity manner. They have also evolved systems (cell cycle checkpoints) that delay the resumption of the cell cycle after DNA damage to allow more time for these accurate processes to occur. If a cell cannot repair DNA damage accurately, a mutagenic event may occur. Most bacteria, including Escherichia coli, have evolved a coordinated response to these challenges to the integrity of their genomes. In E. coli, this inducible system is termed the SOS response, and it controls both accurate and potentially mutagenic DNA repair functions [reviewed comprehensively in () and also in ()]. Recent advances have focused attention on the umuD(+)C(+)-dependent, translesion DNA synthesis (TLS) process that is responsible for SOS mutagenesis (). Here we discuss the SOS response of E. coli and concentrate in particular on the roles of the umuD(+)C(+) gene products in promoting cell survival after DNA damage via TLS and a primitive DNA damage checkpoint.
Collapse
Affiliation(s)
- M D Sutton
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
7
|
Bhamre S, Gadea BB, Koyama CA, White SJ, Fowler RG. An aerobic recA-, umuC-dependent pathway of spontaneous base-pair substitution mutagenesis in Escherichia coli. Mutat Res 2001; 473:229-47. [PMID: 11166040 DOI: 10.1016/s0027-5107(00)00155-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antimutator alleles indentify genes whose normal products are involved in spontaneous mutagenesis pathways. Mutant alleles of the recA and umuC genes of Escherichia coli, whose wild-type alleles are components of the inducible SOS response, were shown to cause a decrease in the level of spontaneous mutagenesis. Using a series of chromosomal mutant trp alleles, which detect point mutations, as a reversion assay, it was shown that the reduction in mutagenesis is limited to base-pair substitutions. Within the limited number of sites than could be examined, transversions at AT sites were the favored substitutions. Frameshift mutagenesis was slightly enhanced by a mutant recA allele and unchanged by a mutant umuC allele. The wild-type recA and umuC genes are involved in the same mutagenic base-pair substitution pathway, designated "SOS-dependent spontaneous mutagenesis" (SDSM), since a recAumuC strain showed the same degree and specificity of antimutator activity as either single mutant strain. The SDSM pathway is active only in the presence of oxygen, since wild-type, recA, and umuC strains all show the same levels of reduced spontaneous mutagenesis anaerobically. The SDSM pathway can function in starving/stationary cells and may, or may not, be operative in actively dividing cultures. We suggest that, in wild-type cells, SDSM results from basal levels of SOS activity during DNA synthesis. Mutations may result from synthesis past cryptic DNA lesions (targeted mutagenesis) and/or from mispairings during synthesis with a normal DNA template (untargeted mutagenesis). Since it occurs in chromosomal genes of wild-type cells, SDSM may be biologically significant for isolates of natural enteric bacterial populations where extended starvation is often a common mode of existence.
Collapse
Affiliation(s)
- S Bhamre
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| | | | | | | | | |
Collapse
|
8
|
Maor-Shoshani A, Reuven NB, Tomer G, Livneh Z. Highly mutagenic replication by DNA polymerase V (UmuC) provides a mechanistic basis for SOS untargeted mutagenesis. Proc Natl Acad Sci U S A 2000; 97:565-70. [PMID: 10639119 PMCID: PMC15370 DOI: 10.1073/pnas.97.2.565] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
When challenged by DNA-damaging agents, Escherichia coli cells respond by inducing the SOS stress response, which leads to an increase in mutation frequency by two mechanisms: translesion replication, a process that causes mutations because of misinsertion opposite the lesions, and an inducible mutator activity, which acts at undamaged sites. Here we report that DNA polymerase V (pol V; UmuC), which previously has been shown to be a lesion-bypass DNA polymerase, was highly mutagenic during in vitro gap-filling replication of a gapped plasmid carrying the cro reporter gene. This reaction required, in addition to pol V, UmuD', RecA, and single-stranded DNA (ssDNA)-binding protein. pol V produced point mutations at a frequency of 2.1 x 10(-4) per nucleotide (2.1% per cro gene), 41-fold higher than DNA polymerase III holoenzyme. The mutational spectrum of pol V was dominated by transversions (53%), which were formed at a frequency of 1.3 x 10(-4) per nucleotide (1. 1% per cro gene), 74-fold higher than with pol III holoenzyme. The prevalence of transversions and the protein requirements of this system are similar to those of in vivo untargeted mutagenesis (SOS mutator activity). This finding suggests that replication by pol V, in the presence of UmuD', RecA, and ssDNA-binding protein, is the basis of chromosomal SOS untargeted mutagenesis.
Collapse
Affiliation(s)
- A Maor-Shoshani
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
9
|
Tano K, Akasaka S, Hashimoto M, Asano M, Yamamoto K, Utsumi H, Takimoto K. Specificity of mutations induced by riboflavin mediated photosensitization in the supF gene of Escherichia coli. Mutat Res 1998; 420:7-13. [PMID: 9838023 DOI: 10.1016/s1383-5718(98)00137-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Riboflavin-mediated photosensitization has been shown to produce 8-hydroxyguanine (oh8Gua) in DNA. We investigated the specificity of mutation of photosensitized supF gene induced in Escherichia coli. The oh8Gua repair deficient E. coli mutant mutM and mutY were transformed with plasmid pUB3 carrying the supF gene irradiated with white light in the presence of riboflavin. Under these conditions, riboflavin photosensitization increased the amounts of oh8Gua in pUB3 DNA. Three types of a single base substitution occurring at G:C pairs were detected in both wild-type and mutM mutant strains. Almost all base substitutions were transversions to T:A or C:G pairs occurring at a similar extent in both wild-type and mutM strains. Mutations derived from mutY strain transformed with photosensitized DNA were only G:C to T:A transversions. These G:C to T:A transversions observed in the mutY strain were suggested to be the result of mispairing of oh8Gua with adenine. Riboflavin-mediated photosensitization may also produce lesions on DNA causing G:C to C:G changes by unknown mechanisms.
Collapse
MESH Headings
- Base Sequence
- Chromatography, High Pressure Liquid
- DNA Glycosylases
- DNA, Bacterial/chemistry
- DNA, Bacterial/drug effects
- DNA, Bacterial/radiation effects
- DNA-Formamidopyrimidine Glycosylase
- Electrophoresis, Polyacrylamide Gel
- Escherichia coli/chemistry
- Escherichia coli/genetics
- Escherichia coli/radiation effects
- Escherichia coli Proteins
- Genes, Suppressor
- Guanine/analogs & derivatives
- Guanine/analysis
- Guanine/biosynthesis
- Light
- Molecular Sequence Data
- Mutation
- N-Glycosyl Hydrolases/chemistry
- N-Glycosyl Hydrolases/genetics
- Photosensitizing Agents/chemistry
- Photosensitizing Agents/pharmacology
- Plasmids/drug effects
- Plasmids/radiation effects
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/radiation effects
- Riboflavin/chemistry
- Riboflavin/pharmacology
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- K Tano
- Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494,
| | | | | | | | | | | | | |
Collapse
|
10
|
Wilson DR, Finlay BB. Phage display: applications, innovations, and issues in phage and host biology. Can J Microbiol 1998. [DOI: 10.1139/w98-015] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the 7 years since the first publications describing phage-displayed peptide libraries, phage display has been successfully employed in a variety of research. Innovations in vector design and methods to identify target clones account for much of this success. At the same time, not all ventures have been entirely successful and it appears that phage and host biology play important roles in this. A key issue concerns the role played by a displayed peptide or protein in its successful expression and incorporation into virions. While few studies have examined these issues specifically in context of phage display, the literature as a whole provides insight. Accordingly, we review phage biology, relevant aspects of host biology, and phage display applications with the goals of illustrating (i) relevant aspects of the interplay between phage-host biology and successful phage display and (ii) the limitations and considerable potential of this important technology.Key words: bacteriophage M13, phage display, pIII, pVIII, expression libraries.
Collapse
|
11
|
Fijalkowska IJ, Dunn RL, Schaaper RM. Genetic requirements and mutational specificity of the Escherichia coli SOS mutator activity. J Bacteriol 1997; 179:7435-45. [PMID: 9393709 PMCID: PMC179695 DOI: 10.1128/jb.179.23.7435-7445.1997] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To better understand the mechanisms of SOS mutagenesis in the bacterium Escherichia coli, we have undertaken a genetic analysis of the SOS mutator activity. The SOS mutator activity results from constitutive expression of the SOS system in strains carrying a constitutively activated RecA protein (RecA730). We show that the SOS mutator activity is not enhanced in strains containing deficiencies in the uvrABC nucleotide excision-repair system or the xth and nfo base excision-repair systems. Further, recA730-induced errors are shown to be corrected by the MutHLS-dependent mismatch-repair system as efficiently as the corresponding errors in the rec+ background. These results suggest that the SOS mutator activity does not reflect mutagenesis at so-called cryptic lesions but instead represents an amplification of normally occurring DNA polymerase errors. Analysis of the base-pair-substitution mutations induced by recA730 in a mismatch repair-deficient background shows that both transition and transversion errors are amplified, although the effect is much larger for transversions than for transitions. Analysis of the mutator effect in various dnaE strains, including dnaE antimutators, as well as in proofreading-deficient dnaQ (mutD) strains suggests that in recA730 strains, two types of replication errors occur in parallel: (i) normal replication errors that are subject to both exonucleolytic proofreading and dnaE antimutator effects and (ii) recA730-specific errors that are not susceptible to either proofreading or dnaE antimutator effects. The combined data are consistent with a model suggesting that in recA730 cells error-prone replication complexes are assembled at sites where DNA polymerization is temporarily stalled, most likely when a normal polymerase insertion error has created a poorly extendable terminal mismatch. The modified complex forces extension of the mismatch largely at the exclusion of proofreading and polymerase dissociation pathways. SOS mutagenesis targeted at replication-blocking DNA lesions likely proceeds in the same manner.
Collapse
Affiliation(s)
- I J Fijalkowska
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
12
|
Hoffmann GR, Fuchs RP. Mechanisms of frameshift mutations: insight from aromatic amines. Chem Res Toxicol 1997; 10:347-59. [PMID: 9114969 DOI: 10.1021/tx960128n] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- G R Hoffmann
- UPR 9003, Centre National de la Recherche Scientifique, Illkirch, France
| | | |
Collapse
|
13
|
Watanabe-Akanuma M, Woodgate R, Ohta T. Enhanced generation of A:T-->T:A transversions in a recA730 lexA51(Def) mutant of Escherichia coli. Mutat Res 1997; 373:61-6. [PMID: 9015154 DOI: 10.1016/s0027-5107(96)00189-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
RecA730 belongs to a class of mutant RecA protein that is often referred to as RecA*, since it is constitutively activated for coprotease functions in the absence of exogenous DNA-damage. Escherichia coli strains carrying recA730 (or other recA* alleles) exhibit dramatic increases in SOS-dependent spontaneous mutator activity. We have analyzed the specificity of this mutator phenotype by employing F'-plasmids carrying a set of mutant lacZ genes that can individually detect two types of transitions, four types of transversions, and four kinds of specific frameshift events. Analysis revealed that most of the spontaneous mutagenesis in a recA730 lexA51(Def) strain (which expresses derepressed levels of all LexA-regulated proteins) can be attributed to a specific increase in A:T-->T:A, A:T-->C:G and G:C-->T:A transversions, with the A:T-->T:A transversions occurring most frequently. These transversion events were completely abolished in a delta umuDC strain, indicating that the functionally active UmuD'C proteins are normally required for their generation. The spectrum obtained was similar to that of strains with a defect in the epsilon (3'-->5' proofreading) subunit of DNA polymerase III. Such an observation raises the possibility that the wild-type epsilon protein is in activated in strains expressing the RecA730 and UmuD'C proteins.
Collapse
|
14
|
Sargentini NJ, Smith KC. DNA sequence analysis of spontaneous and gamma-radiation (anoxic)-induced lacId mutations in Escherichia coli umuC122::Tn5: differential requirement for umuC at G.C vs. A.T sites and for the production of transversions vs. transitions. Mutat Res 1994; 311:175-89. [PMID: 7526182 DOI: 10.1016/0027-5107(94)90175-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Escherichia coli umuC122::Tn5 cells were gamma-irradiated (137Cs, 750 Gy, under N2), and lac-constitutive mutants were produced at 36% of the wild-type level (the umuC strain was not deficient in spontaneous mutagenesis, and the mutational spectrum determined by sequencing 263 spontaneous lacId mutations was very similar to that for the wild-type strain). The specific nature of the umuC strain's partial radiation mutability was determined by sequencing 325 radiation-induced lacId mutations. The yields of radiation-induced mutation classes in the umuC strain (as a percentage of the wild-type yield) were: 80% for A.T-->G.C transitions, 70% for multi-base additions, 60% for single-base deletions, 53% for A.T-->C.G transversions, 36% for G.C-->A.T transitions, 25% for multi-base deletions, 21% for A.T-->T.A transversions, 11% for G.C-->C.G transversions, 9% for G.C-->T.A transversions, and 0% for multiple mutations. Based on these deficiencies and other factors, it is concluded that the umuC strain is near-normal for A.T-->G.C. transitions, single-base deletions and possibly A.T-->C.G transversions; is generally deficient for mutagenesis at G.C sites and for transversions, and is grossly deficient in multiple mutations. Damage at G.C sites seems more difficult for translesion DNA synthesis to bypass than damage at A.T sites, and especially when trying to produce a transversion. The yield of G.C-->A.T transitions in the umuC strain (36% of the wild-type level) argues that abasic sites are involved in no more than 64% of gamma-radiation-induced base substitutions in the wild-type strain. Altogether, these data suggest that the UmuC and UmuD' proteins facilitate, rather than being absolutely required for, translesion DNA synthesis; with the degree of facilitation being dependent both on the nature of the noncoding DNA damage, i.e., at G.C vs. A.T sites, and on the nature of the misincorporated base, i.e., whether it induces transversions or transitions.
Collapse
Affiliation(s)
- N J Sargentini
- Department of Microbiology and Immunology, Kirksville College of Osteopathic Medicine, MO 63501
| | | |
Collapse
|
15
|
Watanabe M, Nohmi T, Ohta T. Effects of the umuDC, mucAB, and samAB operons on the mutational specificity of chemical mutagenesis in Escherichia coli: II. Base substitution mutagenesis. Mutat Res 1994; 314:39-49. [PMID: 7504190 DOI: 10.1016/0921-8777(94)90059-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mutational spectra induced by different classes of chemical mutagens including two ultraviolet-mimetic mutagens, an alkylating agent, intercalators, a crosslinking agent, and base analogs were characterized by means of a set of mutant lacZ genes in E. coli. These strains can be used to detect each of two types of transition and four types of transversion, simply by measuring the number of Lac+ revertant colonies. 4-Nitroquinoline 1-oxide induced G.C-->A.T, G.C-->C.G, or G.C-->T.A changes almost equally, whereas furylfuramide and mitomycin C induced only G.C-->A.T transitions and G.C-->T.A transversions, respectively. No base substitutional mutations were detected by the treatment with 9-aminoacridine. A weak stimulation of G.C-->A.T transitions by ICR-191 was observed. Both the G.C-->A.T and A.T-->G.C transitions were induced by N-methyl-N'-nitro-N-nitrosoguanidine and N4-aminocytidine. 5-Azacytidine was a specific inducer of G.C-->C.G transversions. In addition, a comparative study of mutational specificity was performed in the strains bearing either the umuDC, mucAB, or the samAB operon on a multicopy plasmid. Regardless of the kind of mutagen, G.C-->T.A transversions were greatly potentiated by the introduction of plasmids in the order of pGW1700 (mucAB) > pSE117 (umuDC) > or = pYG8011 (samAB). Besides G.C-->T.A transversions, the introduction of pGW1700, but not pSE117 and pYG8011, enhanced the mutations of A.T-->C.G and A.T-->T.A transversions. The mucAB plasmid also enhanced the G.C-->A.T transitions and G.C-->C.G transversions induced by some mutagens.
Collapse
Affiliation(s)
- M Watanabe
- Institute of Environmental Toxicology, Tokyo, Japan
| | | | | |
Collapse
|
16
|
Takimoto K, Yamamoto K, Sagara T, Ishizaki K. Spectrum of proton-induced mutagenesis of the Escherichia coli crp gene. Mutat Res 1994; 314:1-9. [PMID: 7504186 DOI: 10.1016/0921-8777(94)90055-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mutation of the adenosine 3',5'-cyclic monophosphate receptor protein gene (crp) of Escherichia coli induced by protons, ionizing radiation of charged particles, was analyzed to determine the specificity of the mutational spectrum. The majority, 44 of 49 mutations detected, were base substitutions, and three frameshifts and two gross structural changes were also found. Base substitutions included 35 transversions and nine transitions. G:C to T:A transversions were the dominant type of base substitution, followed by G:C to C:G and A:T to T:A transversions. Almost all transitions were eight G:C to A:T changes. The spectrum of proton mutagenesis was quite different from that of X-ray mutagenesis of the crp gene, in which G:C to A:T transitions dominated.
Collapse
Affiliation(s)
- K Takimoto
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Japan
| | | | | | | |
Collapse
|
17
|
Halliday JA, Glickman BW. Mechanisms of spontaneous mutation in DNA repair-proficient Escherichia coli. Mutat Res 1991; 250:55-71. [PMID: 1944363 DOI: 10.1016/0027-5107(91)90162-h] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This paper describes the DNA sequence analysis of 729 independent spontaneous lacI- mutations. This total is comprised of 478 novel mutations and 251 previously described events, and therefore should allow a more comprehensive view of spontaneous mutation in Escherichia coli. The spectrum is dominated by a hotspot (71% of all events). Mutations at this site consist of related addition and deletion events involving a number of repetitive sequences. Here we discuss how the frequency and proportion of these events vary in different DNA repair-deficient genetic backgrounds. The distribution of non-hotspot events includes base substitutions (38%), deletions (35%), frameshifts (14%), duplications (4%) and insertion elements (4%). G:C----A:T events dominate among base substitutions, while G:C----C:G events are the least common; the remaining types of base substitution are equally represented. Among deletions, a significant number do not display repeated sequences at their endpoints (26/72). However, almost all multiply recovered events (15/17) possess repeated sequences capable of accounting for the deletion endpoints. Similarly, over half of all duplications recovered (5/7) display repeated endpoints. Single-base frameshifts are equally divided between A:T and G:C sites, in each case (-) 1 events occur 3-fold more frequently that (+) 1 events. A comparative analysis of each mutational class recovered to lacI- spectra available in a variety of DNA repair/metabolism-deficient strains is presented here in an attempt to assess possible contributions from chemical, physical and enzymic sources of damage.
Collapse
Affiliation(s)
- J A Halliday
- Department of Biology, York University, Toronto, Ont., Canada
| | | |
Collapse
|