1
|
Hawley RS, Salz HK, McKim KS, Sekelsky J. The passing of the last oracle: Adelaide Carpenter and Drosophila meiosis. Chromosoma 2024:10.1007/s00412-024-00825-x. [PMID: 39325143 DOI: 10.1007/s00412-024-00825-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Affiliation(s)
- R Scott Hawley
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA.
| | - Helen K Salz
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kim S McKim
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - Jeff Sekelsky
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, USA
| |
Collapse
|
2
|
Jones G, Kleckner N, Zickler D. Meiosis through three centuries. Chromosoma 2024; 133:93-115. [PMID: 38730132 PMCID: PMC11180163 DOI: 10.1007/s00412-024-00822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Meiosis is the specialized cellular program that underlies gamete formation for sexual reproduction. It is therefore not only interesting but also a fundamentally important subject for investigation. An especially attractive feature of this program is that many of the processes of special interest involve organized chromosomes, thus providing the possibility to see chromosomes "in action". Analysis of meiosis has also proven to be useful in discovering and understanding processes that are universal to all chromosomal programs. Here we provide an overview of the different historical moments when the gap between observation and understanding of mechanisms and/or roles for the new discovered molecules was bridged. This review reflects also the synergy of thinking and discussion among our three laboratories during the past several decades.
Collapse
Affiliation(s)
- Gareth Jones
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA.
| | - Denise Zickler
- Institute for Integrative Biology of the Cell (I2BC), Centre National de La Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, 91198, Gif-Sur-Yvette, France
| |
Collapse
|
3
|
Ascenção C, Sims JR, Dziubek A, Comstock W, Fogarty EA, Badar J, Freire R, Grimson A, Weiss RS, Cohen PE, Smolka MB. A TOPBP1 allele causing male infertility uncouples XY silencing dynamics from sex body formation. eLife 2024; 12:RP90887. [PMID: 38391183 PMCID: PMC10942628 DOI: 10.7554/elife.90887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Meiotic sex chromosome inactivation (MSCI) is a critical feature of meiotic prophase I progression in males. While the ATR kinase and its activator TOPBP1 are key drivers of MSCI within the specialized sex body (SB) domain of the nucleus, how they promote silencing remains unclear given their multifaceted meiotic functions that also include DNA repair, chromosome synapsis, and SB formation. Here we report a novel mutant mouse harboring mutations in the TOPBP1-BRCT5 domain. Topbp1B5/B5 males are infertile, with impaired MSCI despite displaying grossly normal events of early prophase I, including synapsis and SB formation. Specific ATR-dependent events are disrupted, including phosphorylation and localization of the RNA:DNA helicase Senataxin. Topbp1B5/B5 spermatocytes initiate, but cannot maintain ongoing, MSCI. These findings reveal a non-canonical role for the ATR-TOPBP1 signaling axis in MSCI dynamics at advanced stages in pachynema and establish the first mouse mutant that separates ATR signaling and MSCI from SB formation.
Collapse
Affiliation(s)
- Carolline Ascenção
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Jennie R Sims
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Alexis Dziubek
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - William Comstock
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Elizabeth A Fogarty
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Jumana Badar
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Raimundo Freire
- Fundación Canaria del Instituto de Investigación Sanitaria de Canarias (FIISC), Unidad de Investigación, Hospital Universitario de CanariasSanta Cruz de TenerifeSpain
- Instituto de Tecnologías Biomédicas, Universidad de La LagunaLa LagunaSpain
- Universidad Fernando Pessoa CanariasLas Palmas de Gran CanariaSpain
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Robert S Weiss
- Department of Biomedical Sciences, Cornell UniversityIthacaUnited States
| | - Paula E Cohen
- Department of Biomedical Sciences, Cornell UniversityIthacaUnited States
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| |
Collapse
|
4
|
Ascencao CFR, Sims JR, Dziubek A, Comstock W, Fogarty EA, Badar J, Freire R, Grimson A, Weiss RS, Cohen PE, Smolka M. A TOPBP1 Allele Causing Male Infertility Uncouples XY Silencing Dynamics From Sex Body Formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543071. [PMID: 37398453 PMCID: PMC10312512 DOI: 10.1101/2023.05.31.543071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Meiotic sex chromosome inactivation (MSCI) is a critical feature of meiotic prophase I progression in males. While the ATR kinase and its activator TOPBP1 are key drivers of MSCI within the specialized sex body (SB) domain of the nucleus, how they promote silencing remains unclear given their multifaceted meiotic functions that also include DNA repair, chromosome synapsis and SB formation. Here we report a novel mutant mouse harboring mutations in the TOPBP1-BRCT5 domain. Topbp1 B5/B5 males are infertile, with impaired MSCI despite displaying grossly normal events of early prophase I, including synapsis and SB formation. Specific ATR-dependent events are disrupted including phosphorylation and localization of the RNA:DNA helicase Senataxin. Topbp1 B5/B5 spermatocytes initiate, but cannot maintain ongoing, MSCI. These findings reveal a non-canonical role for the ATR-TOPBP1 signaling axis in MSCI dynamics at advanced stages in pachynema and establish the first mouse mutant that separates ATR signaling and MSCI from SB formation.
Collapse
|
5
|
A Brief History of Drosophila (Female) Meiosis. Genes (Basel) 2022; 13:genes13050775. [PMID: 35627159 PMCID: PMC9140851 DOI: 10.3390/genes13050775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 02/07/2023] Open
Abstract
Drosophila has been a model system for meiosis since the discovery of nondisjunction. Subsequent studies have determined that crossing over is required for chromosome segregation, and identified proteins required for the pairing of chromosomes, initiating meiotic recombination, producing crossover events, and building a spindle to segregate the chromosomes. With a variety of genetic and cytological tools, Drosophila remains a model organism for the study of meiosis. This review focusses on meiosis in females because in male meiosis, the use of chiasmata to link homologous chromosomes has been replaced by a recombination-independent mechanism. Drosophila oocytes are also a good model for mammalian meiosis because of biological similarities such as long pauses between meiotic stages and the absence of centrosomes during the meiotic divisions.
Collapse
|
6
|
Female Meiosis: Synapsis, Recombination, and Segregation in Drosophila melanogaster. Genetics 2018; 208:875-908. [PMID: 29487146 PMCID: PMC5844340 DOI: 10.1534/genetics.117.300081] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/18/2017] [Indexed: 12/11/2022] Open
Abstract
A century of genetic studies of the meiotic process in Drosophila melanogaster females has been greatly augmented by both modern molecular biology and major advances in cytology. These approaches, and the findings they have allowed, are the subject of this review. Specifically, these efforts have revealed that meiotic pairing in Drosophila females is not an extension of somatic pairing, but rather occurs by a poorly understood process during premeiotic mitoses. This process of meiotic pairing requires the function of several components of the synaptonemal complex (SC). When fully assembled, the SC also plays a critical role in maintaining homolog synapsis and in facilitating the maturation of double-strand breaks (DSBs) into mature crossover (CO) events. Considerable progress has been made in elucidating not only the structure, function, and assembly of the SC, but also the proteins that facilitate the formation and repair of DSBs into both COs and noncrossovers (NCOs). The events that control the decision to mature a DSB as either a CO or an NCO, as well as determining which of the two CO pathways (class I or class II) might be employed, are also being characterized by genetic and genomic approaches. These advances allow a reconsideration of meiotic phenomena such as interference and the centromere effect, which were previously described only by genetic studies. In delineating the mechanisms by which the oocyte controls the number and position of COs, it becomes possible to understand the role of CO position in ensuring the proper orientation of homologs on the first meiotic spindle. Studies of bivalent orientation have occurred in the context of numerous investigations into the assembly, structure, and function of the first meiotic spindle. Additionally, studies have examined the mechanisms ensuring the segregation of chromosomes that have failed to undergo crossing over.
Collapse
|
7
|
Widger A, Mahadevaiah SK, Lange J, ElInati E, Zohren J, Hirota T, Pacheco S, Maldonado-Linares A, Stanzione M, Ojarikre O, Maciulyte V, de Rooij DG, Tóth A, Roig I, Keeney S, Turner JMA. ATR is a multifunctional regulator of male mouse meiosis. Nat Commun 2018; 9:2621. [PMID: 29976923 PMCID: PMC6033951 DOI: 10.1038/s41467-018-04850-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 05/24/2018] [Indexed: 11/25/2022] Open
Abstract
Meiotic cells undergo genetic exchange between homologs through programmed DNA double-strand break (DSB) formation, recombination and synapsis. In mice, the DNA damage-regulated phosphatidylinositol-3-kinase-like kinase (PIKK) ATM regulates all of these processes. However, the meiotic functions of the PIKK ATR have remained elusive, because germline-specific depletion of this kinase is challenging. Here we uncover roles for ATR in male mouse prophase I progression. ATR deletion causes chromosome axis fragmentation and germ cell elimination at mid pachynema. This elimination cannot be rescued by deletion of ATM and the third DNA damage-regulated PIKK, PRKDC, consistent with the existence of a PIKK-independent surveillance mechanism in the mammalian germline. ATR is required for synapsis, in a manner genetically dissociable from DSB formation. ATR also regulates loading of recombinases RAD51 and DMC1 to DSBs and recombination focus dynamics on synapsed and asynapsed chromosomes. Our studies reveal ATR as a critical regulator of mouse meiosis.
Collapse
Affiliation(s)
- Alexander Widger
- Sex Chromosome Biology Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Shantha K Mahadevaiah
- Sex Chromosome Biology Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Julian Lange
- Molecular Biology Program, Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Elias ElInati
- Sex Chromosome Biology Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jasmin Zohren
- Sex Chromosome Biology Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Takayuki Hirota
- Sex Chromosome Biology Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Sarai Pacheco
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
- Department of Cell Biology, Physiology and Immunology, Cytology and Histology Unit, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Andros Maldonado-Linares
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
- Department of Cell Biology, Physiology and Immunology, Cytology and Histology Unit, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Marcello Stanzione
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Obah Ojarikre
- Sex Chromosome Biology Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Valdone Maciulyte
- Sex Chromosome Biology Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Dirk G de Rooij
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Attila Tóth
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Ignasi Roig
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
- Department of Cell Biology, Physiology and Immunology, Cytology and Histology Unit, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Scott Keeney
- Molecular Biology Program, Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - James M A Turner
- Sex Chromosome Biology Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
8
|
Brand CL, Cattani MV, Kingan SB, Landeen EL, Presgraves DC. Molecular Evolution at a Meiosis Gene Mediates Species Differences in the Rate and Patterning of Recombination. Curr Biol 2018; 28:1289-1295.e4. [PMID: 29606420 DOI: 10.1016/j.cub.2018.02.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/15/2018] [Accepted: 02/20/2018] [Indexed: 10/17/2022]
Abstract
Crossing over between homologous chromosomes during meiosis repairs programmed DNA double-strand breaks, ensures proper segregation at meiosis I [1], shapes the genomic distribution of nucleotide variability in populations, and enhances the efficacy of natural selection among genetically linked sites [2]. Between closely related Drosophila species, large differences exist in the rate and chromosomal distribution of crossing over. Little, however, is known about the molecular genetic changes or population genetic forces that mediate evolved differences in recombination between species [3, 4]. Here, we show that a meiosis gene with a history of rapid evolution acts as a trans-acting modifier of species differences in crossing over. In transgenic flies, the dicistronic gene, mei-217/mei-218, recapitulates a large part of the species differences in the rate and chromosomal distribution of crossing over. These phenotypic differences appear to result from changes in protein sequence not gene expression. Our population genetics analyses show that the protein-coding sequence of mei-218, but not mei-217, has a history of recurrent positive natural selection. By modulating the intensity of centromeric and telomeric suppression of crossing over, evolution at mei-217/-218 has incidentally shaped gross differences in the chromosomal distribution of nucleotide variability between species. We speculate that recurrent bouts of adaptive evolution at mei-217/-218 might reflect a history of coevolution with selfish genetic elements.
Collapse
Affiliation(s)
- Cara L Brand
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - M Victoria Cattani
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Sarah B Kingan
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Emily L Landeen
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Daven C Presgraves
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
9
|
Kusch T. Brca2-Pds5 complexes mobilize persistent meiotic recombination sites to the nuclear envelope. J Cell Sci 2015; 128:717-27. [PMID: 25588834 DOI: 10.1242/jcs.159988] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Homologous recombination is required for reciprocal exchange between homologous chromosome arms during meiosis. Only select meiotic recombination events become chromosomal crossovers; the majority of recombination outcomes are noncrossovers. Growing evidence suggests that crossovers are repaired after noncrossovers. Here, I report that persisting recombination sites are mobilized to the nuclear envelope of Drosophila pro-oocytes during mid-pachytene. Their number correlates with the average crossover rate per meiosis. Proteomic and interaction studies reveal that the recombination mediator Brca2 associates with lamin and the cohesion factor Pds5 to secure persistent recombination sites at the nuclear envelope. In Rad51(-/-) females, all persistent DNA breaks are directed to the nuclear envelope. By contrast, a reduction of Pds5 or Brca2 levels abolishes the movement and has a negative impact on crossover rates. The data suggest that persistent meiotic DNA double-strand breaks might correspond to crossovers, which are mobilized to the nuclear envelope for their repair. The identification of Brca2-Pds5 complexes as key mediators of this process provides a first mechanistic explanation for the contribution of lamins and cohesins to meiotic recombination.
Collapse
Affiliation(s)
- Thomas Kusch
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
10
|
De Muyt A, Zhang L, Piolot T, Kleckner N, Espagne E, Zickler D. E3 ligase Hei10: a multifaceted structure-based signaling molecule with roles within and beyond meiosis. Genes Dev 2014; 28:1111-23. [PMID: 24831702 PMCID: PMC4035539 DOI: 10.1101/gad.240408.114] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Human enhancer of invasion-10 (Hei10) mediates meiotic recombination and plays important roles in cell proliferation. Here, De Muyt et al. analyzed the function of Hei10 during meiosis and throughout the sexual cycle of the fungus Sordaria. The data suggest that Hei10 integrates signals from the synaptonemal complex, recombination complexes, and the cell cycle to mediate the programmed assembly and disassembly of recombination complexes via SUMOylation/ubiquitination. This study delineates the role of Hei10 in regulating meiotic recombination and provides new perspectives on its role outside meiosis. Human enhancer of invasion-10 (Hei10) mediates meiotic recombination and also plays roles in cell proliferation. Here we explore Hei10’s roles throughout the sexual cycle of the fungus Sordaria with respect to localization and effects of null, RING-binding, and putative cyclin-binding (RXL) domain mutations. Hei10 makes three successive types of foci. Early foci form along synaptonemal complex (SC) central regions. At some of these positions, depending on its RING and RXL domains, Hei10 mediates development and turnover of two sequential types of recombination complexes, each demarked by characteristic amplified Hei10 foci. Integration with ultrastructural data for recombination nodules further reveals that recombination complexes differentiate into three types, one of which corresponds to crossover recombination events during or prior to SC formation. Finally, Hei10 positively and negatively modulates SUMO localization along SCs by its RING and RXL domains, respectively. The presented findings suggest that Hei10 integrates signals from the SC, associated recombination complexes, and the cell cycle to mediate both the development and programmed turnover/evolution of recombination complexes via SUMOylation/ubiquitination. Analogous cell cycle-linked assembly/disassembly switching could underlie localization and roles for Hei10 in centrosome/spindle pole body dynamics and associated nuclear trafficking. We suggest that Hei10 is a unique type of structure-based signal transduction protein.
Collapse
Affiliation(s)
- Arnaud De Muyt
- UMR 8621, Institut de Génétique et Microbiologie, Université Paris-Sud, 91405 Orsay, France; Institut Curie, 75248 Paris Cedex 05, France
| | - Liangran Zhang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Tristan Piolot
- UMR 3215, INSERM U934, Institut Curie, 75005 Paris, France
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Eric Espagne
- UMR 8621, Institut de Génétique et Microbiologie, Université Paris-Sud, 91405 Orsay, France
| | - Denise Zickler
- UMR 8621, Institut de Génétique et Microbiologie, Université Paris-Sud, 91405 Orsay, France
| |
Collapse
|
11
|
Zhang L, Liang Z, Hutchinson J, Kleckner N. Crossover patterning by the beam-film model: analysis and implications. PLoS Genet 2014; 10:e1004042. [PMID: 24497834 PMCID: PMC3907302 DOI: 10.1371/journal.pgen.1004042] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 11/05/2013] [Indexed: 11/25/2022] Open
Abstract
Crossing-over is a central feature of meiosis. Meiotic crossover (CO) sites are spatially patterned along chromosomes. CO-designation at one position disfavors subsequent CO-designation(s) nearby, as described by the classical phenomenon of CO interference. If multiple designations occur, COs tend to be evenly spaced. We have previously proposed a mechanical model by which CO patterning could occur. The central feature of a mechanical mechanism is that communication along the chromosomes, as required for CO interference, can occur by redistribution of mechanical stress. Here we further explore the nature of the beam-film model, its ability to quantitatively explain CO patterns in detail in several organisms, and its implications for three important patterning-related phenomena: CO homeostasis, the fact that the level of zero-CO bivalents can be low (the “obligatory CO”), and the occurrence of non-interfering COs. Relationships to other models are discussed. Spatial patterning is a common feature of biological systems at all length scales, from molecular to multi-organismic. Meiosis is the specialized cellular program in which a diploid cell gives rise to haploid gametes for sexual reproduction. Crossing-over between homologous maternal and paternal chromosomes (homologs) is a central feature of this program, playing a role not only for increasing genetic diversity but also for ensuring regular segregation of homologs at the first meiotic division. The distribution of crossovers (COs) along meiotic chromosomes is a paradigmatic example of spatial patterning. Crossovers occur at different positions in different meiotic nuclei but, nonetheless, tend to be evenly spaced along the chromosomes. We previously-described a mechanical “stress and stress relief” model for CO patterning with an accompanying mathematical description (the “beam-film model”). In this paper we explore the roles of mathematical parameters in this model; show that it can very accurately describe experimental data sets from several organisms, in considerably quantitative depth; and discuss implications of the model for several phenomena that are directly related to crossover patterning, including the features which can ensure that every chromosome always acquires at least one crossover.
Collapse
Affiliation(s)
- Liangran Zhang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Zhangyi Liang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - John Hutchinson
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
12
|
Solving a meiotic LEGO puzzle: transverse filaments and the assembly of the synaptonemal complex in Caenorhabditis elegans. Genetics 2012; 189:405-9. [PMID: 21994217 DOI: 10.1534/genetics.111.134197] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The structure of the meiosis-specific synaptonemal complex, which is perhaps the central visible characteristic of meiotic prophase, has been a matter of intense interest for decades. Although a general picture of the interactions between the transverse filament proteins that create this structure has emerged from studies in a variety of organisms, a recent analysis of synaptonemal complex structure in Caenorhabditis elegans by Schild-Prüfert et al. (2011) has provided the clearest picture of the structure of the architecture of a synaptonemal complex to date. Although the transverse filaments of the worm synaptonemal complex are assembled differently then those observed in yeast, mammalian, and Drosophila synaptonemal complexes, a comparison of the four assemblies shows that achieving the overall basic structure of the synaptonemal complex is far more crucial than conserving the structures of the individual transverse filaments.
Collapse
|
13
|
Meiotic double-strand breaks occur once per pair of (sister) chromatids and, via Mec1/ATR and Tel1/ATM, once per quartet of chromatids. Proc Natl Acad Sci U S A 2011; 108:20036-41. [PMID: 22123968 DOI: 10.1073/pnas.1117937108] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Meiotic recombination initiates via programmed double-strand breaks (DSBs). We investigate whether, at a given initiation site, DSBs occur independently among the four available chromatids. For a single DSB "hot spot", the proportions of nuclei exhibiting zero, one, or two (or more) observable events were defined by tetrad analysis and compared with those predicted by different DSB distribution scenarios. Wild-type patterns are incompatible with independent distribution of DSBs among the four chromatids. In most or all nuclei, DSBs occur one-per-pair of chromatids, presumptively sisters. In many nuclei, only one DSB occurs per four chromatids, confirming the existence of trans inhibition where a DSB on one chromosome interactively inhibits DSB formation on the partner chromosome. Several mutants exhibit only a one-per-pair constraint, a phenotype we propose to imply loss of trans inhibition. Signal transduction kinases Mec1 (ATR) and Tel1 (ATM) exhibit this phenotype and thus could be mediators of this effect. Spreading trans inhibition can explain even spacing of total recombinational interactions and implies that establishment of interhomolog interactions and DSB formation are homeostatic processes. The two types of constraints on DSB formation provide two different safeguards against recombination failure during meiosis.
Collapse
|
14
|
Zhang J, Teng C, Liang Y. Programmed cell death may act as a surveillance mechanism to safeguard male gametophyte development in Arabidopsis. Protein Cell 2011; 2:837-44. [PMID: 22058038 DOI: 10.1007/s13238-011-1102-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 09/13/2011] [Indexed: 11/28/2022] Open
Abstract
Programmed cell death (PCD) plays an important role in plant growth and development as well as in stress responses. During male gametophyte development, it has been proposed that PCD may act as a cellular surveillance mechanism to ensure successful progression of male gametogenesis, and this suicide protective machinery is repressed under favorable growth conditions. However, the regulatory mechanism of male gametophyte-specific PCD remains unknown. Here, we report the use of a TdT-mediated dUTP nick-end labeling-based strategy for genetic screening of Arabidopsis mutants that present PCD phenotype during male gametophyte development. By using this approach, we identified 12 mutants, designated as pcd in male gametogenesis (pig). pig mutants are defective at various stages of male gametophyte development, among which nine pig mutants show a microspore-specific PCD phenotype occurring mainly around pollen mitosis I or the bicellular stage. The PIG1 gene was identified by map-based cloning, and was found to be identical to ATAXIA TELANGIECTASIA MUTATED (ATM), a highly conserved gene in eukaryotes and a key regulator of the DNA damage response. Our results suggest that PCD may act as a general mechanism to safeguard the entire process of male gametophyte development.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | |
Collapse
|
15
|
Affiliation(s)
- Takamune T. Saito
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Monica P. Colaiácovo
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
16
|
|
17
|
Drosophila PCH2 is required for a pachytene checkpoint that monitors double-strand-break-independent events leading to meiotic crossover formation. Genetics 2008; 181:39-51. [PMID: 18957704 DOI: 10.1534/genetics.108.093112] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During meiosis, programmed DNA double-strand breaks (DSBs) are repaired to create at least one crossover per chromosome arm. Crossovers mature into chiasmata, which hold and orient the homologous chromosomes on the meiotic spindle to ensure proper segregation at meiosis I. This process is usually monitored by one or more checkpoints that ensure that DSBs are repaired prior to the meiotic divisions. We show here that mutations in Drosophila genes required to process DSBs into crossovers delay two important steps in meiotic progression: a chromatin-remodeling process associated with DSB formation and the final steps of oocyte selection. Consistent with the hypothesis that a checkpoint has been activated, the delays in meiotic progression are suppressed by a mutation in the Drosophila homolog of pch2. The PCH2-dependent delays also require proteins thought to regulate the number and distribution of crossovers, suggesting that this checkpoint monitors events leading to crossover formation. Surprisingly, two lines of evidence suggest that the PCH2-dependent checkpoint does not reflect the accumulation of unprocessed recombination intermediates: the delays in meiotic progression do not depend on DSB formation or on mei-41, the Drosophila ATR homolog, which is required for the checkpoint response to unrepaired DSBs. We propose that the sites and/or conditions required to promote crossovers are established independently of DSB formation early in meiotic prophase. Furthermore, the PCH2-dependent checkpoint is activated by these events and pachytene progression is delayed until the DSB repair complexes required to generate crossovers are assembled. Interestingly, PCH2-dependent delays in prophase may allow additional crossovers to form.
Collapse
|
18
|
Barchi M, Roig I, Di Giacomo M, de Rooij DG, Keeney S, Jasin M. ATM promotes the obligate XY crossover and both crossover control and chromosome axis integrity on autosomes. PLoS Genet 2008; 4:e1000076. [PMID: 18497861 PMCID: PMC2374915 DOI: 10.1371/journal.pgen.1000076] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 04/17/2008] [Indexed: 12/23/2022] Open
Abstract
During meiosis in most sexually reproducing organisms, recombination forms crossovers between homologous maternal and paternal chromosomes and thereby promotes proper chromosome segregation at the first meiotic division. The number and distribution of crossovers are tightly controlled, but the factors that contribute to this control are poorly understood in most organisms, including mammals. Here we provide evidence that the ATM kinase or protein is essential for proper crossover formation in mouse spermatocytes. ATM deficiency causes multiple phenotypes in humans and mice, including gonadal atrophy. Mouse Atm−/− spermatocytes undergo apoptosis at mid-prophase of meiosis I, but Atm−/− meiotic phenotypes are partially rescued by Spo11 heterozygosity, such that ATM-deficient spermatocytes progress to meiotic metaphase I. Strikingly, Spo11+/−Atm−/− spermatocytes are defective in forming the obligate crossover on the sex chromosomes, even though the XY pair is usually incorporated in a sex body and is transcriptionally inactivated as in normal spermatocytes. The XY crossover defect correlates with the appearance of lagging chromosomes at metaphase I, which may trigger the extensive metaphase apoptosis that is observed in these cells. In addition, control of the number and distribution of crossovers on autosomes appears to be defective in the absence of ATM because there is an increase in the total number of MLH1 foci, which mark the sites of eventual crossover formation, and because interference between MLH1 foci is perturbed. The axes of autosomes exhibit structural defects that correlate with the positions of ongoing recombination. Together, these findings indicate that ATM plays a role in both crossover control and chromosome axis integrity and further suggests that ATM is important for coordinating these features of meiotic chromosome dynamics. Meiosis is the specialized cell division that gives rise to reproductive cells such as sperm and eggs. During meiosis in most organisms, genetic information is exchanged between homologous maternal and paternal chromosomes through the process of homologous recombination. This recombination forms connections between homologous chromosomes that allow them to segregate accurately when the meiotic cell divides. Recombination defects can result in reproductive cells with abnormal chromosome numbers, which are a major cause of developmental disorders and spontaneous abortions in humans. Meiotic recombination is tightly controlled such that each pair of chromosomes undergoes at least one crossover recombination event despite a low average number of crossovers per chromosome. Moreover, multiple crossovers on the same chromosome tend to be evenly and widely spaced. Mechanisms of this control are not well understood, but here we provide evidence that ATM protein is required for normal operation of this process(es) in male mice. ATM has long been known to be involved in cellular responses to DNA damage. Our studies reveal a new function for this protein and also provide new insight into the mechanisms by which meiotic cells ensure accurate transmission of genetic material from one generation to the next.
Collapse
Affiliation(s)
- Marco Barchi
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Ignasi Roig
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Monica Di Giacomo
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Dirk G. de Rooij
- Department of Endocrinology and Metabolism, Faculty of Science, Utrecht University, The Netherlands
- Center for Reproductive Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Weill Graduate School of Medical Sciences of Cornell University, New York, New York, United States of America
- * E-mail: (SK); (MJ)
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Weill Graduate School of Medical Sciences of Cornell University, New York, New York, United States of America
- * E-mail: (SK); (MJ)
| |
Collapse
|
19
|
Longhese MP, Guerini I, Baldo V, Clerici M. Surveillance mechanisms monitoring chromosome breaks during mitosis and meiosis. DNA Repair (Amst) 2008; 7:545-57. [DOI: 10.1016/j.dnarep.2007.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 09/13/2007] [Indexed: 01/05/2023]
|
20
|
Affiliation(s)
- Franklin W Stahl
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA.
| | | |
Collapse
|
21
|
Fluorescent Arabidopsis tetrads: a visual assay for quickly developing large crossover and crossover interference data sets. Nat Protoc 2008; 3:41-50. [PMID: 18193020 DOI: 10.1038/nprot.2007.491] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In most organisms, one crossover (CO) event inhibits the chances of another nearby event. The term used to describe this phenomenon is 'CO interference'. Here, we describe a protocol for quickly generating large data sets that are amenable to CO interference analysis in the flowering plant, Arabidopsis thaliana. We employ a visual assay that utilizes transgenic marker constructs encoding pollen-expressed fluorescent proteins of three colors in the quartet mutant background. In this genetic background, male meiotic products--the pollen grains--remain physically attached thereby facilitating tetrad analysis. We have developed a library of mapped marker insertions that, when crossed together, create adjacent intervals that can be rapidly and simultaneously screened for COs. This assay system is capable of detecting and differentiating single COs as well as two-, three- and four-strand double COs. We also describe how to analyze the data that are produced by this method. To generate and score a double interval in a wild-type and mutant background using this protocol will take 22-27 weeks.
Collapse
|
22
|
Moens PB, Marcon E, Shore JS, Kochakpour N, Spyropoulos B. Initiation and resolution of interhomolog connections: crossover and non-crossover sites along mouse synaptonemal complexes. J Cell Sci 2007; 120:1017-27. [PMID: 17344431 DOI: 10.1242/jcs.03394] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Programmed double-strand breaks at prophase of meiosis acquire immunologically detectable RAD51-DMC1 foci or early nodules (ENs) that are associated with developing chromosome core segments; each focus is surrounded by a gammaH2AX-modified chromosome domain. The 250-300 ENs per nucleus decline in numbers during the development of full-length cores and the remaining foci are relatively evenly distributed along the mature cores (gamma distribution of nu=2.97). The ENs become transformed nodules (TNs) by the acquisition of RPA, BLM, MSH4 and topoisomerases that function in repair and Holliday junction resolution. At the leptotene-zygotene transition, TNs orient to positions between the aligned cores where they initiate structural interhomolog contacts prior to synaptonemal complex (SC) formation, possibly future crossover sites. Subsequently, TNs are associated with SC extension at the synaptic forks. Dephosphorylation of TN-associated histone gammaH2AX chromatin suggests annealing of single strands or repair of double-strand breaks DSBs at this time. Some 200 TNs per pachytene nucleus are distributed proportional to SC length and are evenly distributed along the SCs (nu= approximately 4). At this stage, gammaH2AX-modified chromatin domains are associated with transcriptionally silenced sex chromosomes and autosomal sites. Immunogold electron microscope evidence shows that one or two TNs of the 10-15 TNs per SC acquire MLH1 protein, the hallmark of reciprocal recombination, whereas the TNs that do not acquire MLH1 protein relocate from their positions along the midline of the SCs to the periphery of the SCs. Relocation of TNs may be associated with the conversion of potential crossovers into non-crossovers.
Collapse
Affiliation(s)
- Peter B Moens
- Department of Biology, York University, Toronto, Ontario, M3J 1P3, Canada.
| | | | | | | | | |
Collapse
|
23
|
Abstract
Budding yeast Mec1, a homolog of mammalian ATR/ATM, is an essential chromosome-based signal transduction protein. Mec1 is a key checkpoint regulator and plays a critical role in the maintenance of genome stability. Mec1 is also required for meiosis; loss of Mec1 functions leads to a number of meiotic defects including reduction in recombination, loss of inter-homolog bias, loss of crossover control, and failure in meiotic progression. Here we review currently available data on meiotic defects associated with loss of Mec1 functions and discuss the possibility that Mec1 may participate as a fundamentally positive player in coordinating and promoting basic meiotic chromosomal processes during normal meiosis.
Collapse
Affiliation(s)
- Jesús A Carballo
- Division of Stem Cell Biology and Developmental Genetics, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | | |
Collapse
|
24
|
Carpenter ATC. Egalitarian and the Choice of Cell Fates in Drosophila Melanogaster Oogenesis. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/9780470514573.ch13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
25
|
Carpenter ATC. Monte Moses and Adelaide Carpenter: Duke, 1974-1976. Chromosoma 2006; 115:155-7. [PMID: 16416052 DOI: 10.1007/s00412-005-0041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 11/27/2005] [Accepted: 11/28/2005] [Indexed: 10/25/2022]
Abstract
This memoir recounts the scientific threads in Monte Moses's laboratory during 1974-1976.
Collapse
Affiliation(s)
- Adelaide T C Carpenter
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
| |
Collapse
|
26
|
Wijeratne AJ, Chen C, Zhang W, Timofejeva L, Ma H. The Arabidopsis thaliana PARTING DANCERS gene encoding a novel protein is required for normal meiotic homologous recombination. Mol Biol Cell 2006; 17:1331-43. [PMID: 16394097 PMCID: PMC1382321 DOI: 10.1091/mbc.e05-09-0902] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Recent studies of meiotic recombination in the budding yeast and the model plant Arabidopsis thaliana indicate that meiotic crossovers (COs) occur through two genetic pathways: the interference-sensitive pathway and the interference-insensitive pathway. However, few genes have been identified in either pathway. Here, we describe the identification of the PARTING DANCERS (PTD) gene, as a gene with an elevated expression level in meiocytes. Analysis of two independently generated transferred DNA insertional lines in PTD showed that the mutants had reduced fertility. Further cytological analysis of male meiosis in the ptd mutants revealed defects in meiosis, including reduced formation of chiasmata, the cytological appearance of COs. The residual chiasmata in the mutants were distributed randomly, indicating that the ptd mutants are defective for CO formation in the interference-sensitive pathway. In addition, transmission electron microscopic analysis of the mutants detected no obvious abnormality of synaptonemal complexes and apparently normal late recombination nodules at the pachytene stage, suggesting that the mutant's defects in bivalent formation were postsynaptic. Comparison to other genes with limited sequence similarity raises the possibility that PTD may present a previously unknown function conserved in divergent eukaryotic organisms.
Collapse
Affiliation(s)
- Asela J Wijeratne
- Intercollege Graduate Program in Plant Physiology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
27
|
Anuradha S, Muniyappa K. Molecular aspects of meiotic chromosome synapsis and recombination. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:49-132. [PMID: 16096027 DOI: 10.1016/s0079-6603(04)79002-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- S Anuradha
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
28
|
Staeva-Vieira E, Yoo S, Lehmann R. An essential role of DmRad51/SpnA in DNA repair and meiotic checkpoint control. EMBO J 2003; 22:5863-74. [PMID: 14592983 PMCID: PMC275421 DOI: 10.1093/emboj/cdg564] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Rad51 is a conserved protein essential for recombinational repair of double-stranded DNA breaks (DSBs) in somatic cells and during meiosis in germ cells. Yeast Rad51 mutants are viable but show meiosis defects. In the mouse, RAD51 deletions cause early embryonic death, suggesting that in higher eukaryotes Rad51 is required for viability. Here we report the identification of SpnA as the Drosophila Rad51 gene, whose sequence among the five known Drosophila Rad51-like genes is most closely related to the Rad51 homologs of human and yeast. DmRad51/spnA null mutants are viable but oogenesis is disrupted by the activation of a meiotic recombination checkpoint. We show that the meiotic phenotypes result from an inability to effectively repair DSBs. Our study further demonstrates that in Drosophila the Rad51-dependent homologous recombination pathway is not essential for DNA repair in the soma, unless exposed to DNA damaging agents. We therefore propose that under normal conditions a second, Rad51-independent, repair pathway prevents the lethal effects of DNA damage.
Collapse
Affiliation(s)
- Eric Staeva-Vieira
- Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, Sackler Institute for Graduate Biomedical Sciences, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|
29
|
Marcon E, Moens P. MLH1p and MLH3p Localize to Precociously Induced Chiasmata of Okadaic-Acid-Treated Mouse Spermatocytes. Genetics 2003; 165:2283-7. [PMID: 14704203 PMCID: PMC1462919 DOI: 10.1093/genetics/165.4.2283] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
With the phosphatase inhibitor, okadaic acid, we induce the precocious onset of the chiasmate stage and under those conditions show that the recombination nodules, MLH1 and MLH3 foci, are localized to the chiasmata. It is concluded that MLH1/3 foci are appropriate markers for the studies of crossovers/chiasmata development and distribution at late meiotic prophase.
Collapse
Affiliation(s)
- Edyta Marcon
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | | |
Collapse
|
30
|
Symphorien S, Woodruff RC. Effect of DNA Repair on Aging of Transgenic Drosophila melanogaster: I. mei-41 Locus. J Gerontol A Biol Sci Med Sci 2003; 58:B782-7. [PMID: 14528032 DOI: 10.1093/gerona/58.9.b782] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aging appears to be increased by diminished DNA repair. To study this relationship between aging and DNA repair, we measured the life span of Drosophila melanogaster males in the absence of mei-41 excision repair and transgenic flies with 1 or 2 extra copies of the mei-41 wild-type gene. Life span was significantly reduced in the absence of repair and was significantly increased by an extra dose of excision repair. However, these changes in life span with alterations in DNA repair were not large.
Collapse
Affiliation(s)
- Sonia Symphorien
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA
| | | |
Collapse
|
31
|
Abstract
In this review, we describe the pathway for generating meiotic crossovers in Drosophila melanogaster females and how these events ensure the segregation of homologous chromosomes. As appears to be common to meiosis in most organisms, recombination is initiated with a double-strand break (DSB). The interesting differences between organisms appear to be associated with what chromosomal events are required for DSBs to form. In Drosophila females, the synaptonemal complex is required for most DSB formation. The repair of these breaks requires several DSB repair genes, some of which are meiosis-specific, and defects at this stage can have effects downstream on oocyte development. This has been suggested to result from a checkpoint-like signaling between the oocyte nucleus and gene products regulating oogenesis. Crossovers result from genetically controlled modifications to the DSB repair pathway. Finally, segregation of chromosomes joined by a chiasma requires a bipolar spindle. At least two kinesin motor proteins are required for the assembly of this bipolar spindle, and while the meiotic spindle lacks traditional centrosomes, some centrosome components are found at the spindle poles.
Collapse
Affiliation(s)
- Kim S McKim
- Waksman Institute and Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854-8020, USA.
| | | | | |
Collapse
|
32
|
Shinohara M, Sakai K, Ogawa T, Shinohara A. The mitotic DNA damage checkpoint proteins Rad17 and Rad24 are required for repair of double-strand breaks during meiosis in yeast. Genetics 2003; 164:855-65. [PMID: 12871899 PMCID: PMC1462628 DOI: 10.1093/genetics/164.3.855] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We show here that deletion of the DNA damage checkpoint genes RAD17 and RAD24 in Saccharomyces cerevisiae delays repair of meiotic double-strand breaks (DSBs) and results in an altered ratio of crossover-to-noncrossover products. These mutations also decrease the colocalization of immunostaining foci of the RecA homologs Rad51 and Dmc1 and cause a delay in the disappearance of Rad51 foci, but not of Dmc1. These observations imply that RAD17 and RAD24 promote efficient repair of meiotic DSBs by facilitating proper assembly of the meiotic recombination complex containing Rad51. Consistent with this proposal, extra copies of RAD51 and RAD54 substantially suppress not only the spore inviability of the rad24 mutant, but also the gamma-ray sensitivity of the mutant. Unexpectedly, the entry into meiosis I (metaphase I) is delayed in the checkpoint single mutants compared to wild type. The control of the cell cycle in response to meiotic DSBs is also discussed.
Collapse
Affiliation(s)
- Miki Shinohara
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Japan
| | | | | | | |
Collapse
|
33
|
Lu BC, Gallo N, Kües U. White-cap mutants and meiotic apoptosis in the basidiomycete Coprinus cinereus. Fungal Genet Biol 2003; 39:82-93. [PMID: 12742066 DOI: 10.1016/s1087-1845(03)00024-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Among many white-cap mutants of Coprinus cinereus, four distinct classes have been identified cytologically. Mutants of one class progress through meiosis normally but fail to sporulate; the defect is post-meiotic and it triggers apoptosis in the tetrad stage. Mutants of the other three classes have defects in meiotic prophase and these are: (1) those that assemble synaptonemal complexes (SCs) normally; (2) those that assemble axial elements (AEs) but not SCs; and (3) those that assemble neither AEs nor SCs even though the chromosomes are condensed and also paired. All three meiotic mutant classes arrest at meiotic metaphase I and the arrest triggers meiosis-specific apoptosis showing characteristic chromatin condensation, DNA fragmentation as shown by the TUNEL assay, cytoplasmic shrinkage, and finally total DNA degradation. Apoptosis is very cell-type specific; it occurs only in the basidia while the neighboring somatic cells are perfectly healthy and the mushroom continues to develop and mature with very few basidiospores produced. The meiotic apoptosis in C. cinereus is under strict cell cycle control rather than at any time after defect; apoptosis is triggered only after entry to meiotic metaphase. It is intriguing to note that C. cinereus has two checkpoints for arrest and entry to apoptosis: one is meiotic at the metaphase I spindle checkpoint regardless of the time of defects, and one is post-meiotic at the tetrad stage. This is in striking contrast to multiple checkpoint arrests and entries to meiotic apoptosis found in the mouse.
Collapse
Affiliation(s)
- Benjamin C Lu
- Department of Molecular Biology and Genetics, University of Guelph, Guelph Ont., Canada N1G 2W1.
| | | | | |
Collapse
|
34
|
Carpenter ATC. Normal synaptonemal complex and abnormal recombination nodules in two alleles of the Drosophila meiotic mutant mei-W68. Genetics 2003; 163:1337-56. [PMID: 12702679 PMCID: PMC1462523 DOI: 10.1093/genetics/163.4.1337] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The meiotic phenotypes of two mutant alleles of the mei-W68 gene, 1 and L1, were studied by genetics and by serial-section electron microscopy. Despite no or reduced exchange, both mutant alleles have normal synaptonemal complex. However, neither has any early recombination nodules; instead, both exhibit high numbers of very long (up to 2 microm) structures here named "noodles." These are hypothesized to be formed by the unchecked extension of identical but much shorter structures ephemerally seen in wild type, which may be precursors of early recombination nodules. Although the mei-W68(L1) allele is identical to the mei-W68(1) allele in both the absence of early recombination nodules and a high frequency of noodles (i.e., it is amorphic for the noodle phene), it is hypomorphic in its effects on exchange and late recombination nodules. The differential effects of this allele on early and late recombination nodules are consistent with the hypothesis that Drosophila females have two separate recombination pathways-one for simple gene conversion, the other for exchange.
Collapse
|
35
|
Garcia V, Bruchet H, Camescasse D, Granier F, Bouchez D, Tissier A. AtATM is essential for meiosis and the somatic response to DNA damage in plants. THE PLANT CELL 2003; 15:119-32. [PMID: 12509526 PMCID: PMC143473 DOI: 10.1105/tpc.006577] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2002] [Accepted: 10/25/2002] [Indexed: 05/17/2023]
Abstract
In contrast to yeast or mammalian cells, little is known about the signaling responses to DNA damage in plants. We previously characterized AtATM, an Arabidopsis homolog of the human ATM gene, which is mutated in ataxia telangiectasia, a chromosome instability disorder. The Atm protein is a protein kinase whose activity is induced by DNA damage, particularly DNA double-strand breaks. The phosphorylation targets of Atm include proteins involved in DNA repair, cell cycle control, and apoptosis. Here, we describe the isolation and functional characterization of two Arabidopsis mutants carrying a T-DNA insertion in AtATM. Arabidopsis atm mutants are hypersensitive to gamma-radiation and methylmethane sulfonate but not to UV-B light. In correlation with the radiation sensitivity, atm mutants failed to induce the transcription of genes involved in the repair and/or detection of DNA breaks upon irradiation. In addition, atm mutants are partially sterile, and we show that this effect is attributable to abundant chromosomal fragmentation during meiosis. Interestingly, the transcription of DNA recombination genes during meiosis was not dependent on AtATM, and meiotic recombination occurred at the same rate as in wild-type plants, raising questions about the function of AtAtm during meiosis in plants. Our results demonstrate that AtATM plays a central role in the response to both stress-induced and developmentally programmed DNA damage.
Collapse
Affiliation(s)
- Valérie Garcia
- Laboratoire de Radiobiologie Végétale, Département d'Ecophysiologie Végétale et de Microbiologie, Commissariat à l'Energie Atomique, 13108 St. Paul-lez-Durance Cedex, France
| | | | | | | | | | | |
Collapse
|
36
|
Moens PB, Kolas NK, Tarsounas M, Marcon E, Cohen PE, Spyropoulos B. The time course and chromosomal localization of recombination-related proteins at meiosis in the mouse are compatible with models that can resolve the early DNA-DNA interactions without reciprocal recombination. J Cell Sci 2002; 115:1611-22. [PMID: 11950880 DOI: 10.1242/jcs.115.8.1611] [Citation(s) in RCA: 258] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During mouse meiosis, the early prophase RAD51/DMC1 recombination protein sites, which are associated with the chromosome cores and which serve as markers for ongoing DNA-DNA interactions, are in ten-fold excess of the eventual reciprocal recombinant events. Most, if not all, of these early interactions are eliminated as prophase progresses. The manner in which these sites are eliminated is the focus of this investigation. We report that these sites acquire replication protein A, RPA and the Escherichia coliMUTS homologue, MSH4p, and somewhat later the Bloom helicase, BLM, while simultaneously losing the RAD51/DMC1 component. Eventually the RPA component is also lost and BLM sites remain. At that time, the MUTL homologue, MLH1p,which is essential for reciprocal recombination in the mouse, appears in numbers and locations that correspond to the distribution of reciprocal recombination events. However, the MLH1 foci do not appear to coincide with the remaining BLM sites. The MLH1p is specifically localized to electron-microscope-defined recombination nodules. We consider the possibility that the homology-search RAD51/DMC1 complexes are involved in homologous chromosome synapsis but that most of these early DNA-DNA interactions are later resolved by the anti-recombination RPA/MSH4/BLM-topoisomerase complex,thereby preventing the formation of superfluous reciprocal recombinant events.
Collapse
Affiliation(s)
- Peter B Moens
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
The meiotic mutant c(3)G (crossover suppressor on 3 of Gowen) abolishes both synaptonemal complex (SC) formation and meiotic recombination, whereas mutations in the mei-W68 and mei-P22 genes prevent recombination but allow normal SC to form. These data, as well as a century of cytogenetic studies, support the argument that meiotic recombination between homologous chromosomes in Drosophila females requires synapsis and SC formation. We have cloned the c(3)G gene and shown that it encodes a protein that is structurally similar to SC proteins from yeast and mammals. Immunolocalization of the C(3)G protein, as well as the analysis of a C(3)G-eGFP expression construct, reveals that C(3)G is present in a thread-like pattern along the lengths of chromosomes in meiotic prophase, consistent with a role as an SC protein present on meiotic bivalents. The availability of a marker for SC in Drosophila allowed the investigation of the extent of synapsis in exchange-defective mutants. These studies indicate that SC formation is impaired in certain meiotic mutants and that the synaptic defect correlates with the exchange defects. Moreover, the observation of interference among the residual exchanges in these mutant oocytes implies that complete SC formation is not required for crossover interference in Drosophila.
Collapse
Affiliation(s)
- S L Page
- Section of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | | |
Collapse
|
38
|
Kearney HM, Kirkpatrick DT, Gerton JL, Petes TD. Meiotic recombination involving heterozygous large insertions in Saccharomyces cerevisiae: formation and repair of large, unpaired DNA loops. Genetics 2001; 158:1457-76. [PMID: 11514439 PMCID: PMC1461752 DOI: 10.1093/genetics/158.4.1457] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Meiotic recombination in Saccharomyces cerevisiae involves the formation of heteroduplexes, duplexes containing DNA strands derived from two different homologues. If the two strands of DNA differ by an insertion or deletion, the heteroduplex will contain an unpaired DNA loop. We found that unpaired loops as large as 5.6 kb can be accommodated within a heteroduplex. Repair of these loops involved the nucleotide excision repair (NER) enzymes Rad1p and Rad10p and the mismatch repair (MMR) proteins Msh2p and Msh3p, but not several other NER (Rad2p and Rad14p) and MMR (Msh4p, Msh6p, Mlh1p, Pms1p, Mlh2p, Mlh3p) proteins. Heteroduplexes were also formed with DNA strands derived from alleles containing two different large insertions, creating a large "bubble"; repair of this substrate was dependent on Rad1p. Although meiotic recombination events in yeast are initiated by double-strand DNA breaks (DSBs), we showed that DSBs occurring within heterozygous insertions do not stimulate interhomologue recombination.
Collapse
Affiliation(s)
- H M Kearney
- Department of Biology, Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | | | | | | |
Collapse
|
39
|
Ashley T, Walpita D, de Rooij DG. Localization of two mammalian cyclin dependent kinases during mammalian meiosis. J Cell Sci 2001; 114:685-93. [PMID: 11171374 DOI: 10.1242/jcs.114.4.685] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Mammalian meiotic progression, like mitotic cell cycle progression, is regulated by cyclins and cyclin dependent kinases (CDKs). However, the unique requirements of meiosis (homologous synapsis, reciprocal recombination and the dual divisions that segregate first homologues, then sister chromatids) have led to different patterns of CDK expression. Here we show that Cdk4 colocalizes with replication protein A (RPA) on the synaptonemal complexes (SCs) of newly synapsed axes of homologously pairing bivalents, but disappears from these axes by mid-pachynema. The switch from the mitotic pattern of expression occurs during the last two spermatogonial divisions. Cdk2 colocalizes with MLH1, a mismatch repair protein at sites of reciprocal recombination in mid-late pachynema. In addition Cdk2 localizes to the telomeres of chromosomal bivalents throughout meiotic prophase. The mitotic pattern of expression of Cdk2 remains unchanged throughout the spermatogonial divisions, but is altered in meiosis of the spermatocytes.
Collapse
Affiliation(s)
- T Ashley
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
40
|
Page SL, McKim KS, Deneen B, Van Hook TL, Hawley RS. Genetic studies of mei-P26 reveal a link between the processes that control germ cell proliferation in both sexes and those that control meiotic exchange in Drosophila. Genetics 2000; 155:1757-72. [PMID: 10924472 PMCID: PMC1461182 DOI: 10.1093/genetics/155.4.1757] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We present the cloning and characterization of mei-P26, a novel P-element-induced exchange-defective female meiotic mutant in Drosophila melanogaster. Meiotic exchange in females homozygous for mei-P26(1) is reduced in a polar fashion, such that distal chromosomal regions are the most severely affected. Additional alleles generated by duplication of the P element reveal that mei-P26 is also necessary for germline differentiation in both females and males. To further assess the role of mei-P26 in germline differentiation, we tested double mutant combinations of mei-P26 and bag-of-marbles (bam), a gene necessary for the control of germline differentiation and proliferation in both sexes. A null mutation at the bam locus was found to act as a dominant enhancer of mei-P26 in both males and females. Interestingly, meiotic exchange in mei-P26(1); bam(Delta)(86)/+ females is also severely decreased in comparison to mei-P26(1) homozygotes, indicating that bam affects the meiotic phenotype as well. These data suggest that the pathways controlling germline differentiation and meiotic exchange are related and that factors involved in the mitotic divisions of the germline may regulate meiotic recombination.
Collapse
Affiliation(s)
- S L Page
- Department of Genetics, Section of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
41
|
Bashkirov VI, King JS, Bashkirova EV, Schmuckli-Maurer J, Heyer WD. DNA repair protein Rad55 is a terminal substrate of the DNA damage checkpoints. Mol Cell Biol 2000; 20:4393-404. [PMID: 10825202 PMCID: PMC85806 DOI: 10.1128/mcb.20.12.4393-4404.2000] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Checkpoints, which are integral to the cellular response to DNA damage, coordinate transient cell cycle arrest and the induced expression of DNA repair genes after genotoxic stress. DNA repair ensures cellular survival and genomic stability, utilizing a multipathway network. Here we report evidence that the two systems, DNA damage checkpoint control and DNA repair, are directly connected by demonstrating that the Rad55 double-strand break repair protein of the recombinational repair pathway is a terminal substrate of DNA damage and replication block checkpoints. Rad55p was specifically phosphorylated in response to DNA damage induced by the alkylating agent methyl methanesulfonate, dependent on an active DNA damage checkpoint. Rad55p modification was also observed after gamma ray and UV radiation. The rapid time course of phosphorylation and the recombination defects identified in checkpoint-deficient cells are consistent with a role of the DNA damage checkpoint in activating recombinational repair. Rad55p phosphorylation possibly affects the balance between different competing DNA repair pathways.
Collapse
Affiliation(s)
- V I Bashkirov
- Institute of General Microbiology, CH-3012 Bern, Switzerland
| | | | | | | | | |
Collapse
|
42
|
Liu H, Jang JK, Graham J, Nycz K, McKim KS. Two genes required for meiotic recombination in Drosophila are expressed from a dicistronic message. Genetics 2000; 154:1735-46. [PMID: 10747066 PMCID: PMC1461038 DOI: 10.1093/genetics/154.4.1735] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have isolated two alleles of a previously unidentified meiotic recombination gene, mei-217. Genetic analysis of these mutants shows that mei-217 is a typical "precondition" gene. The phenotypes of the mutants are meiosis specific. The strongest allele has <10% of the normal level of crossing over, and the residual events are distributed abnormally. We have used double mutant analysis to position mei-217 in the meiotic recombination pathway. In general, mutations causing defects in the initiation of meiotic recombination are epistatic to mutations in mei-41 and spnB. These two mutations, however, are epistatic to mei-217, suggesting that recombination is initiated normally in mei-217 mutants. It is likely that mei-217 mutants are able to make Holliday junction intermediates but are defective in the production of crossovers. These phenotypes are most similar to mutants of the mei-218 gene. This is striking because mei-217 and mei-218 are part of the same transcription unit and are most likely produced from a dicistronic message.
Collapse
Affiliation(s)
- H Liu
- Waksman Institute and Department of Genetics, Rutgers University, Piscataway, New Jersey 08854-8020, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
Meiotic chromosomes have been studied for many years, in part because of the fundamental life processes they represent, but also because meiosis involves the formation of homolog pairs, a feature which greatly facilitates the study of chromosome behavior. The complex events involved in homolog juxtaposition necessitate prolongation of prophase, thus permitting resolution of events that are temporally compressed in the mitotic cycle. Furthermore, once homologs are paired, the chromosomes are connected by a specific structure: the synaptonemal complex. Finally, interaction of homologs includes recombination at the DNA level, which is intimately linked to structural features of the chromosomes. In consequence, recombination-related events report on diverse aspects of chromosome morphogenesis, notably relationships between sisters, development of axial structure, and variations in chromatin status. The current article reviews recent information on these topics in an historical context. This juxtaposition has suggested new relationships between structure and function. Additional issues were addressed in a previous chapter (551).
Collapse
Affiliation(s)
- D Zickler
- Institut de Génétique et Microbiologie, Université Paris-Sud, Orsay, France.
| | | |
Collapse
|
44
|
Grushcow JM, Holzen TM, Park KJ, Weinert T, Lichten M, Bishop DK. Saccharomyces cerevisiae checkpoint genes MEC1, RAD17 and RAD24 are required for normal meiotic recombination partner choice. Genetics 1999; 153:607-20. [PMID: 10511543 PMCID: PMC1460798 DOI: 10.1093/genetics/153.2.607] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Checkpoint gene function prevents meiotic progression when recombination is blocked by mutations in the recA homologue DMC1. Bypass of dmc1 arrest by mutation of the DNA damage checkpoint genes MEC1, RAD17, or RAD24 results in a dramatic loss of spore viability, suggesting that these genes play an important role in monitoring the progression of recombination. We show here that the role of mitotic checkpoint genes in meiosis is not limited to maintaining arrest in abnormal meioses; mec1-1, rad24, and rad17 single mutants have additional meiotic defects. All three mutants display Zip1 polycomplexes in two- to threefold more nuclei than observed in wild-type controls, suggesting that synapsis may be aberrant. Additionally, all three mutants exhibit elevated levels of ectopic recombination in a novel physical assay. rad17 mutants also alter the fraction of recombination events that are accompanied by an exchange of flanking markers. Crossovers are associated with up to 90% of recombination events for one pair of alleles in rad17, as compared with 65% in wild type. Meiotic progression is not required to allow ectopic recombination in rad17 mutants, as it still occurs at elevated levels in ndt80 mutants that arrest in prophase regardless of checkpoint signaling. These observations support the suggestion that MEC1, RAD17, and RAD24, in addition to their proposed monitoring function, act to promote normal meiotic recombination.
Collapse
Affiliation(s)
- J M Grushcow
- Department of Radiation, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Preservation of the structural integrity of DNA in any organism is crucial to its health and survival. Such preservation is achieved by an extraordinary cellular arsenal of damage surveillance and repair functions, many of which are now being defined at the gene and protein levels. Mutants hypersensitive to the killing effects of DNA-damaging agents have been instrumental in helping to identify DNA repair-related genes and to elucidate repair mechanisms. In Drosophila melanogaster, such strains are generally referred to as mutagen-sensitive (mus) mutants and currently define more than 30 genetic loci. Whereas most mus mutants have been recovered on the basis of hypersensitivity to the monofunctional alkylating agent methyl methanesulfonate, they nevertheless constitute a phenotypically diverse group, with many mutants having effects beyond mutagen sensitivity. These phenotypes include meiotic dysfunctions, somatic chromosome instabilities, chromatin abnormalities, and cell proliferation defects. Within the last few years numerous mus and other DNA repair-related genes of Drosophila have been molecularly cloned, providing new insights into the functions of these genes. This article outlines strategies for isolating mus mutations and reviews recent advances in the Drosophila DNA repair field, emphasizing mutant analysis and gene cloning.
Collapse
Affiliation(s)
- D S Henderson
- Department of Anatomy and Physiology, University of Dundee, Dundee, DD1 4HN, Scotland, United Kingdom
| |
Collapse
|
46
|
Parisi S, McKay MJ, Molnar M, Thompson MA, van der Spek PJ, van Drunen-Schoenmaker E, Kanaar R, Lehmann E, Hoeijmakers JH, Kohli J. Rec8p, a meiotic recombination and sister chromatid cohesion phosphoprotein of the Rad21p family conserved from fission yeast to humans. Mol Cell Biol 1999; 19:3515-28. [PMID: 10207075 PMCID: PMC84144 DOI: 10.1128/mcb.19.5.3515] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/1998] [Accepted: 01/29/1999] [Indexed: 11/20/2022] Open
Abstract
Our work and that of others defined mitosis-specific (Rad21 subfamily) and meiosis-specific (Rec8 subfamily) proteins involved in sister chromatid cohesion in several eukaryotes, including humans. Mutation of the fission yeast Schizosaccharomyces pombe rec8 gene was previously shown to confer a number of meiotic phenotypes, including strong reduction of recombination frequencies in the central region of chromosome III, absence of linear element polymerization, reduced pairing of homologous chromosomes, reduced sister chromatid cohesion, aberrant chromosome segregation, defects in spore formation, and reduced spore viability. Here we extend the description of recombination reduction to the central regions of chromosomes I and II. We show at the protein level that expression of rec8 is meiosis specific and that Rec8p localizes to approximately 100 foci per prophase nucleus. Rec8p was present in an unphosphorylated form early in meiotic prophase but was phosphorylated prior to meiosis I, as demonstrated by analysis of the mei4 mutant blocked before meiosis I. Evidence for the persistence of Rec8p beyond meiosis I was obtained by analysis of the mutant mes1 blocked before meiosis II. A human gene, which we designate hrec8, showed significant primary sequence similarity to rec8 and was mapped to chromosome 14. High mRNA expression of mouse and human rec8 genes was found only in germ line cells, specifically in testes and, interestingly, in spermatids. hrec8 was also expressed at a low level in the thymus. Sequence similarity and testis-specific expression indicate evolutionarily conserved functions of Rec8p in meiosis. Possible roles of Rec8p in the integration of different meiotic events are discussed.
Collapse
Affiliation(s)
- S Parisi
- Institute of General Microbiology, University of Bern, 3012 Bern, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The leptotene/zygotene transition of meiosis, as defined by classical cytological studies, is the period when homologous chromosomes, already being discernible individualized entities, begin to be close together or touching over portions of their lengths. This period also includes the bouquet stage: Chromosome ends, which have already become integral components of the inner nuclear membrane, move into a polarized configuration, along with other nuclear envelope components. Chromosome movements, active or passive, also occur. The detailed nature of interhomologue interactions during this period, with special emphasis on the involvement of chromosome ends, and the overall role for meiosis and recombination of chromosome movement and, especially, the bouquet stage are discussed.
Collapse
Affiliation(s)
- D Zickler
- Institut de Génétique et Microbiologie, Université Paris-Sud, Orsay, France.
| | | |
Collapse
|
48
|
Santos JL. The relationship between synapsis and recombination: two different views. Heredity (Edinb) 1999. [DOI: 10.1038/sj.hdy.6884870] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
49
|
Abstract
Surveys in Drosophila have consistently found reduced levels of DNA sequence polymorphism in genomic regions experiencing low crossing-over per physical length, while these same regions exhibit normal amounts of interspecific divergence. Here we show that for 36 loci across the genomes of eight Lycopersicon species, naturally occurring DNA polymorphism (scaled by locus-specific divergence between species) is positively correlated with the density of crossing-over per physical length. Large between-species differences in the amount of DNA sequence polymorphism reflect breeding systems: selfing species show much less within-species polymorphism than outcrossing species. The strongest association of expected heterozygosity with crossing-over is found in species with intermediate levels of average nucleotide diversity. All of these observations appear to be in qualitative agreement with the hitchhiking effects caused by the fixation of advantageous mutations and/or "background selection" against deleterious mutations.
Collapse
Affiliation(s)
- W Stephan
- Department of Biology, University of Rochester, Rochester, New York 14627, USA.
| | | |
Collapse
|
50
|
Barlow C, Liyanage M, Moens PB, Tarsounas M, Nagashima K, Brown K, Rottinghaus S, Jackson SP, Tagle D, Ried T, Wynshaw-Boris A. Atm deficiency results in severe meiotic disruption as early as leptonema of prophase I. Development 1998; 125:4007-17. [PMID: 9735362 DOI: 10.1242/dev.125.20.4007] [Citation(s) in RCA: 192] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Infertility is a common feature of the human disorder ataxia-telangiectasia and Atm-deficient mice are completely infertile. To gain further insight into the role of ATM in meiosis, we examined meiotic cells in Atm-deficient mice during development. Spermatocyte degeneration begins between postnatal days 8 and 16.5, soon after entry into prophase I of meiosis, while oocytes degenerate late in embryogenesis prior to dictyate arrest. Using electron microscopy and immunolocalization of meiotic proteins in mutant adult spermatocytes, we found that male and female gametogenesis is severely disrupted in Atm-deficient mice as early as leptonema of prophase I, resulting in apoptotic degeneration. A small number of mutant cells progress into later stages of meiosis, but no cells proceed beyond prophase I. ATR, a protein related to ATM, DMC1, a RAD51 family member, and RAD51 are mislocalized to chromatin and have reduced localization to developing synaptonemal complexes in spermatocytes from Atm-deficient mice, suggesting dysregulation of the orderly progression of meiotic events. ATM protein is normally present at high levels primarily in ova cytoplasm of developing ovarian follicles, and in the nucleus of spermatogonia and to a lesser extent in spermatoctyes, but without localization to the synaptonemal complex. We propose a model in which ATM acts to monitor meiosis by participation in the regulation or surveillance of meiotic progression, similar to its role as a monitor of mitotic cell cycle progression.
Collapse
Affiliation(s)
- C Barlow
- Genetic Disease Research Branch, Genome Technology Branch and Molecular Genetics and Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|