1
|
Tevis DS, Flores SR, Kenwood BM, Bhandari D, Jacob P, Liu J, Lorkiewicz PK, Conklin DJ, Hecht SS, Goniewicz ML, Blount BC, De Jesús VR. Harmonization of acronyms for volatile organic compound metabolites using a standardized naming system. Int J Hyg Environ Health 2021; 235:113749. [PMID: 33962120 DOI: 10.1016/j.ijheh.2021.113749] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/17/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023]
Abstract
Increased interest in volatile organic compound (VOC) exposure has led to an increased need for consistent, systematic, and informative naming of VOC metabolites. As analytical methods have expanded to include many metabolites in a single assay, the number of acronyms in use for a single metabolite has expanded in an unplanned and inconsistent manner due to a lack of guidance or group consensus. Even though the measurement of VOC metabolites is a well-established means to investigate exposure to VOCs, a formal attempt to harmonize acronyms amongst investigators has not been published. The aim of this work is to establish a system of acronym naming that provides consistency in current acronym usage and a foundation for creating acronyms for future VOC metabolites.
Collapse
Affiliation(s)
- Denise S Tevis
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sharon R Flores
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Brandon M Kenwood
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Deepak Bhandari
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Peyton Jacob
- Department of Medicine, University of California San Francisco, Division of Cardiology, Clinical Pharmacology Program, San Francisco General Hospital Medical Center, University of California at San Francisco, San Francisco, CA, USA
| | - Jia Liu
- Department of Medicine, University of California San Francisco, Division of Cardiology, Clinical Pharmacology Program, San Francisco General Hospital Medical Center, University of California at San Francisco, San Francisco, CA, USA
| | - Pawel K Lorkiewicz
- American Heart Association - Tobacco Regulation and Addiction Center, Superfund Research Center, Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
| | - Daniel J Conklin
- American Heart Association - Tobacco Regulation and Addiction Center, Superfund Research Center, Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Maciej L Goniewicz
- Nicotine and Tobacco Product Assessment Resource, Department of Health Behavior, Division of Cancer Prevention and Population Studies, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Benjamin C Blount
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Víctor R De Jesús
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
2
|
De Jesús VR, Zhang L, Bhandari D, Zhu W, Chang JT, Blount BC. Characterization of acrylonitrile exposure in the United States based on urinary n-acetyl-S-(2-cyanoethyl)-L-cysteine (2CYEMA): NHANES 2011-2016. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:377-385. [PMID: 33424026 PMCID: PMC7954898 DOI: 10.1038/s41370-020-00286-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/11/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Acrylonitrile is a possible human carcinogen that is used in polymers and formed in tobacco smoke. We assessed acrylonitrile exposure in the US population by measuring its urinary metabolites N-acetyl-S-(4-hydroxy-2-methyl-2-buten-1-yl)-L-cysteine (2CYEMA) and N-acetyl-S-(1-cyano-2-hydroxyethyl)-L-cysteine (1CYHEMA) in participants from the 2011-2016 National Health and Nutrition Examination Survey. OBJECTIVE To assessed acrylonitrile exposure using population-based biomonitoring data of the US civilian, non-institutionalized population. METHODS Laboratory data for 8057 participants were reported for 2CYEMA and 1CYHEMA using ultrahigh-performance liquid chromatography/tandem mass spectrometry. Exclusive tobacco smokers were distinguished from non-users using a combination of self-reporting and serum cotinine data. We used multiple linear regression models to fit 2CYEMA concentrations with sex, age, race/Hispanic origin, and tobacco user group as predictor variables. RESULTS The median 2CYEMA level was higher for exclusive cigarette smokers (145 µg/g creatinine) than for non-users (1.38 µg/g creatinine). Compared to unexposed individuals (serum cotinine ≤0.015 ng/ml) and controlling for confounders, presumptive second-hand tobacco smoke exposure (serum cotinine >0.015 to ≤10 ng/ml and 0 cigarettes per day, CPD) was significantly associated with 36% higher 2CYEMA levels (p < 0.0001). Smoking 1-10 CPD was significantly associated with 6720% higher 2CYEMA levels (p < 0.0001). SIGNIFICANCE We show that tobacco smoke is an important source of acrylonitrile exposure in the US population and provide important biomonitoring data on acrylonitrile exposure.
Collapse
Affiliation(s)
- Víctor R De Jesús
- Centers for Disease Control and Prevention, Division of Laboratory Sciences, Tobacco and Volatiles Branch, Atlanta, GA, 30341, USA.
| | - Luyu Zhang
- Centers for Disease Control and Prevention, Division of Laboratory Sciences, Tobacco and Volatiles Branch, Atlanta, GA, 30341, USA
| | - Deepak Bhandari
- Centers for Disease Control and Prevention, Division of Laboratory Sciences, Tobacco and Volatiles Branch, Atlanta, GA, 30341, USA
| | - Wanzhe Zhu
- Centers for Disease Control and Prevention, Division of Laboratory Sciences, Tobacco and Volatiles Branch, Atlanta, GA, 30341, USA
| | - Joanne T Chang
- Office of Science, Center for Tobacco Products, US Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Benjamin C Blount
- Centers for Disease Control and Prevention, Division of Laboratory Sciences, Tobacco and Volatiles Branch, Atlanta, GA, 30341, USA
| |
Collapse
|
3
|
Schettgen T, Bertram J, Kraus T. Accurate quantification of the mercapturic acids of acrylonitrile and its genotoxic metabolite cyanoethylene-epoxide in human urine by isotope-dilution LC-ESI/MS/MS. Talanta 2012; 98:211-9. [DOI: 10.1016/j.talanta.2012.06.074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/19/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
|
4
|
Wu CF, Uang SN, Chiang SY, Shih WC, Huang YF, Wu KY. Simultaneous quantitation of urinary cotinine and acrylonitrile-derived mercapturic acids with ultraperformance liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem 2012; 402:2113-20. [DOI: 10.1007/s00216-011-5661-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/06/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
|
6
|
Léonard A, Gerber GB, Stecca C, Rueff J, Borba H, Farmer PB, Sram RJ, Czeizel AE, Kalina I. Mutagenicity, carcinogenicity, and teratogenicity of acrylonitrile. Mutat Res 1999; 436:263-83. [PMID: 10354525 DOI: 10.1016/s1383-5742(99)00006-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Acrylonitrile (AN) is an important intermediary for the synthesis of a variety of organic products, such as artificial fibres, household articles and resins. Although acute effects are the primary concern for an exposure to AN, potential genotoxic, carcinogenic and teratogenic risks of AN have to be taken seriously in view of the large number of workers employed in such industries and the world-wide population using products containing and possibly liberating AN. An understanding of the effect of acrylonitrile must be based on a characterization of its metabolism as well as of the resulting products and their genotoxic properties. Tests for mutagenicity in bacteria have in general been positive, those in plants and on unscheduled DNA synthesis doubtful, and those on chromosome aberrations in vivo negative. Wherever positive results had been obtained, metabolic activation of AN appeared to be a prerequisite. The extent to which such mutagenic effects are significant in man depends, however, also on the conditions of exposure. It appears from the limited data that the ultimate mutagenic factor(s), such as 2-cyanoethylene oxide, may have little opportunity to act under conditions where people are exposed because it is formed only in small amounts and is rapidly degraded. The carcinogenic action of AN has been evaluated by various agencies and ranged from 'reasonably be anticipated to be a human carcinogen' to 'cannot be excluded', the most recent evaluation being 'possibly carcinogenic to humans'. Animal data that confirm the carcinogenic potential of AN have certain limitations with respect to the choice of species, type of tumors and length of follow up. Epidemiological studies which sometimes, but not always, yielded positive results, encounter the usual difficulties of confounding factors in chemical industries. Exposure of workers to AN should continue to be carefully monitored, but AN would not have to be considered a cancer risk to the population provided limitations on releases from consumer products and guidelines on AN in water and air are enforced. AN is teratogenic in laboratory animals (rat, hamster) at high doses when foetal/embryonic (and maternal) toxicity already is manifest. Pregnant workers should not be exposed to AN. In view of the small concentrations generally encountered outside plants, women not professionally exposed would appear not to be at risk of teratogenic effects due to AN. Future research should concentrate on the elucidation of the different degradation pathways in man and on epidemiological studies in workers including pregnant women, assessing also, if possible, individual exposure by bio-monitoring.
Collapse
Affiliation(s)
- A Léonard
- Teratogenicity and Mutagenicity Unit, Catholic University of Louvain, Avenue E. Mounier 72, UCL 7237, B-1200, Brussels, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
van Welie RT, van Dijck RG, Vermeulen NP, van Sittert NJ. Mercapturic acids, protein adducts, and DNA adducts as biomarkers of electrophilic chemicals. Crit Rev Toxicol 1992; 22:271-306. [PMID: 1489508 DOI: 10.3109/10408449209146310] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The possibilities and limitations of using mercapturic acids and protein and DNA adducts for the assessment of internal and effective doses of electrophilic chemicals are reviewed. Electrophilic chemicals may be considered as potential mutagens and/or carcinogens. Mercapturic acids and protein and DNA adducts are considered as selective biomarkers because they reflect the chemical structure of the parent compounds or the reactive electrophilic metabolites formed during biotransformation. In general, mercapturic acids are used for the assessment of recent exposure, whereas protein and DNA adducts are used for the assessment of semichronic or chronic exposure. 2-Hydroxyethyl mercapturic acid has been shown to be the urinary excretion product of five different reactive electrophilic intermediates. Classification of these electrophiles according to their acid-base properties might provide a tool to predict their preference to conjugate with either glutathione and proteins or with DNA. Constant relationships appear to exist in the cases of 1,2-dibromoethane and ethylene oxide between urinary mercapturic acid excretion and DNA and protein adduct concentrations. This suggests that mercapturic acids in some cases may also play a role as a biomarker of effective dose. It is concluded that simultaneous determination of mercapturic acids, protein and DNA adducts, and other metabolites can greatly increase our knowledge of the specific roles these biomarkers play in internal and effective dose assessment. If the relationship between exposure and effect is known, similar to protein and DNA adducts, mercapturic acids might also be helpful in (individual) health risk assessment.
Collapse
Affiliation(s)
- R T van Welie
- Department of Pharmacochemistry, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|