1
|
Sit B, Gutmann D, Iskratsch T. Costameres, dense plaques and podosomes: the cell matrix adhesions in cardiovascular mechanosensing. J Muscle Res Cell Motil 2019; 40:197-209. [PMID: 31214894 PMCID: PMC6726830 DOI: 10.1007/s10974-019-09529-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/15/2019] [Indexed: 12/12/2022]
Abstract
The stiffness of the cardiovascular environment changes during ageing and in disease and contributes to disease incidence and progression. For instance, increased arterial stiffness can lead to atherosclerosis, while stiffening of the heart due to fibrosis can increase the chances of heart failure. Cells can sense the stiffness of the extracellular matrix through integrin adhesions and other mechanosensitive structures and in response to this initiate mechanosignalling pathways that ultimately change the cellular behaviour. Over the past decades, interest in mechanobiology has steadily increased and with this also our understanding of the molecular basis of mechanosensing and transduction. However, much of our knowledge about the mechanisms is derived from studies investigating focal adhesions in non-muscle cells, which are distinct in several regards from the cell-matrix adhesions in cardiomyocytes (costameres) or vascular smooth muscle cells (dense plaques or podosomes). Therefore, we will look here first at the evidence for mechanical sensing in the cardiovascular system, before comparing the different cytoskeletal arrangements and adhesion sites in cardiomyocytes and vascular smooth muscle cells and what is known about mechanical sensing through the various structures.
Collapse
Affiliation(s)
- Brian Sit
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, London, UK
| | - Daniel Gutmann
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, London, UK
| | - Thomas Iskratsch
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, London, UK.
| |
Collapse
|
2
|
Allen DG, Whitehead NP, Froehner SC. Absence of Dystrophin Disrupts Skeletal Muscle Signaling: Roles of Ca2+, Reactive Oxygen Species, and Nitric Oxide in the Development of Muscular Dystrophy. Physiol Rev 2016; 96:253-305. [PMID: 26676145 DOI: 10.1152/physrev.00007.2015] [Citation(s) in RCA: 301] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Dystrophin is a long rod-shaped protein that connects the subsarcolemmal cytoskeleton to a complex of proteins in the surface membrane (dystrophin protein complex, DPC), with further connections via laminin to other extracellular matrix proteins. Initially considered a structural complex that protected the sarcolemma from mechanical damage, the DPC is now known to serve as a scaffold for numerous signaling proteins. Absence or reduced expression of dystrophin or many of the DPC components cause the muscular dystrophies, a group of inherited diseases in which repeated bouts of muscle damage lead to atrophy and fibrosis, and eventually muscle degeneration. The normal function of dystrophin is poorly defined. In its absence a complex series of changes occur with multiple muscle proteins showing reduced or increased expression or being modified in various ways. In this review, we will consider the various proteins whose expression and function is changed in muscular dystrophies, focusing on Ca(2+)-permeable channels, nitric oxide synthase, NADPH oxidase, and caveolins. Excessive Ca(2+) entry, increased membrane permeability, disordered caveolar function, and increased levels of reactive oxygen species are early changes in the disease, and the hypotheses for these phenomena will be critically considered. The aim of the review is to define the early damage pathways in muscular dystrophy which might be appropriate targets for therapy designed to minimize the muscle degeneration and slow the progression of the disease.
Collapse
Affiliation(s)
- David G Allen
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Nicholas P Whitehead
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Stanley C Froehner
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| |
Collapse
|
3
|
Vandebrouck A, Ducret T, Basset O, Sebille S, Raymond G, Ruegg U, Gailly P, Cognard C, Constantin B. Regulation of store-operated calcium entries and mitochondrial uptake by minidystrophin expression in cultured myotubes. FASEB J 2005; 20:136-8. [PMID: 16254044 DOI: 10.1096/fj.04-3633fje] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Defective expression of dystrophin in muscle cells is the primary feature of Duchenne muscular dystrophy (DMD), which is accompanied by fiber necrosis and intracellular calcium mishandling. These features led to the hypothesis that dystrophin could control calcium movements. Calcium mishandling in human DMD myotubes is dependent on contraction and/or calcium release activity, suggesting the involvement of channels being activated during these processes. Forced expression of minidystrophin at the plasma membrane of dystrophin-deficient Sol8 myotubes reactivates appropriate sarcolemmal expression of dystrophin-associated proteins and results in normal calcium homeostasis. In active dystrophic myotubes, store-operated calcium channels could be responsible for a sustained calcium influx in muscle cells. We show here that depletion of calcium stores (sarcoplasmic reticulum) by repetitive activation of calcium release and blockade of SERCA leads to a calcium influx. In myotubes expressing recombinant minidystrophin, these store-dependent influxes were reduced to a level similar to that observed in myotubes expressing native dystrophin. High store-dependent calcium influxes in dystrophin-deficient myotubes were associated with sustained cytosolic calcium transients and high intramitochondrial entries, while lower store-dependent calcium influx in myotubes expressing minidystrophin resulted in shorter calcium transients and reduced calcium uptake into mitochondria. We propose that minidystrophin negatively regulates sarcolemmal store-dependent calcium channels, which reduces store-dependent calcium influx, as well as its mitochondrial uptake. Forced expression of minidystrophin in dystrophic cells might restore the regulation of sarcolemmal store-dependent channels, which could protect against calcium mishandling.
Collapse
Affiliation(s)
- A Vandebrouck
- Institut de Physiologie et Biologie Cellulaires, CNRS, UMR-6187, University of Poitiers, Poitiers, France
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Gentil BJ, Delphin C, Benaud C, Baudier J. Expression of the giant protein AHNAK (desmoyokin) in muscle and lining epithelial cells. J Histochem Cytochem 2003; 51:339-48. [PMID: 12588962 DOI: 10.1177/002215540305100309] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Here we report a detailed analysis of the expression and localization of the giant protein AHNAK in adult mouse tissues. We show that AHNAK is widely expressed in muscle cells, including cardiomyocytes, smooth muscle cells, skeletal muscle, myoepithelium, and myofibroblasts. AHNAK is also specifically expressed in epithelial cells of most lining epithelium, but is absent in epithelium with more specialized secretory or absorptive functions. In all adult tissues, the main localization of AHNAK is at the plasma membrane. A role for AHNAK in the specific organization and the structural support of the plasma membrane common to muscle and lining epithelium is discussed.
Collapse
Affiliation(s)
- Benoit J Gentil
- Laboratoire de Transduction du Signal INSERM EMI-0104, Grenoble, France
| | | | | | | |
Collapse
|
5
|
Abstract
We purified actin from bovine brain by DNase I affinity chromatography in order to compare the binding of dystrophin to muscle actin with its binding to nonmuscle actin. While both beta- and gamma-nonmuscle actins are expressed in brain, Western blot analysis with isoform-specific antibodies indicated that our purified brain actin was exclusively the gamma-isoform. The recombinant amino-terminal, actin-binding domain of dystrophin bound to muscle and brain actin in a saturable manner (approximately 1 mol/mol actin) with similar Kd values of 13.7+/-3.5 and 10.6+/-3.7 microM, respectively. We further demonstrate that intact dystrophin in the dystrophin-glycoprotein complex bound with equal avidity to muscle and brain F-actin. These data argue that a preferential binding of dystrophin to nonmuscle actin is not the basis for its targeting to the muscle cell plasmalemma but do support the hypothesis that dystrophin is capable of interacting with filamentous actin in nonmuscle tissues.
Collapse
Affiliation(s)
- B A Renley
- Department of Physiology, University of Wisconsin Medical School, Madison 53706, USA
| | | | | | | |
Collapse
|
6
|
De la Porte S, Morin S, Koenig J. Characteristics of skeletal muscle in mdx mutant mice. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 191:99-148. [PMID: 10343393 DOI: 10.1016/s0074-7696(08)60158-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We review the extensive research conducted on the mdx mouse since 1987, when demonstration of the absence of dystrophin in mdx muscle led to X-chromosome-linked muscular dystrophy (mdx) being considered as a homolog of Duchenne muscular dystrophy. Certain results are contradictory. We consider most aspects of mdx skeletal muscle: (i) the distribution and roles of dystrophin, utrophin, and associated proteins; (ii) morphological characteristics of the skeletal muscle and hypotheses put forward to explain the regeneration characteristic of the mdx mouse; (iii) special features of the diaphragm; (iv) changes in basic fibroblast growth factor, ion flux, innervation, cytoskeleton, adhesive proteins, mastocytes, and metabolism; and (v) different lines of therapeutic research.
Collapse
Affiliation(s)
- S De la Porte
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS UPR 9040, Gif sur Yvette, France
| | | | | |
Collapse
|
7
|
Cullen MJ, Walsh J, Stevenson SA, Rothery S, Severs NJ. Co-localization of dystrophin and beta-dystroglycan demonstrated in en face view by double immunogold labeling of freeze-fractured skeletal muscle. J Histochem Cytochem 1998; 46:945-54. [PMID: 9671444 DOI: 10.1177/002215549804600808] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
An absence of dystrophin causes Duchenne muscular dystrophy, but the precise mechanism underlying necrosis of the muscle cells is still unclear. Dystrophin and beta-dystroglycan are components of a complex of at least nine proteins, the dystrophin-glycoprotein complex (DGC), that links the membrane cytoskeleton to extracellular elements in skeletal and cardiac muscle. Biochemical studies indicate that dystrophin is bound to other components of the DGC via beta-dystroglycan, which suggests that the distribution of these two proteins should be almost identical. In this study, therefore, we examined the spatial relationship between dystrophin and beta-dystroglycan with a range of different imaging techniques to investigate the extent of the predicted co-localization. We used (a) double immunogold fracture-label, a freeze-fracture cytochemical technique that allows high-resolution face-on views of labeled membrane components in thin sections and in platinum-carbon replicas, (b) double immunogold labeling of cryosections and (c) confocal microscopy. Both dystrophin and beta-dystroglycan were found over the entire fiber surface and, when labeled singly, the nearest neighbor spacing of labeling sites for the two proteins was indistinguishable. With double labeling, very close co-localization could be demonstrated. The results support the conclusion that dystrophin and beta-dystroglycan directly interact at the muscle plasma membrane. (J Histochem Cytochem 46:945-953, 1998)
Collapse
Affiliation(s)
- M J Cullen
- Department of Neurobiology, The Medical School, University of Newcastle upon Tyne, UK.
| | | | | | | | | |
Collapse
|
8
|
Root DD. In situ molecular association of dystrophin with actin revealed by sensitized emission immuno-resonance energy transfer. Proc Natl Acad Sci U S A 1997; 94:5685-90. [PMID: 9159133 PMCID: PMC20839 DOI: 10.1073/pnas.94.11.5685] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A novel method was developed to detect molecular associations of dystrophin with actin in cryostat muscle tissue sections by combining resonance energy transfer technology with immunohistochemical techniques. This method takes advantage of the long phosphorescent lifetime of terbium chelates, a property that enables the accurate determination of energy transfer in biological tissues by lifetime measurements of sensitized emission. After a brief excitation pulse, terbium chelates emit for milliseconds after the intrinsically high autofluorescence of biological specimens has decayed to negligible levels. Rat skeletal muscle tissue sections were labeled with both anti-dystrophin monoclonal antibody conjugated to a terbium-based resonance energy transfer donor and anti-actin tetramethylrhodamine phalloidin as an acceptor. Resonance energy transfer between the two probes indicated that the distance separating the probes is within 10 nm (about the size of an IgG2b antibody molecule). The fraction of antibodies that participated in resonance energy transfer was estimated to be 80-90% because of the close agreement between the quenching of donor phosphorescence and the efficiency of resonance energy transfer revealed by lifetime measurements of sensitized emission by tetramethyl-rhodamine phalloidin. Sensitized emission was detectable only when both anti-dystrophin antibody and tetramethyl-rhodamine phalloidin were present. These results indicate that actin and dystrophin are closely associated within the cell. This method is potentially applicable to the investigation of many types of intracellular associations.
Collapse
Affiliation(s)
- D D Root
- Department of Biological Sciences, University of North Texas, P.O. Box 5218, Denton, TX 76203-5218, USA
| |
Collapse
|
9
|
Shibuya S, Wakayama Y, Oniki H, Kojima H, Saito M, Etou T, Nonaka I. A comparative freeze-fracture study of plasma membrane of dystrophic skeletal muscles in dy/dy mice with merosin (laminin 2) deficiency and mdx mice with dystrophin deficiency. Neuropathol Appl Neurobiol 1997. [DOI: 10.1111/j.1365-2990.1997.tb01194.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Abstract
Dystrophin is a key component of the subsarcolemmal skeleton of muscle cells, and lack of dystrophin is the direct cause of Duchenne muscular dystrophy. In skeletal muscle, dystrophin is reported to be localized specifically at costameres, transversely oriented riblike subsarcolemmal plaques that mechanically couple the contractile apparatus to the extracellular matrix. Costameres are characteristically rich in vinculin and are prominent in cardiac as well as skeletal muscle. To define the precise spatial relationship between dystrophin in relation to the costamere in cardiac muscle, we applied high-resolution single- and double-immunolabeling techniques, under a range of preparative conditions, with visualization of vinculin (as a costamere marker) and dystrophin by confocal microscopy and by the freeze-fracture cytochemical technique, fracture label. Immunoconfocal visualization revealed dystrophin as a continuous uniform layer at the cytoplasmic surface of the peripheral plasma membrane of the rat cardiac myocyte at both costameric and noncostameric regions. The pattern of labeling was reproducible with three different antibodies and was independent of time and antibody concentration. Platinum/carbon replicas and thin sections of fracture-label specimens permitted high-resolution visualization of the distribution of dystrophin in plane views of the freeze-fractured plasma membrane and in relation to the sarcomeric banding patterns of the underlying myofibrils. These results confirmed no preferential association of dystrophin with costameres or with any region of the sarcomeres of underlying myofibrils in rat cardiac tissue. We conclude that in contrast to skeletal muscle, dystrophin in cardiac muscle is not exclusively a component of the costamere.
Collapse
Affiliation(s)
- S Stevenson
- Imperial College School of Medicine, National Heart and Lung Institute, London, England
| | | | | | | |
Collapse
|
11
|
Berthier C, Amsellem J, Blaineau S. Visualization of the subsarcolemmal cytoskeleton network of mouse skeletal muscle cells by en face views and application to immunoelectron localization of dystrophin. J Muscle Res Cell Motil 1995; 16:553-66. [PMID: 8567942 DOI: 10.1007/bf00126439] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The ultrastructural organization of the highly interconnected filamentous network underneath the sarcolemma as well as the role played by the muscle protein dystrophin within this cytoskeleton remain yet unclear. More accurate information has been obtained by using a method which provides three-dimensional en face views of large membrane areas applied to mouse cultured myotubes and isolated adult skeletal muscle fibres. Two levels have been distinguished in the cytoskeleton underlying the sarcolemma: the submembranous level, partly integrated into the membrane, and the cortical level, invading the proximal cytoplasmic space. Few differences have been found between the membrane cytoskeletons of myotubes issued from 14-day-old cultures and those of adult fibres. The comparison was done with cells where dystrophin is missing (mdx mouse muscle): surprisingly, the lack of dystrophin does not induce obvious or dramatic ultrastructural disorganization, either in the cortical cytoskeletal network or in the submembranous one. Immunogold labelling of either the central-rod or the C-terminal domain of dystrophin is not located among the cortical network. This study provides additional data on the spatial ordering of subsarcolemmal cytoskeletal elements: dystrophin does not appear as a filamentous structure entirely located among subsarcolemmal cytoskeleton but seems partly embedded in membranous material.
Collapse
Affiliation(s)
- C Berthier
- Laboratoire de Physiologie des Eléments Excitables, URA CNRS 180, Université Claude Bernard Lyon I, Villeurbanne, France
| | | | | |
Collapse
|
12
|
Shibuya S, Wakayama Y, Jimi T, Oniki H, Kobayashi T, Misugi N, Kumagai T, Hasegawa O, Suzuki Y, Kuroiwa Y. Freeze-fracture analysis of muscle plasma membrane in Becker's muscular dystrophy. Neuropathol Appl Neurobiol 1994; 20:487-94. [PMID: 7845534 DOI: 10.1111/j.1365-2990.1994.tb01000.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The intramembranous particle (IMP), orthogonal array (OA) and orthogonal array subunit particle (OASP) densities in skeletal muscle plasma membranes from eight patients with Becker's muscular dystrophy (BMD) were analysed by the freeze-fracture technique. The results showed almost normal IMP density with the significant decrease of OA and OASP densities in BMD. The group mean densities +/- SE of IMPs on the protoplasmic faces with and without OASPs, and on extracellular faces/microns 2 were 2137 +/- 207, 1839 +/- 68 and 895 +/- 108, respectively in controls; whereas those of BMD were 1989 +/- 259, 1837 +/- 203 and 900 +/- 239, respectively (P > 0.1 by two-tailed t-test). The group median density of OAs and their pits/microns 2 was 4.89 with mid-ranges (25-75% values of the counts) of 2.66-10.18 in controls; whereas that in BMD was 2.15 with mid-ranges of 1.14-4.31 (P < 0.01 by Wilcoxon rank-sum test). The group mean density +/- SE of OASPs in controls was 15.99 +/- 1.83; whereas that in BMD was 13.47 +/- 1.07 (P < 0.01 by two-tailed t-test). However, the diminution of OA and OASP densities in BMD muscle plasma membranes was not as severe as in Duchenne's muscular dystrophy. There was a relationship between OA density and clinical severity in BMD patients; the decrease of OA density in a severe BMD patient was more marked than that in mildly affected BMD patients. Therefore, it seems that marked depletion of OA density may lead to the severe disability in muscular dystrophies.
Collapse
Affiliation(s)
- S Shibuya
- Department of Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|