1
|
Pal C, Bindu S, Dey S, Alam A, Goyal M, Iqbal MS, Sarkar S, Kumar R, Halder KK, Debnath MC, Adhikari S, Bandyopadhyay U. Tryptamine-gallic acid hybrid prevents non-steroidal anti-inflammatory drug-induced gastropathy: correction of mitochondrial dysfunction and inhibition of apoptosis in gastric mucosal cells. J Biol Chem 2011; 287:3495-509. [PMID: 22157011 DOI: 10.1074/jbc.m111.307199] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have investigated the gastroprotective effect of SEGA (3a), a newly synthesized tryptamine-gallic acid hybrid molecule against non-steroidal anti-inflammatory drug (NSAID)-induced gastropathy with mechanistic details. SEGA (3a) prevents indomethacin (NSAID)-induced mitochondrial oxidative stress (MOS) and dysfunctions in gastric mucosal cells, which play a pathogenic role in inducing gastropathy. SEGA (3a) offers this mitoprotective effect by scavenging of mitochondrial superoxide anion (O(2)(·-)) and intramitochondrial free iron released as a result of MOS. SEGA (3a) in vivo blocks indomethacin-mediated MOS, as is evident from the inhibition of indomethacin-induced mitochondrial protein carbonyl formation, lipid peroxidation, and thiol depletion. SEGA (3a) corrects indomethacin-mediated mitochondrial dysfunction in vivo by restoring defective electron transport chain function, collapse of transmembrane potential, and loss of dehydrogenase activity. SEGA (3a) not only corrects mitochondrial dysfunction but also inhibits the activation of the mitochondrial pathway of apoptosis by indomethacin. SEGA (3a) inhibits indomethacin-induced down-regulation of bcl-2 and up-regulation of bax genes in gastric mucosa. SEGA (3a) also inhibits indometacin-induced activation of caspase-9 and caspase-3 in gastric mucosa. Besides the gastroprotective effect against NSAID, SEGA (3a) also expedites the healing of already damaged gastric mucosa. Radiolabeled ((99m)Tc-labeled SEGA (3a)) tracer studies confirm that SEGA (3a) enters into mitochondria of gastric mucosal cell in vivo, and it is quite stable in serum. Thus, SEGA (3a) bears an immense potential to be a novel gastroprotective agent against NSAID-induced gastropathy.
Collapse
Affiliation(s)
- Chinmay Pal
- Division of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Liu N, Bezprozvannaya S, Shelton JM, Frisard MI, Hulver MW, McMillan RP, Wu Y, Voelker KA, Grange RW, Richardson JA, Bassel-Duby R, Olson EN. Mice lacking microRNA 133a develop dynamin 2–dependent centronuclear myopathy. J Clin Invest 2011; 121:3258-68. [PMID: 21737882 DOI: 10.1172/jci46267] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 05/11/2011] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs modulate cellular phenotypes by inhibiting expression of mRNA targets. In this study, we have shown that the muscle-specific microRNAs miR-133a-1 and miR-133a-2 are essential for multiple facets of skeletal muscle function and homeostasis in mice. Mice with genetic deletions of miR-133a-1 and miR-133a-2 developed adult-onset centronuclear myopathy in type II (fast-twitch) myofibers, accompanied by impaired mitochondrial function, fast-to-slow myofiber conversion, and disarray of muscle triads (sites of excitation- contraction coupling). These abnormalities mimicked human centronuclear myopathies and could be ascribed, at least in part, to dysregulation of the miR-133a target mRNA that encodes dynamin 2, a GTPase implicated in human centronuclear myopathy. Our findings reveal an essential role for miR-133a in the maintenance of adult skeletal muscle structure, function, bioenergetics, and myofiber identity; they also identify a potential modulator of centronuclear myopathies.
Collapse
Affiliation(s)
- Ning Liu
- Department of Molecular Biology and 2Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75930-9148, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Zanoteli E, Vergani N, Campos Y, Vainzof M, Oliveira ASB, d'Azzo A. Mitochondrial alterations in dynamin 2-related centronuclear myopathy. ARQUIVOS DE NEURO-PSIQUIATRIA 2010; 67:102-4. [PMID: 19330221 DOI: 10.1590/s0004-282x2009000100023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Edmar Zanoteli
- Department of Neurology, UNIFESP-EPM, São Paulo, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
4
|
Abstract
Muscle biopsy provides the best tissue to confirm a mitochondrial cytopathy. Histochemical features often correlate with specific syndromes and facilitate the selection of biochemical and genetic studies. Ragged-red fibres nearly always indicate a combination defect of respiratory complexes I and IV. Increased punctate lipid within myofibers is a regular feature of Kearns-Sayre and PEO, but not of MELAS and MERRF. Total deficiency of succinate dehydrogenase indicates a severe defect in Complex II; total absence of cytochrome-c-oxidase activity in all myofibres correlates with a severe deficiency of Complex IV or of coenzyme-Q10. The selective loss of cytochrome-c-oxidase activity in scattered myofibers, particularly if accompanied by strong succinate dehydrogenase staining in these same fibres, is good evidence of mitochondrial cytopathy and often of a significant mtDNA mutation, though not specific for Complex IV disorders. Glycogen may be excessive in ragged-red zones. Ultrastructure provides morphological evidence of mitochondrial cytopathy, in axons and endothelial cells as well as myocytes. Abnormal axonal mitochondria may contribute to neurogenic atrophy of muscle, a secondary chronic feature. Quantitative determinations of respiratory chain enzyme complexes, with citrate synthase as an internal control, confirm the histochemical impressions or may be the only evidence of mitochondrial disease. Biological and technical artifacts may yield falsely low enzymatic activities. Genetic studies screen common point mutations in mtDNA. The brain exhibits characteristic histopathological alterations in mitochondrial diseases. Skin biopsy is useful for mitochondrial ultrastructure in smooth erector pili muscles and axons; skin fibroblasts may be grown in culture. Mitochondrial alterations occur in many nonmitochondrial diseases and also may be induced by drugs and toxins.
Collapse
|
5
|
Enns GM, Hoppel CL, DeArmond SJ, Schelley S, Bass N, Weisiger K, Horoupian D, Packman S. Relationship of primary mitochondrial respiratory chain dysfunction to fiber type abnormalities in skeletal muscle. Clin Genet 2005; 68:337-48. [PMID: 16143021 DOI: 10.1111/j.1399-0004.2005.00499.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Variation in the size and relative proportion of type 1 and type 2 muscle fibers can occur in a number of conditions, including structural myopathies, neuropathies, and various syndromes. In most cases, the pathogenesis of such fiber type changes is unknown and the etiology is heterogeneous. Skeletal muscle mitochondrial respiratory chain analysis was performed in 10 children aged 3 weeks to 5 years with abnormalities in muscle fiber type, size, and proportion. Five children were classified as having definite, four as probable, and one as possible mitochondrial disease. Type 1 fiber predominance was the most common histological finding (six of 10). On light microscopy, four cases had subtle concomitants of a mitochondriopathy, including mildly increased glycogen, lipid, and/or succinate dehydrogenase staining, and one case had more prominent evidence of underlying mitochondrial disease with marked subsarcolemmal staining. Most cases (nine of 10) had abnormal mitochondrial morphology on electron microscopy. All were found to have mitochondrial electron transport chain (ETC) abnormalities and met diagnostic criteria for mitochondrial disease. We did not ascertain any patients who had isolated fiber type abnormalities and normal respiratory chain analysis during the period of study. We conclude that mitochondrial ETC disorders may represent an etiology of at least a subset of muscle fiber type abnormalities. To establish an etiologic diagnosis and to determine the frequency of such changes in mitochondrial disease, we suggest analysis of ETC function in individuals with fiber type changes in skeletal muscle, even in the absence of light histological features suggestive of mitochondrial disorders.
Collapse
Affiliation(s)
- G M Enns
- Department of Pediatrics, Stanford University, Stanford, CA 94305-5208, USA.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Clay AS, Behnia M, Brown KK. Mitochondrial disease: a pulmonary and critical-care medicine perspective. Chest 2001; 120:634-48. [PMID: 11502670 DOI: 10.1378/chest.120.2.634] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The clinical spectrum of mitochondrial diseases has expanded dramatically in the last decade. Abnormalities of mitochondrial function are now thought to participate in a number of common adult diseases, ranging from exercise intolerance to aging. This review outlines the common presentations of mitochondrial disease in ICUs and in the outpatient setting and discusses current diagnostic and therapeutic options as they pertain to the pulmonary and critical-care physician.
Collapse
Affiliation(s)
- A S Clay
- Department of Internal Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | |
Collapse
|
7
|
Leivo I, Kauhanen S, Michelsson JE. Abnormal mitochondria and sarcoplasmic changes in rabbit skeletal muscle induced by immobilization. APMIS 1998; 106:1113-23. [PMID: 10052719 DOI: 10.1111/j.1699-0463.1998.tb00267.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Immobilization of the rabbit knee in extended position results in damage to the vastus intermedius profundus (VIP) muscle. To examine the mechanisms involved in initiation of the injury, we studied the light and electron microscopic morphology of the VIP muscle, as well as the activity and distribution of NADH tetrazolium reductase (NADH-TR) in the affected muscle, and determined serum total creatine kinase (CK) activity in immobilized rabbits. The VIP muscle of the immobilized right hindlimb was removed at various time points (10 h, 24 h, 36 h and 48-72 h, n=5 for each time point). The nonimmobilized left hindlimb and five nonimmobilized animals served as controls. No morphological changes were observed by light microscopy within 48-72 h in routine stainings. Transient ultrastructural abnormalities, including abnormal cristae, matrix lucencies and mild swelling of mitochondria, were observed between 10 h and 36 h of immobilization, subsiding by 48-72 h. On the other hand, progressive disorganization of myofibrils with breaking-up of Z-bands and an increase in the number and size of sarcoplasmic lipid vacuoles was seen with increasing duration of immobilization. NADH-TR activity at subsarcolemmal locations had decreased by 10 h and disappeared by 24 h of immobilization, while the intermyofibrillar mitochondria remained unaltered. Serum total CK activity began to increase by 2 h of immobilization and reached a peak by 24 h. The results indicate that already a few hours of immobilization of the rabbit knee in extension leads to signs of metabolic disturbance of the VIP muscle and sarcolemmal leakage. The simultaneous occurrence of transient mitochondrial abnormalities, transient CK efflux and progressive myofibrillar damage suggests the operation of multiple adverse mechanisms already at the onset of disuse muscle atrophy.
Collapse
Affiliation(s)
- I Leivo
- The Haartman Institute, Department of Pathology, University of Helsinki, Finland
| | | | | |
Collapse
|
8
|
Affiliation(s)
- G D Vladutiu
- Department of Pediatrics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, USA
| | | |
Collapse
|
9
|
Handran SD, Werth JL, DeVivo DC, Rothman SM. Mitochondrial morphology and intracellular calcium homeostasis in cytochrome oxidase-deficient human fibroblasts. Neurobiol Dis 1997; 3:287-98. [PMID: 9173926 DOI: 10.1006/nbdi.1996.0125] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mitochondrial encephalomyopathies arise from mutations in the mitochondrial or nuclear genome and result in defective energy metabolism. Investigation of cellular pathophysiology in these disorders has been limited to nonneuronal explant cultures such as fibroblasts and myoblasts. While investigating mitochondrial structure and function in fibroblasts obtained from control and cytochrome oxidase-deficient (COX) patients, we observed possible abnormalities by vital dye confocal microscopy. Most notable were swelling, reticulation (e.g., intricate fusion of mitochondria), and proliferation of mitochondria. However, a detailed quantitative comparison of mitochondrial morphology in age-, sex-, and passage-matched cultures revealed no significant differences between control and cytochrome oxidase-deficient fibroblasts, nor any differences with passage. In addition, COX fibroblasts exhibited no obvious impairment of intracellular calcium handling, measured by fura-2. These results indicate that cytochrome oxidase deficiency, at the level in these cultures, does not produce structural or ionic concentration alterations in fibroblasts. Future investigation of the pathophysiology of this respiratory chain disorder may require excitable tissue.
Collapse
Affiliation(s)
- S D Handran
- Center for the Study of Nervous System Injury and Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | | | | | | |
Collapse
|