1
|
Branovets J, Soodla K, Vendelin M, Birkedal R. Rat and mouse cardiomyocytes show subtle differences in creatine kinase expression and compartmentalization. PLoS One 2023; 18:e0294718. [PMID: 38011179 PMCID: PMC10681188 DOI: 10.1371/journal.pone.0294718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Creatine kinase (CK) and adenylate kinase (AK) are energy transfer systems. Different studies on permeabilized cardiomyocytes suggest that ADP-channelling from mitochondrial CK alone stimulates respiration to its maximum, VO2_max, in rat but not mouse cardiomyocytes. Results are ambiguous on ADP-channelling from AK to mitochondria. This study was undertaken to directly compare the CK and AK systems in rat and mouse hearts. In homogenates, we assessed CK- and AK-activities, and the CK isoform distribution. In permeabilized cardiomyocytes, we assessed mitochondrial respiration stimulated by ADP from CK and AK, VO2_CK and VO2_AK, respectively. The ADP-channelling from CK or AK to mitochondria was assessed by adding PEP and PK to competitively inhibit the respiration rate. We found that rat compared to mouse hearts had a lower aerobic capacity, higher VO2_CK/VO2_max, and different CK-isoform distribution. Although rat hearts had a larger fraction of mitochondrial CK, less ADP was channeled from CK to the mitochondria. This suggests different intracellular compartmentalization in rat and mouse cardiomyocytes. VO2_AK/VO2_max was similar in mouse and rat cardiomyocytes, and AK did not channel ADP to the mitochondria. In the absence of intracellular compartmentalization, the AK- and CK-activities in homogenate should have been similar to the ADP-phosphorylation rates estimated from VO2_AK and VO2_CK in permeabilized cardiomyocytes. Instead, we found that the ADP-phosphorylation rates estimated from permeabilized cardiomyocytes were 2 and 9 times lower than the activities recorded in homogenate for CK and AK, respectively. Our results highlight the importance of energetic compartmentalization in cardiac metabolic regulation and signalling.
Collapse
Affiliation(s)
- Jelena Branovets
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Kärol Soodla
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Marko Vendelin
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Rikke Birkedal
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
2
|
Lin R, Wu J, You Z, Xu D, Li C, Wang W, Qian G. Induction of Hibernation and Changes in Physiological and Metabolic Indices in Pelodiscus sinensis. BIOLOGY 2023; 12:biology12050720. [PMID: 37237532 DOI: 10.3390/biology12050720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Pelodiscus sinensis (P. sinensis) is a commonly cultivated turtle species with a habit of hibernation. To study the changes in histone expression and methylation of P. sinensis during hibernation induction, a model was established by artificial induction. Physiological and metabolic indices were measured, and the expression and localization of histone (H1, H2A, H2B, H3, and H4) and methylation-related genes (ASH2L, KMT2A, KMT2E, KDM1A, KDM1B, and KDM5A) were measured by quantitative PCR, immunohistochemistry, and Western blot analysis. The results indicated that the metabolism, antioxidation index, and relative expression of histone methyltransferase were significantly decreased (p < 0.05), whereas the activity and expression of histone demethyltransferase were significantly increased (p < 0.05). Although our results showed significant changes in physiological and gene expression after hibernation induction, we could not confirm that P. sinensis entered deep hibernation. Therefore, for the state after cooling-induced hibernation, cold torpor might be a more accurate description. The results indicate that the P. sinensis can enter cold torpor through artificial induction, and the expression of histones may promote gene transcription. Unlike histones expressed under normal conditions, histone methylation may activate gene transcription during hibernation induction. Western blot analysis revealed that the ASH2L and KDM5A proteins were differentially expressed in the testis at different months (p < 0.05), which may perform a role in regulating gene transcription. The immunohistochemical localization of ASH2L and KDM5A in spermatogonia and spermatozoa suggests that ASH2L and KDM5A may perform a role in mitosis and meiosis. In conclusion, this study is the first to report changes in histone-related genes in reptiles, which provides insight for further studies on the physiological metabolism and histone methylation regulation of P. sinensis during the hibernation induction and hibernation period.
Collapse
Affiliation(s)
- Runlan Lin
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Jiahao Wu
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Ziyi You
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Dongjie Xu
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Caiyan Li
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Wei Wang
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Guoying Qian
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| |
Collapse
|
3
|
Zeng LF, Lee J, Lim G, Yang YF, Lin RL, Yin SJ, Wang W, Park YD. Characterization and tissue expression analysis of mitochondrial creatine kinases (types I and II) from Pelodiscus sinensis. J Biomol Struct Dyn 2023; 41:1388-1402. [PMID: 34939522 DOI: 10.1080/07391102.2021.2020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The aim of this study was to characterize the functions of the mitochondrial creatine kinases in the Chinese soft-shelled turtle Pelodiscus sinensis (PSCK-MT1 and PSCK-MT2) to characterize function in relation to hibernation. Computational prediction via molecular dynamics simulations showed that PSCK-MT1 had stronger kinase- and creatine-binding affinity than PSCK-MT2. We measured PSCK-MT1 and PSCK-MT2 levels in the myocardium, liver, spleen, lung, kidney, and ovary of P. sinensis before and after hibernation and found that the expression of these enzymes was the most significantly upregulated in the ovary. We enumerated the ovarian follicles and evaluated the physiological indices of P. sinensis and discovered that fat was the main form of energy storage in P. sinensis. Moreover, both PSCK-MTs promoted follicular development during hibernation. Immunohistochemistry was used to study follicular development and revealed that both PSCK-MTs were expressed primarily in the follicular fluid and granulosa layer before and after hibernation. We found that PSCK-MT1 and PSCK-MT2 could play important roles in ovarian follicular development under hibernation. Hence, both PSCK-MTs probably function effectively under the conditions of low temperature and oxygen during hibernation. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Li-Fang Zeng
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Jinhyuk Lee
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Korea
| | - Gyutae Lim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Korea
| | - Yu-Fei Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Run-Lan Lin
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Shang-Jun Yin
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Wei Wang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Yong-Doo Park
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China.,Skin Diseases Research Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, PR China.,Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, PR China
| |
Collapse
|
4
|
Birkedal R, Laasmaa M, Branovets J, Vendelin M. Ontogeny of cardiomyocytes: ultrastructure optimization to meet the demand for tight communication in excitation-contraction coupling and energy transfer. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210321. [PMID: 36189816 PMCID: PMC9527910 DOI: 10.1098/rstb.2021.0321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The ontogeny of the heart describes its development from the fetal to the adult stage. In newborn mammals, blood pressure and thus cardiac performance are relatively low. The cardiomyocytes are thin, and with a central core of mitochondria surrounded by a ring of myofilaments, while the sarcoplasmic reticulum (SR) is sparse. During development, as blood pressure and performance increase, the cardiomyocytes become more packed with structures involved in excitation–contraction (e-c) coupling (SR and myofilaments) and the generation of ATP (mitochondria) to fuel the contraction. In parallel, the e-c coupling relies increasingly on calcium fluxes through the SR, while metabolism relies increasingly on fatty acid oxidation. The development of transverse tubules and SR brings channels and transporters interacting via calcium closer to each other and is crucial for e-c coupling. However, for energy transfer, it may seem counterintuitive that the increased structural density restricts the overall ATP/ADP diffusion. In this review, we discuss how this is because of the organization of all these structures forming modules. Although the overall diffusion across modules is more restricted, the energy transfer within modules is fast. A few studies suggest that in failing hearts this modular design is disrupted, and this may compromise intracellular energy transfer. This article is part of the theme issue ‘The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease’.
Collapse
Affiliation(s)
- Rikke Birkedal
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Akadeemia 15, room SCI-218, 12618 Tallinn, Estonia
| | - Martin Laasmaa
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Akadeemia 15, room SCI-218, 12618 Tallinn, Estonia
| | - Jelena Branovets
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Akadeemia 15, room SCI-218, 12618 Tallinn, Estonia
| | - Marko Vendelin
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Akadeemia 15, room SCI-218, 12618 Tallinn, Estonia
| |
Collapse
|
5
|
Kolesnikova EE, Soldatov АА, Golovina IV, Sysoeva IV, Sysoev АА, Kukhareva ТА. Activity of Energy Metabolism Enzymes and the Adenylate System in Heart Chambers of a Black Sea Scorpionfish (Scorpaena porcus L.) under Acute Hypoxia. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021050070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Branovets J, Karro N, Barsunova K, Laasmaa M, Lygate CA, Vendelin M, Birkedal R. Cardiac expression and location of hexokinase changes in a mouse model of pure creatine deficiency. Am J Physiol Heart Circ Physiol 2021; 320:H613-H629. [PMID: 33337958 DOI: 10.1152/ajpheart.00188.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/10/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Creatine kinase (CK) is considered the main phosphotransfer system in the heart, important for overcoming diffusion restrictions and regulating mitochondrial respiration. It is substrate limited in creatine-deficient mice lacking l-arginine:glycine amidinotransferase (AGAT) or guanidinoacetate N-methyltranferase (GAMT). Our aim was to determine the expression, activity, and mitochondrial coupling of hexokinase (HK) and adenylate kinase (AK), as these represent alternative energy transfer systems. In permeabilized cardiomyocytes, we assessed how much endogenous ADP generated by HK, AK, or CK stimulated mitochondrial respiration and how much was channeled to mitochondria. In whole heart homogenates, and cytosolic and mitochondrial fractions, we measured the activities of AK, CK, and HK. Lastly, we assessed the expression of the major HK, AK, and CK isoforms. Overall, respiration stimulated by HK, AK, and CK was ∼25, 90, and 80%, respectively, of the maximal respiration rate, and ∼20, 0, and 25%, respectively, was channeled to the mitochondria. The activity, distribution, and expression of HK, AK, and CK did not change in GAMT knockout (KO) mice. In AGAT KO mice, we found no changes in AK, but we found a higher HK activity in the mitochondrial fraction, greater expression of HK I, but a lower stimulation of respiration by HK. Our findings suggest that mouse hearts depend less on phosphotransfer systems to facilitate ADP flux across the mitochondrial membrane. In AGAT KO mice, which are a model of pure creatine deficiency, the changes in HK may reflect changes in metabolism as well as influence mitochondrial regulation and reactive oxygen species production.NEW & NOTEWORTHY In creatine-deficient AGAT-/- and GAMT-/- mice, the myocardial creatine kinase system is substrate limited. It is unknown whether subcellular localization and mitochondrial ADP channeling by hexokinase and adenylate kinase may compensate as alternative phosphotransfer systems. Our results show no changes in adenylate kinase, which is the main alternative to creatine kinase in heart. However, we found increased expression and activity of hexokinase I in AGAT-/- cardiomyocytes. This could affect mitochondrial regulation and reactive oxygen species production.
Collapse
Affiliation(s)
- Jelena Branovets
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Niina Karro
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Karina Barsunova
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Martin Laasmaa
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Marko Vendelin
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Rikke Birkedal
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
7
|
Marker enzyme activities in hindleg from creatine-deficient AGAT and GAMT KO mice - differences between models, muscles, and sexes. Sci Rep 2020; 10:7956. [PMID: 32409787 PMCID: PMC7224371 DOI: 10.1038/s41598-020-64740-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/20/2020] [Indexed: 11/10/2022] Open
Abstract
Creatine kinase (CK) functions as an energy buffer in muscles. Its substrate, creatine, is generated by L-arginine:glycine amidinotransferase (AGAT) and guanidinoacetate N-methyltransferase (GAMT). Creatine deficiency has more severe consequences for AGAT than GAMT KO mice. In the present study, to characterize their muscle phenotype further, we recorded the weight of tibialis anterior (TA), extensor digitorum longus (EDL), gastrocnemius (GAS), plantaris (PLA) and soleus (SOL) from creatine-deficient AGAT and GAMT, KO and WT mice. In GAS, PLA and SOL representing glycolytic, intermediate and oxidative muscle, respectively, we recorded the activities of pyruvate kinase (PK), lactate dehydrogenase (LDH), citrate synthase (CS) and cytochrome oxidase (CO). In AGAT KO compared to WT mice, muscle atrophy and differences in marker enzyme activities were more pronounced in glycolytic than oxidative muscle. In GAMT KO compared to WT, the atrophy was modest, differences in PK and LDH activities were minor, and CS and CO activities were slightly higher in all muscles. SOL from males had higher CS and CO activities compared to females. Our results add detail to the characterization of AGAT and GAMT KO skeletal muscle phenotypes and illustrate the importance of taking into account differences between muscles, and differences between sexes.
Collapse
|
8
|
A Diet Diverse in Bamboo Parts is Important for Giant Panda (Ailuropoda melanoleuca) Metabolism and Health. Sci Rep 2017; 7:3377. [PMID: 28611401 PMCID: PMC5469786 DOI: 10.1038/s41598-017-03216-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/11/2017] [Indexed: 01/05/2023] Open
Abstract
The aim of this study was to determine the metabolic response in giant pandas (Ailuropoda melanoleuca) to the consumption of certain parts of bamboo above ground growth. Giant pandas were provisioned with three species of bamboo: Phyllostachys bissetii, of which they only consume the culm (culm group); Bashania fargesii, of which they only consume the leaves (leaf group); and Qiongzhuea opienensis, of which they only consume the shoots (shoot group). The “culm” group absorbed the highest amount of calories and fiber, but was in short energy supply (depressed tricarboxylic acid cycle activity), and high fiber level diet might reduce the digestibility of protein. The “culm” and “leaf” groups absorbed less protein, and had a lower rate of body mass growth than the “shoot” group. Digestion of fiber requires energy input and yields low caloric extraction from the culm and leaf, and protein intake is important for increasing body mass. However, long-term consumption of shoots may have a potentially negative effect on the health because of high protein composition. Therefore, a balanced diet consisting of diverse plant parts of bamboo is important for the overall metabolic function and health of captive giant pandas.
Collapse
|
9
|
Metabolic compartmentation in rainbow trout cardiomyocytes: coupling of hexokinase but not creatine kinase to mitochondrial respiration. J Comp Physiol B 2016; 187:103-116. [PMID: 27522222 DOI: 10.1007/s00360-016-1025-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 07/22/2016] [Accepted: 07/29/2016] [Indexed: 01/12/2023]
Abstract
Rainbow trout (Oncorhynchus mykiss) cardiomyocytes have a simple morphology with fewer membrane structures such as sarcoplasmic reticulum and t-tubules penetrating the cytosol. Despite this, intracellular ADP diffusion is restricted. Intriguingly, although diffusion is restricted, trout cardiomyocytes seem to lack the coupling between mitochondrial creatine kinase (CK) and respiration. Our aim was to study the distribution of diffusion restrictions in permeabilized trout cardiomyocytes and verify the role of CK. We found a high activity of hexokinase (HK), which led us to reassess the situation in trout cardiomyocytes. We show that diffusion restrictions are more prominent than previously thought. In the presence of a competitive ADP-trapping system, ADP produced by HK, but not CK, was channeled to the mitochondria. In agreement with this, we found no positively charged mitochondrial CK in trout heart homogenate. The results were best fit by a simple mathematical model suggesting that trout cardiomyocytes lack a functional coupling between ATPases and pyruvate kinase. The model simulations show that diffusion is restricted to almost the same extent in the cytosol and by the outer mitochondrial membrane. Furthermore, they confirm that HK, but not CK, is functionally coupled to respiration. In perspective, our results suggest that across a range of species, cardiomyocyte morphology and metabolism go hand in hand with cardiac performance, which is adapted to the circumstances. Mitochondrial CK is coupled to respiration in adult mammalian hearts, which are specialized to high, sustained performance. HK associates with mitochondria in hearts of trout and neonatal mammals, which are more hypoxia-tolerant.
Collapse
|
10
|
Jayasundara N, Tomanek L, Dowd WW, Somero GN. Proteomic analysis of cardiac response to thermal acclimation in the eurythermal goby fish Gillichthys mirabilis. ACTA ACUST UNITED AC 2016; 218:1359-72. [PMID: 25954043 DOI: 10.1242/jeb.118760] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cardiac function is thought to play a central role in determining thermal optima and tolerance limits in teleost fishes. Investigating proteomic responses to temperature in cardiac tissues may provide insights into mechanisms supporting the thermal plasticity of cardiac function. Here, we utilized a global proteomic analysis to investigate changes in cardiac protein abundance in response to temperature acclimation (transfer from 13°C to 9, 19 and 26°C) in a eurythermal goby, Gillichthys mirabilis. Proteomic data revealed 122 differentially expressed proteins across acclimation groups, 37 of which were identified using tandem mass-spectrometry. These 37 proteins are involved in energy metabolism, mitochondrial regulation, iron homeostasis, cytoprotection against hypoxia, and cytoskeletal organization. Compared with the 9 and 26°C groups, proteins involved in energy metabolism increased in 19°C-acclimated fish, indicating an overall increase in the capacity for ATP production. Creatine kinase abundance increased in 9°C-acclimated fish, suggesting an important role for the phosphocreatine energy shuttle in cold-acclimated hearts. Both 9 and 26°C fish also increased abundance of hexosaminidase, a protein directly involved in post-hypoxia stress cytoprotection of cardiac tissues. Cytoskeletal restructuring appears to occur in all acclimation groups; however, the most prominent effect was detected in 26°C-acclimated fish, which exhibited significantly increased actin levels. Overall, proteomic analysis of cardiac tissue suggests that the capacity to adjust ATP-generating processes is crucial to the thermal plasticity of cardiac function. Furthermore, G. mirabilis may optimize cellular functions at temperatures near 19°C, which lies within the species' preferred temperature range.
Collapse
Affiliation(s)
- Nishad Jayasundara
- Stanford University, Hopkins Marine Station, 120 Oceanview Boulevard, Pacific Grove, CA 93950, USA
| | - Lars Tomanek
- Biological Sciences Department, 1 Grand Avenue, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - W Wesley Dowd
- Loyola Marymount University, Department of Biology, 1 LMU Drive, MS 8220, Los Angeles, CA 90045, USA
| | - George N Somero
- Stanford University, Hopkins Marine Station, 120 Oceanview Boulevard, Pacific Grove, CA 93950, USA
| |
Collapse
|
11
|
Joyce W, Gesser H, Bayley M, Wang T. Anoxia and Acidosis Tolerance of the Heart in an Air-Breathing Fish (Pangasianodon hypophthalmus). Physiol Biochem Zool 2015; 88:648-59. [PMID: 26658412 DOI: 10.1086/682701] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- William Joyce
- Department of Zoophysiology, Aarhus University, Building 1131, Universitetsparken, 8000 Aarhus C, Denmark
| | | | | | | |
Collapse
|
12
|
Hearts of some Antarctic fishes lack mitochondrial creatine kinase. Comp Biochem Physiol A Mol Integr Physiol 2014; 178:30-6. [PMID: 25151023 DOI: 10.1016/j.cbpa.2014.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 11/23/2022]
Abstract
Creatine kinase (CK; EC 2.7.3.2) functions as a spatial and temporal energy buffer, dampening fluctuations in ATP levels as ATP supply and demand change. There are four CK isoforms in mammals, two cytosolic isoforms (muscle [M-CK] and brain [B-CK]), and two mitochondrial isoforms (ubiquitous [uMtCK] and sarcomeric [sMtCK]). Mammalian oxidative muscle couples expression of sMtCK with M-CK, creating an energy shuttle between mitochondria and myofibrils. We hypothesized that the expression pattern and activity of CK would differ between hearts of red- and white-blooded Antarctic notothenioid fishes due to their striking differences in cardiac ultrastructure. Hearts of white-blooded icefishes (family Channichthyidae) have significantly higher mitochondrial densities compared to red-blooded species, decreasing the diffusion distance for ATP between mitochondria and myofibrils and potentially minimizing the need for CK. The distribution of CK isoforms was evaluated using western blotting and maximal activity of CK was measured in mitochondrial and cytosolic fractions and tissue homogenates of heart ventricles of red- and white-blooded notothenioids. Transcript abundance of sMtCK and M-CK was also quantified. Overall, CK activity is similar between hearts of red- and white-blooded notothenioids but hearts of icefishes lack MtCK and have higher activities of M-CK in the cytosol compared to red-blooded fishes. The absence of MtCK may compromise cardiac function under stressful conditions when ATP supply becomes limiting.
Collapse
|
13
|
Boldsen MM, Norin T, Malte H. Temporal repeatability of metabolic rate and the effect of organ mass and enzyme activity on metabolism in European eel (Anguilla anguilla). Comp Biochem Physiol A Mol Integr Physiol 2013; 165:22-9. [PMID: 23388212 DOI: 10.1016/j.cbpa.2013.01.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 10/27/2022]
Abstract
Intraspecific variation in metabolic rate of fish can be pronounced and have been linked to various fitness-related behavioural and physiological traits, but the underlying causes for this variation have received far less attention than the consequences of it. In the present study we investigated whether European eels (Anguilla anguilla) displayed temporal repeatability of body-mass-corrected (residual) metabolic rate over a two-month period and if variations in organ mass and enzyme activity between individual fish could be the cause for the observed variation in metabolic rate. Both standard metabolic rate (SMR; Pearson's r=0.743) and routine metabolic rate (RMR; r=0.496) were repeatable over the two-month period. Repeatability of RMR is an interesting finding as it indicates that the level of spontaneous activity in respirometer-confined fish is not random. Cumulative organ mass (liver, heart, spleen and intestine; mean 1.6% total body mass) was found to explain 38% of the variation in SMR (r=0.613) with the liver (one of the metabolically most active organs) being the driver for the correlation between organ mass and metabolic rate. No relationships were found for either liver citrate synthase or cytochrome oxidase activity and metabolic rate in the European eels. Reasons for, and contributions to, the observed variation in metabolic rate are discussed.
Collapse
|
14
|
Norin T, Malte H. Intraspecific variation in aerobic metabolic rate of fish: relations with organ size and enzyme activity in brown trout. Physiol Biochem Zool 2012; 85:645-56. [PMID: 23099462 DOI: 10.1086/665982] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Highly active animals require a high aerobic capacity (i.e., a high maximum metabolic rate [MMR]) to sustain such activity, and it has been speculated that a greater capacity for aerobic performance is reflected in larger organs, which serve as energy processors but are also expensive to maintain and which increase the minimal cost of living (i.e., the basal or standard metabolic rate [SMR]). In this study, we assessed the extent of intraspecific variation in metabolic rate within a group of brown trout (Salmo trutta L.) and tested whether the observed variation in residual (body-mass-corrected) SMR, MMR, and absolute aerobic scope could be explained by variations in the residual size (mass) of metabolically active internal organs. Residual SMR was found to correlate positively with residual MMR, indicating a link between these two metabolic parameters, but no relationship between organ mass and metabolic rate was found for liver, heart, spleen, intestine, or stomach. Instead, activity in the liver of two aerobic mitochondrial enzymes, cytochrome c oxidase and, to a lesser extent, citrate synthase, was found to correlate with whole-animal metabolic rate, indicating that causes for intraspecific variation in the metabolic rate of fish can be found at a lower organizational level than organ size.
Collapse
Affiliation(s)
- Tommy Norin
- Zoophysiology, Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark.
| | | |
Collapse
|
15
|
Sokolova N, Vendelin M, Birkedal R. Intracellular diffusion restrictions in isolated cardiomyocytes from rainbow trout. BMC Cell Biol 2009; 10:90. [PMID: 20017912 PMCID: PMC2806299 DOI: 10.1186/1471-2121-10-90] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 12/17/2009] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Restriction of intracellular diffusion of adenine nucleotides has been studied intensively on adult rat cardiomyocytes. However, their cause and role in vivo is still uncertain. Intracellular membrane structures have been suggested to play a role. We therefore chose to study cardiomyocytes from rainbow trout (Oncorhynchus mykiss), which are thinner and have fewer intracellular membrane structures than adult rat cardiomyocytes. Previous studies suggest that trout permeabilized cardiac fibers also have diffusion restrictions. However, results from fibers may be affected by incomplete separation of the cells. This is avoided when studying permeabilized, isolated cardiomyocytes. The aim of this study was to verify the existence of diffusion restrictions in trout cardiomyocytes by comparing ADP-kinetics of mitochondrial respiration in permeabilized fibers, permeabilized cardiomyocytes and isolated mitochondria from rainbow trout heart. Experiments were performed at 10, 15 and 20 degrees C in the absence and presence of creatine. RESULTS Trout cardiomyocytes hypercontracted in the solutions used for mammalian cardiomyocytes. We developed a new solution in which they retained their shape and showed stable steady state respiration rates throughout an experiment. The apparent ADP-affinity of permeabilized cardiomyocytes was different from that of fibers. It was higher, independent of temperature and not increased by creatine. However, it was still about ten times lower than in isolated mitochondria. CONCLUSIONS The differences between fibers and cardiomyocytes suggest that results from trout heart fibers were affected by incomplete separation of the cells. However, the lower ADP-affinity of cardiomyocytes compared to isolated mitochondria indicate that intracellular diffusion restrictions are still present in trout cardiomyocytes despite their lower density of intracellular membrane structures. The lack of a creatine effect indicates that trout heart lacks mitochondrial creatine kinase tightly coupled to respiration. This argues against diffusion restriction by the outer mitochondrial membrane. These results from rainbow trout cardiomyocytes resemble those from other low-performance hearts such as neonatal rat and rabbit hearts. Thus, it seems that metabolic regulation is related to cardiac performance, and it is likely that rainbow trout can be used as a model animal for further studies of the localization and role of diffusion restrictions in low-performance hearts.
Collapse
Affiliation(s)
- Niina Sokolova
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Akadeemia 21, 12618 Tallinn, Estonia.
| | | | | |
Collapse
|
16
|
Haagensen L, Jensen DH, Gesser H. Dependence of myosin-ATPase on structure bound creatine kinase in cardiac myofibrils from rainbow trout and freshwater turtle. Comp Biochem Physiol A Mol Integr Physiol 2008; 150:404-9. [PMID: 18515165 DOI: 10.1016/j.cbpa.2008.04.604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 04/21/2008] [Accepted: 04/21/2008] [Indexed: 10/22/2022]
Abstract
The influence of myofibrillar creatine kinase on the myosin-ATPase activity was examined in cardiac ventricular myofibrils isolated from rainbow trout (Oncorhynchus mykiss) and freshwater turtle (Trachemys scripta). The ATPase rate was assessed by recording the rephosphorylation of ADP by the pyruvate kinase reaction alone or together with the amount of creatine formed, when myofibrillar bound creatine kinase was activated with phosphocreatine. The steady-state concentration of ADP in the solution was varied through the activity of pyruvate kinase added to the solution. For rainbow trout myofibrils at a high pyruvate kinase activity, creatine kinase competed for ADP but did not influence the total ATPase activity. When the ADP concentration was elevated within the physiological range by lowering the pyruvate kinase activity, creatine kinase competed efficiently and increased the ATPase activity twice or more for both trout and turtle. As examined for trout myofibrils, the ATPase activity was reduced about four times by inhibiting the activity of myofibril-bound creatine kinase with iodoacetamide and this reduction was only partially counteracted, when the creatine kinase activity was restored by adding creatine kinase to the solution. Hence, the results suggest that myofibril-bound creatine kinase is needed to fully activate the myosin-ATPase activity in hearts from ectothermic vertebrates despite their low energy turn-over relative to endothermic species.
Collapse
Affiliation(s)
- L Haagensen
- Department of Biological Sciences, University of Aarhus, Building 1131, DK-8000 Aarhus C, Denmark
| | | | | |
Collapse
|
17
|
Overgaard J, Gesser H, Wang T. Tribute to P. L. Lutz: cardiac performance and cardiovascular regulation during anoxia/hypoxia in freshwater turtles. ACTA ACUST UNITED AC 2008; 210:1687-99. [PMID: 17488932 DOI: 10.1242/jeb.001925] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Freshwater turtles overwintering in ice-covered ponds in North America may be exposed to prolonged anoxia, and survive this hostile environment by metabolic depression. Here, we review their cardiovascular function and regulation, with particular emphasis on the factors limiting cardiac performance. The pronounced anoxia tolerance of the turtle heart is based on the ability to match energy consumption with the low anaerobic ATP production during anoxia. Together with a well-developed temporal and spatial energy buffering by creatine kinase, this allows for cellular energy charge to remain high during anoxia. Furthermore, the turtle heart is well adapted to handle the adverse effects of free phosphate arising when phosphocreatine stores are used. Anoxia causes tenfold reductions in heart rate and blood flows that match the metabolic depression, and blood pressure is largely maintained through increased systemic vascular resistance. Depression of the heart rate is not driven by the autonomic nervous system and seems to arise from direct effects of oxygen lack and the associated hyperkalaemia and acidosis on the cardiac pacemaker. These intra- and extracellular changes also affect cardiac contractility, and both acidosis and hyperkalaemia severely depress cardiac contractility. However, increased levels of adrenaline and calcium may, at least partially, salvage cardiac function under prolonged periods of anoxia.
Collapse
Affiliation(s)
- Johannes Overgaard
- National Environmental Research Institute, Aarhus University, Silkeborg, Denmark
| | | | | |
Collapse
|
18
|
Zaar M, Overgaard J, Gesser H, Wang T. Contractile properties of the functionally divided python heart: Two sides of the same matter. Comp Biochem Physiol A Mol Integr Physiol 2007; 146:163-73. [PMID: 17137816 DOI: 10.1016/j.cbpa.2006.10.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 10/05/2006] [Accepted: 10/05/2006] [Indexed: 11/17/2022]
Abstract
The heart of Python regius is functionally divided so that systemic blood pressure is much higher than pulmonary pressure (6.6+/-1.0 and 0.7+/-0.1 kPa, respectively). The present study shows that force production of cardiac strips from the cavum arteriosum and cavum pulmonale exhibits similar force production when stimulated in vitro. The high systemic blood pressure is caused, therefore, by a thicker ventricular wall surrounding the cavum arteriosum rather than differences in the intrinsic properties of the cardiac tissues. Similarly, there were no differences between the contractile properties of right and left atria. Force production was similar in atria and ventricle but the atria contracted and relaxed much faster than the ventricle. Graded hypoxia markedly reduced twitch force of all four cardiac tissues, and this was most pronounced when PO(2) was below 40 kPa. In contrast, the four cardiac tissues were insensitive to acidosis during normoxia although acidosis increased the sensitivity to hypoxia. Adrenergic stimulation increased twitch force of all cardiac tissues, while cholinergic stimulation only affected the atria and reduced twitch force markedly. In spite of the different oxygen availability of the two sides of the heart, the biochemical and functional properties are alike and the differences may instead be overcome by the coronary blood supply.
Collapse
Affiliation(s)
- Morten Zaar
- Department of Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
| | | | | | | |
Collapse
|
19
|
Birkedal R, Gesser H. Intracellular compartmentation of cardiac fibres from rainbow trout and Atlantic cod--a general design of heart cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:764-72. [PMID: 16782045 DOI: 10.1016/j.bbabio.2006.04.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 04/24/2006] [Accepted: 04/28/2006] [Indexed: 11/30/2022]
Abstract
In mammalian cardiomyocytes, mitochondria and adjacent ATPases with participation of creatine kinase (CK) constitute functional compartments with an exchange of ADP and ATP delimited from cytosolic bulk solution. The question arises if this extends to ectothermic vertebrates: their low body temperature and thinner cardiomyocytes with a lower density of membrane structures may reduce the need and structural basis for compartmentation. In saponin-skinned cardiac fibres from rainbow trout and Atlantic cod, we investigated mitochondrial respiration induced by endogenous ADP generated by ATPases and its competition for this ADP with pyruvate kinase (PK) in excess. At low Ca(2+) activity (pCa = 7.0), PK lowered ATP-induced respiration by 40% in trout and 26% in cod. At high Ca(2+) activity (pCa = 5.41), PK had no effect. Additionally, ADP release from the fibres was almost zero but increased drastically upon inhibition of respiration with 1 mM Na-azide. This suggests that fibres are compartmented. PK abolished creatine-stimulated respiration in trout suggesting a less tight coupling of CK to respiration than in mammals. In conclusion, intracellular compartmentation seems to be a general feature of vertebrate cardiomyocytes, whereas the role of CK is unclear, but it seems to be less important for energy transport in species with lower metabolism.
Collapse
Affiliation(s)
- Rikke Birkedal
- Zoophysiology, Department of Biological Sciences, University of Aarhus, Denmark.
| | | |
Collapse
|
20
|
Peters GW, Steiner DA, Rigoni JA, Mascilli AD, Schnepp RW, Thomas SP. Cardiorespiratory adjustments of homing pigeons to steady wind tunnel flight. ACTA ACUST UNITED AC 2006; 208:3109-20. [PMID: 16081609 DOI: 10.1242/jeb.01751] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We made detailed cardiorespiratory measurements from homing pigeons during quiet rest and steady wind tunnel flight. Our pigeons satisfied their 17.4-fold increase in oxygen consumption during flight with a 7.4-fold increase in cardiac output (Q) and a 2.4-fold increase in blood oxygen extraction. Q was increased primarily by increasing heart rate sixfold. Comparisons between our study and those from the only other detailed cardiorespiratory study on flying birds reveal a number of similarities and important differences. Although the avian allometric equations from this earlier study accurately predicted the flight Q of our pigeons, this was primarily due to due to compensating discrepancies in their heart rate and stroke volume predictions. Additionally, the measured heart mass (MH)-specific Q (Q/MH) of our pigeons during wind tunnel flight was about 22% lower than the estimated value. Compared to running mammals in previous studies, the 1.65-fold Q of our pigeons is consistent with their larger heart mass.
Collapse
Affiliation(s)
- Grant W Peters
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Overgaard J, Wang T, Nielsen OB, Gesser H. Extracellular Determinants of Cardiac Contractility in the Cold Anoxic Turtle. Physiol Biochem Zool 2005; 78:976-95. [PMID: 16228937 DOI: 10.1086/432853] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2005] [Indexed: 11/03/2022]
Abstract
Painted turtles (Chrysemys picta) survive months of anoxic submergence, which is associated with large changes in the extracellular milieu where pH falls by 1, while extracellular K+, Ca++, and adrenaline levels all increase massively. While the effect of each of these changes in the extracellular environment on the heart has been previously characterized in isolation, little is known about their interactions and combined effects. Here we examine the isolated and combined effects of hyperkalemia, acidosis, hypercalcemia, high adrenergic stimulation, and anoxia on twitch force during isometric contractions in isolated ventricular strip preparations from turtles. Experiments were performed on turtles that had been previously acclimated to warm (25 degrees C), cold (5 degrees C), or cold anoxia (submerged in anoxic water at 5 degrees C). The differences between acclimation groups suggest that cold acclimation, but not anoxic acclimation per se, results in a downregulation of processes in the excitation-contraction coupling. Hyperkalemia (10 mmol L(-1) K+) exerted a strong negative inotropic effect and caused irregular contractions; the effect was most pronounced at low temperature (57%-97% reductions in twitch force). Anoxia reduced twitch force at both temperatures (14%-38%), while acidosis reduced force only at 5 degrees C (15%-50%). Adrenergic stimulation (10 micromol L(-1)) increased twitch force by 5%-19%, but increasing extracellular [Ca++] from 2 to 6 mmol L(-1) had only small effects. When all treatments were combined with anoxia, twitch force was higher at 5 degrees C than at 25 degrees C, whereas in normoxia twitch force was higher at 25 degrees C. We propose that hyperkalemia may account for a large part of the depressed cardiac contractility during long-term anoxic submergence.
Collapse
Affiliation(s)
- Johannes Overgaard
- Department of Zoophysiology, Institute of Biological Sciences, University of Aarhus, Aarhus, Denmark.
| | | | | | | |
Collapse
|
22
|
Birkedal R, Gesser H. Effects of hibernation on mitochondrial regulation and metabolic capacities in myocardium of painted turtle (Chrysemys picta). Comp Biochem Physiol A Mol Integr Physiol 2005; 139:285-91. [PMID: 15556383 DOI: 10.1016/j.cbpb.2004.09.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Revised: 09/14/2004] [Accepted: 09/14/2004] [Indexed: 11/28/2022]
Abstract
Painted turtles hibernating during winter may endure long-term exposure to low temperature and anoxia. These two conditions may affect the aerobic capacity of a tissue and might be of particular importance to the cardiac muscle normally highly reliant on aerobic energy production. The present study addressed how hibernation affects respiratory characteristics of mitochondria in situ and the metabolic pattern of turtle myocardium. Painted turtles were acclimated to control (25 degrees C), cold (5 degrees C) normoxic and cold anoxic conditions. In saponin-skinned myocardial fibres, cold acclimation increased mitochondrial respiratory capacity and decreased apparent ADP-affinity. Concomitant anoxia did not affect this. Creatine increased the apparent ADP-affinity to similar values in the three acclimation groups, suggesting a functional coupling of creatine kinase to mitochondrial respiration. As to the metabolic pattern, cold acclimation decreased glycolytic capacity in terms of pyruvate kinase activity and increased lactate dehydrogenase (LHD) activity. Concomitant anoxia counteracted the cold-induced decrease in pyruvate kinase activity and increased creatine kinase activity. In conclusion, cold acclimation seems to increase aerobic and decrease anaerobic energy production capacity in painted turtle myocardium. Importantly, anoxia does not affect the mitochondrial functional integrity but seems to increase the capacity for anaerobic energy production and energy buffering.
Collapse
Affiliation(s)
- Rikke Birkedal
- Department of Zoophysiology, Institute of Biological Sciences, University of Aarhus, CF Moellers Alle Building 131, DK-8000 Aarhus C, Denmark.
| | | |
Collapse
|
23
|
Overgaard J, Gesser H. Force development, energy state and ATP production of cardiac muscle from turtles and trout during normoxia and severe hypoxia. ACTA ACUST UNITED AC 2004; 207:1915-24. [PMID: 15107445 DOI: 10.1242/jeb.00975] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of hypoxia on energy economy of cardiac muscle were compared between the hypoxia-tolerant freshwater turtle at 20 degrees C and the hypoxia-sensitive rainbow trout at 15 degrees C. Isolated ventricular preparations were left either at rest or stimulated at 30 min(-1) to develop isometric twitch force. Under oxygenated conditions, twitch force and oxygen consumption were similar for the two species. Overall metabolism was reduced during severe hypoxia in both resting and stimulated preparations and under these conditions most of the ATP production was derived from anaerobic metabolism. During hypoxia, a metabolic depression of approximately 2/3 occurred for non-contractile processes in both turtle and trout preparations. During hypoxia, lactate production and residual oxygen consumption were similar in turtle and trout. Cellular energy state and phosphorylation potential decreased during severe hypoxia in both species and this reduction was more severe in preparations stimulated to contraction. However, in turtle ventricular preparations the energy state and phosphorylation potential stabilised at higher levels than in trout, and turtle preparations also maintained a higher twitch force throughout the hypoxic period. Moreover, twitch force relative to total ATP hydrolysis was markedly increased during hypoxia in turtle while this ratio was unchanged for trout. The main findings of this study are: (1) cellular energy liberation and the energy demand of non-contractile processes decreased to similar levels in hypoxic turtle and trout myocardium; (2) turtle myocardium maintained a substantially higher cellular energy state and twitch force development than trout myocardium during hypoxia and (3) the ratio of twitch force to ATP hydrolysis increased during hypoxia in turtle but was unchanged in trout. It is possible that this superior economy of the contracting turtle myocardium contributes to the remarkable hypoxia tolerance of freshwater turtles.
Collapse
Affiliation(s)
- Johannes Overgaard
- Department of Zoophysiology, Institute of Biological Sciences, University of Aarhus, DK 8000 Aarhus, Denmark
| | | |
Collapse
|
24
|
Birkedal R, Gesser H. Regulation of mitochondrial energy production in cardiac cells of rainbow trout (Oncorhynchus mykiss). J Comp Physiol B 2004; 174:255-62. [PMID: 14758500 DOI: 10.1007/s00360-003-0410-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2003] [Indexed: 04/28/2023]
Abstract
In skinned rat cardiac fibres, mitochondrial affinity for endogenous ADP generated by creatine kinase and Ca2+-activated ATPases is higher than for exogenous ADP added to the surrounding medium, suggesting that mitochondria are functionally coupled to creatine kinase and ATPases. Such a coupling may be weaker or absent in ectothermic vertebrate cardiac cells, because they typically have less elaborate intracellular membrane structures, higher glycolytic capacity and lower working temperature. Therefore, we examined skinned cardiac fibres from rainbow trout at 10 degrees C. The apparent mitochondrial affinity for endogenous ADP was obtained by stimulation with ATP and recording of the release of ADP into the surrounding medium. The apparent affinity for endogenous ADP was much higher than for exogenous ADP suggesting a functional coupling between mitochondria and ATPases. The apparent affinity for exogenous ADP and ATP was increased by creatine or an increase in Ca2+-activity, which should increase intrafibrillar turnover of ATP to ADP. In conclusion, ADP seems to be channelled from creatine kinase and ATPases to mitochondria without being released to the surrounding medium. Thus, despite difference in structure, temperature and metabolic capacity, trout myocardium resembles that of rat with regard to the regulation of mitochondrial respiration.
Collapse
Affiliation(s)
- R Birkedal
- Department of Zoophysiology, Institute of Biological Sciences, University of Aarhus, C.F. Moellers Alle Building 131, DK-8000, Aarhus C, Denmark.
| | | |
Collapse
|
25
|
Overgaard J, Stecyk JAW, Gesser H, Wang T, Farrell AP. Effects of temperature and anoxia upon the performance ofin situperfused trout hearts. J Exp Biol 2004; 207:655-65. [PMID: 14718508 DOI: 10.1242/jeb.00791] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
SUMMARYRainbow trout (Oncorhynchus mykiss) are likely to experience acute changes in both temperature and oxygen availability and, like many other organisms, exhibit behavioural selection of low temperatures during hypoxia that acts to reduce metabolism and alleviate the demands on the heart. To investigate whether low temperature protects cardiac performance during anoxia, we studied the effects of an acute temperature change, from 10°C to either 5°C, 15°C or 18°C, upon the performance of in situ perfused trout hearts before, during and after exposure to 20 min of anoxia. Routine cardiac workload mimicked in vivo conditions at the given temperatures, and the effects of anoxia were evaluated as maximal cardiac performance before and after 20 min of anoxic perfusion. Functional data were related to maximal activities of glycolytic enzymes and energetic status of the heart at the termination of the experiment.At high oxygenation, maximum cardiac output and power output increased with temperature (Q10 values of 1.8 and 2.1, respectively) as a result of increased heart rate. Hypoxia tolerance was inversely related to temperature. At 5°C, the hearts maintained routine cardiac output throughout the 20 min period of anoxia, and maximal cardiac performance was fully restored following reoxygenation. By contrast, cardiac function failed sooner during anoxia as temperature was increased and maximal performance after reoxygenation was reduced by 25%, 35% and 55% at 10°C, 15°C and 18°C, respectively. Increased functional impairment following anoxic exposure at elevated temperature occurred even though both cardiac glycolytic enzyme activity and the rate of lactate production were increased proportionally with cardiac work. Nonetheless, there was no indication of myocardial necrosis, as biochemical and energetic parameters were generally unaffected by anoxia.
Collapse
Affiliation(s)
- Johannes Overgaard
- Department of Zoophysiology, Institute of Biological Sciences, University of Aarhus, Denmark.
| | | | | | | | | |
Collapse
|
26
|
Birkedal R, Gesser H. Creatine kinase and mitochondrial respiration in hearts of trout, cod and freshwater turtle. J Comp Physiol B 2003; 173:493-9. [PMID: 12856133 DOI: 10.1007/s00360-003-0357-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2003] [Indexed: 10/26/2022]
Abstract
The importance of the creatine kinase system in the cardiac muscle of ectothermic vertebrates is unclear. Mammalian cardiac muscle seems to be structurally organized in a manner that compartmentalizes the intracellular environment as evidenced by the substantially higher mitochondrial apparent Km for ADP in skinned fibres compared to isolated mitochondria. A mitochondrial fraction of creatine kinase is functionally coupled to the mitochondrial respiration, and the transport of phosphocreatine and creatine as energy equivalents of ATP and ADP, respectively, increases the mitochondrial apparent ADP affinity, i.e. lowers the Km. This function of creatine kinase seems to be absent in hearts of frog species. To find out whether this applies to hearts of ectothermic vertebrate species in general, we investigated the effect of creatine on the mitochondrial respiration of saponin-skinned fibres from the ventricle of rainbow trout, Atlantic cod and freshwater turtle. For all three species, the apparent Km for ADP appeared to be substantially higher than for isolated mitochondria. Creatine lowered this Km in trout and turtle, thus indicating a functional coupling between mitochondrial creatine kinase and respiration. However, creatine had no effect on Km in cod ventricle. In conclusion, the creatine kinase-system in trout and turtle hearts seems to fulfil the same functions as in the mammalian heart, i.e. facilitating energy transport and communication between cellular compartments. In cod heart, however, this does not seem to be the case.
Collapse
Affiliation(s)
- R Birkedal
- Department of Zoophysiology, Institute of Biological Sciences, University of Aarhus, 8000 Aarhus C, Denmark.
| | | |
Collapse
|
27
|
Mesa JLM, Ruiz JR, González-Gross MM, Gutiérrez Sáinz A, Castillo Garzón MJ. Oral creatine supplementation and skeletal muscle metabolism in physical exercise. Sports Med 2003; 32:903-44. [PMID: 12427051 DOI: 10.2165/00007256-200232140-00003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Creatine is the object of growing interest in the scientific literature. This is because of the widespread use of creatine by athletes, on the one hand, and to some promising results regarding its therapeutic potential in neuromuscular disease on the other. In fact, since the late 1900s, many studies have examined the effects of creatine supplementation on exercise performance. This article reviews the literature on creatine supplementation as an ergogenic aid, including some basic aspects relating to its metabolism, pharmacokinetics and side effects. The use of creatine supplements to increase muscle creatine content above approximately 20 mmol/kg dry muscle mass leads to improvements in high-intensity, intermittent high-intensity and even endurance exercise (mainly in nonweightbearing endurance activities). An effective supplementation scheme is a dosage of 20 g/day for 4-6 days, and 5 g/day thereafter. Based on recent pharmacokinetic data, new regimens of creatine supplementation could be used. Although there are opinion statements suggesting that creatine supplementation may be implicated in carcinogenesis, data to prove this effect are lacking, and indeed, several studies showing anticarcinogenic effects of creatine and its analogues have been published. There is a shortage of scientific evidence concerning the adverse effects following creatine supplementation in healthy individuals even with long-term dosage. Therefore, creatine may be considered as a widespread, effective and safe ergogenic aid.
Collapse
Affiliation(s)
- José L M Mesa
- Department of Physiology, School of Medicine, University of Granada, Granada, Spain
| | | | | | | | | |
Collapse
|
28
|
Gesser H. Mechanical performance and glycolytic requirement in trout ventricular muscle. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2002; 293:360-7. [PMID: 12210119 DOI: 10.1002/jez.10119] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The glycolytic pathway seems to be coupled to the aerobic performance in mammalian cardiac muscle. Because many conditions are different in ectotherms, its influence on twitch force and resting force was recorded at 15 degrees C in isometric ventricular preparations from rainbow trout. To reduce glycolytic activity, preparations were exposed to 0.4 mmol l(-1) iodoacetate for 35 min or alternatively to 120 min anoxia in a glucose-free solution containing 10 &mgr;mol l(-1) adrenaline in an attempt to remove glycolytic substrates. The anoxic period was followed by recovery in an oxygenated solution containing aerobic substrates but no glucose. Control experiments indicated that this treatment, like iodoacetate, inhibits glycolysis, although glycogen was reduced by one half only. In fully oxygenated preparations with access to mitochondrial substrates, both attempts to reduce glycolytic activity tended to increase both resting force and the reductions in twitch force during high activity imposed by high stimulation rates and exposure to 10 &mgr;mol l(-1) adrenaline. Thus, the glycolytic pathway appears to be of specific importance under aerobic conditions also in the heart of ectotherms. J. Exp. Zool. 293:360-367, 2002.
Collapse
Affiliation(s)
- Hans Gesser
- Department of Zoophysiology, University of Aarhus, DK-8000, Arhus C, Denmark
| |
Collapse
|
29
|
Abstract
The cost of living can be measured as an animal's metabolic rate. Basal metabolic rate (BMR) is factorially related to other metabolic rates. Analysis of BMR variation suggests that metabolism is a series of linked processes varying in unison. Membrane processes, such as maintenance of ion gradients, are important costs and components of BMR. Membrane bilayers in metabolically active systems are more polyunsaturated and less monounsaturated than metabolically less-active systems. Such polyunsaturated membranes have been proposed to result in an increased molecular activity of membrane proteins, and in this manner the amount of membrane and its composition can act as a pacemaker for metabolism. The potential importance of membrane acyl composition in metabolic depression, hormonal control of metabolism, the evolution of endothermy, as well as its implications for lifespan and human health, are briefly discussed.
Collapse
Affiliation(s)
- A J Hulbert
- Department of Biological Science, University of Wollongong, NSW, Australia.
| | | |
Collapse
|
30
|
Abstract
The goal of this review is to present a comprehensive survey of the many intriguing facets of creatine (Cr) and creatinine metabolism, encompassing the pathways and regulation of Cr biosynthesis and degradation, species and tissue distribution of the enzymes and metabolites involved, and of the inherent implications for physiology and human pathology. Very recently, a series of new discoveries have been made that are bound to have distinguished implications for bioenergetics, physiology, human pathology, and clinical diagnosis and that suggest that deregulation of the creatine kinase (CK) system is associated with a variety of diseases. Disturbances of the CK system have been observed in muscle, brain, cardiac, and renal diseases as well as in cancer. On the other hand, Cr and Cr analogs such as cyclocreatine were found to have antitumor, antiviral, and antidiabetic effects and to protect tissues from hypoxic, ischemic, neurodegenerative, or muscle damage. Oral Cr ingestion is used in sports as an ergogenic aid, and some data suggest that Cr and creatinine may be precursors of food mutagens and uremic toxins. These findings are discussed in depth, the interrelationships are outlined, and all is put into a broader context to provide a more detailed understanding of the biological functions of Cr and of the CK system.
Collapse
Affiliation(s)
- M Wyss
- F. Hoffmann-La Roche, Vitamins and Fine Chemicals Division, Basel, Switzerland.
| | | |
Collapse
|
31
|
|
32
|
Vornanen M, Tuomennoro J. Effects of acute anoxia on heart function in crucian carp: importance of cholinergic and purinergic control. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:R465-75. [PMID: 10444553 DOI: 10.1152/ajpregu.1999.277.2.r465] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to characterize the effects of acute anoxia on contractile and electrical activity in the heart of an anoxia-tolerant fish species, the crucian carp (Carassius carassius L.). Responses of atrial and ventricular tissue or isolated cells to NaCN, adenosine, and carbachol were determined to examine the effects of anoxia on cardiac performance and to clarify the possible role of local purinergic modulation and parasympathetic nervous control in the function of the anoxic fish heart. The contractility of the crucian carp heart is strongly decreased by acute anoxia. A rapid reduction in cardiac contractility is attained by reflex bradycardia and suppression of atrial contractility. These responses are mediated by muscarinic cholinergic receptors through the opening of inwardly rectifying potassium channels and are likely to protect the cardiac muscle from hypoxic/anoxic damage. The depletion of tissue oxygen content also directly depresses heart rate and cardiac force. Ultimately, an increase in cytosolic Ca(2+) concentration occurs that activates sarcolemmal Ca(2+) extrusion through the Na(+)-Ca(2+)-exchange and generates an inward exchange current with consequent depolarization of the resting membrane potential and possible cell death. At physiological concentration, the effects of adenosine on contractile and electrical activity were relatively weak, suggesting that the purinergic system is not involved in the acute anoxia response of the crucian carp heart.
Collapse
Affiliation(s)
- M Vornanen
- Department of Biology, University of Joensuu, FIN-80101 Joensuu, Finland.
| | | |
Collapse
|
33
|
Ostadal B, Ostadalova I, Dhalla NS. Development of cardiac sensitivity to oxygen deficiency: comparative and ontogenetic aspects. Physiol Rev 1999; 79:635-59. [PMID: 10390514 DOI: 10.1152/physrev.1999.79.3.635] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoxic states of the cardiovascular system are undoubtedly associated with the most frequent diseases of modern times. They originate as a result of disproportion between the amount of oxygen supplied to the cardiac cell and the amount actually required by the cell. The degree of hypoxic injury depends not only on the intensity and duration of the hypoxic stimulus, but also on the level of cardiac tolerance to oxygen deprivation. This variable changes significantly during phylogenetic and ontogenetic development. The heart of an adult poikilotherm is significantly more resistant as compared with that of the homeotherms. Similarly, the immature homeothermic heart is more resistant than the adult, possibly as a consequence of its greater capability for anaerobic glycolysis. Tolerance of the adult myocardium to oxygen deprivation may be increased by pharmacological intervention, adaptation to chronic hypoxia, or preconditioning. Because the immature heart is significantly more dependent on transsarcolemmal calcium entry to support contraction, the pharmacological protection achieved with drugs that interfere with calcium handling is markedly altered. Developing hearts demonstrated a greater sensitivity to calcium channel antagonists; a dose that induces only a small negative inotropic effect in adult rats stops the neonatal heart completely. Adaptation to chronic hypoxia results in similarly enhanced cardiac resistance in animals exposed to hypoxia either immediately after birth or in adulthood. Moreover, decreasing tolerance to ischemia during early postnatal life is counteracted by the development of endogenous protection; preconditioning failed to improve ischemic tolerance just after birth, but it developed during the early postnatal period. Basic knowledge of the possible improvements of immature heart tolerance to oxygen deprivation may contribute to the design of therapeutic strategies for both pediatric cardiology and cardiac surgery.
Collapse
Affiliation(s)
- B Ostadal
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | |
Collapse
|
34
|
|
35
|
|