1
|
Merkulyeva N, Mikhalkin A, Veshchitskii A. Inner Structure of the Lateral Geniculate Complex of Adult and Newborn Acomys cahirinus. Int J Mol Sci 2024; 25:7855. [PMID: 39063096 PMCID: PMC11277159 DOI: 10.3390/ijms25147855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Acomys cahirinus is a unique Rodentia species with several distinctive physiological traits, such as precocial development and remarkable regenerative abilities. These characteristics render A. cahirinus increasingly valuable for regenerative and developmental physiology studies. Despite this, the structure and postnatal development of the central nervous system in A. cahirinus have been inadequately explored, with only sporadic data available. This study is the first in a series of papers addressing these gaps. Our first objective was to characterize the structure of the main visual thalamic region, the lateral geniculate complex, using several neuronal markers (including Ca2+-binding proteins, glutamic acid decarboxylase enzyme, and non-phosphorylated domains of heavy-chain neurofilaments) to label populations of principal neurons and interneurons in adult and newborn A. cahirinus. As typically found in other rodents, we identified three subdivisions in the geniculate complex: the dorsal and ventral lateral geniculate nuclei (LGNd and LGNv) and the intergeniculate leaflet (IGL). Additionally, we characterized internal diversity in the LGN nuclei. The "shell" and "core" regions of the LGNd were identified using calretinin in adults and newborns. In adults, the inner and outer parts of the LGNv were identified using calbindin, calretinin, parvalbumin, GAD67, and SMI-32, whereas in newborns, calretinin and SMI-32 were employed for this purpose. Our findings revealed more pronounced developmental changes in LGNd compared to LGNv and IGL, suggesting that LGNd is less mature at birth and more influenced by visual experience.
Collapse
Affiliation(s)
- Natalia Merkulyeva
- Neuromorphology Laboratory, Pavlov Institute of Physiology of Russian Academy of Sciences, St. Petersburg 199034, Russia; (A.M.); (A.V.)
| | | | | |
Collapse
|
2
|
Freudenmacher L, von Twickel A, Walkowiak W. The habenula as an evolutionary conserved link between basal ganglia, limbic, and sensory systems—A phylogenetic comparison based on anuran amphibians. J Comp Neurol 2019; 528:705-728. [PMID: 31566737 DOI: 10.1002/cne.24777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/31/2019] [Accepted: 09/06/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Lars Freudenmacher
- Zoological Institute, University of Cologne, Cologne, Germany
- Institute II for Anatomy, University of Cologne, Cologne, Germany
| | | | | |
Collapse
|
3
|
Nakamura H. Cerebellar projections to the ventral lateral geniculate nucleus and the thalamic reticular nucleus in the cat. J Neurosci Res 2017. [DOI: 10.1002/jnr.24105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hiroyuki Nakamura
- Department of Morphological Neuroscience; Gifu University Graduate School of Medicine; Gifu 501-1194 Japan
| |
Collapse
|
4
|
Neuropeptide Y in the adult and fetal human pineal gland. BIOMED RESEARCH INTERNATIONAL 2014; 2014:868567. [PMID: 24757681 PMCID: PMC3976832 DOI: 10.1155/2014/868567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/10/2014] [Indexed: 11/17/2022]
Abstract
Neuropeptide Y was isolated from the porcine brain in 1982 and shown to be colocalized with noradrenaline in sympathetic nerve terminals. The peptide has been demonstrated to be present in sympathetic nerve fibers innervating the pineal gland in many mammalian species. In this investigation, we show by use of immunohistochemistry that neuropeptide Y is present in nerve fibers of the adult human pineal gland. The fibers are classical neuropeptidergic fibers endowed with large boutons en passage and primarily located in a perifollicular position with some fibers entering the pineal parenchyma inside the follicle. The distance from the immunoreactive terminals to the pinealocytes indicates a modulatory function of neuropeptide Y for pineal physiology. Some of the immunoreactive fibers might originate from neurons located in the brain and be a part of the central innervation of the pineal gland. In a series of human fetuses, neuropeptide Y-containing nerve fibers was present and could be detected as early as in the pineal of four- to five-month-old fetuses. This early innervation of the human pineal is different from most rodents, where the innervation starts postnatally.
Collapse
|
5
|
Manzano E Silva MJ, Singh R, Haldar C, Vigh B, Szél Á. Peripheral autonomic nerves of human pineal organ terminate on vessels, their supposed role in the periodic secretion of pineal melatonin. APMIS 2012; 120:628-34. [PMID: 22779685 DOI: 10.1111/j.1600-0463.2011.02867.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/19/2011] [Indexed: 11/27/2022]
Abstract
Nonvisual pineal and retinal photoreceptors are synchronizing circadian and circannual periodicity to the environmental light periods in the function of various organs. Melatonin of the pineal organ is secreted at night and represents an important factor of this periodic regulation. Night illumination suppressing melatonin secretion may result in pathological events like breast and colorectal cancer. Experimental works demonstrated the role of autonomic nerves in the pineal melatonin secretion. It was supposed that mammalian pineals have lost their photoreceptor capacity that is present in submammalians, and sympathetic fibers would mediate light information from the retina to regulate melatonin secretion. Retinal afferentation may reach the organ by central nerve fibers via the pineal habenulae as well. In our earlier works we have found that the pineal organ developing from lobular evaginations of the epithalamus differs from peripheral endocrine glands and is composed of a retina-like central nervous tissue that is comprised of cone-like pinealocytes, secondary pineal neurons and glial cells. Their autonomic nerves in submammalians as well as in mammalian animals do not terminate on pineal cells, rather, they run in the meningeal septa among pineal lobules and form vasomotor nerve endings. Concerning the adult human pineal there are no detailed fine structural data about the termination of autonomic fibers, therefore, in the present work we investigated the ultrastructure of the human pineal peripheral autonomic nerve fibers. It was found, that similarly to other parts of the brain, autonomic nerves do not enter the human pineal nervous tissue itself but separated by glial limiting membranes take their course in the meningeal septa of the organ and terminate on vessels by vasomotor endings. We suppose that these autonomic vasomotor nerves serve the regulation of the pineal blood supply according to the circadian and circannual changes of the metabolic activity of the organ and support by this effect the secretion of pineal neurohormones including melatonin.
Collapse
|
6
|
Frank CL, Czirok SJ, Vincze C, Rácz G, Szél A, Vígh B. Autonomic nerves terminating on microvessels in the pineal organs of various submammalian vertebrates. ACTA BIOLOGICA HUNGARICA 2005; 56:35-41. [PMID: 15813212 DOI: 10.1556/abiol.56.2005.1-2.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In earlier works we have found that in the mammalian pineal organ, a part of autonomic nerves--generally thought to mediate light information from the retina--form vasomotor endings on smooth muscle cells of vessels. We supposed that they serve the vascular support for circadian and circannual periodic changes in the metabolic activity of the pineal tissue. In the present work, we investigated whether peripheral nerves present in the photoreceptive pineal organs of submammalians form similar terminals on microvessels. In the cyclostome, fish, amphibian, reptile and bird species investigated, autonomic nerves accompany vessels entering the arachnoidal capsule and interfollicular meningeal septa of the pineal organ. The autonomic nerves do not enter the pineal tissue proper but remain in the perivasal meningeal septa isolated by basal lamina. They are composed of unmyelinated and myelinated fibers and form terminals around arterioles, veins and capillaries. The terminals contain synaptic and granular vesicles. Comparing various vertebrates, more perivasal terminals were found in reptiles and birds than in the cyclostome, fish and amphibian pineal organs. Earlier, autonomic nerves of the pineal organs were predominantly investigated in connection with the innervation of pineal tissue. The perivasal terminals found in various submammalians show that a part of the pineal autonomic fibers are vasomotoric in nature, but the vasosensor function of some fibers cannot be excluded. We suppose that the vasomotor regulation of the pineal microvessels in the photosensory submamalian pineal--like in mammals--may serve the vascular support for circadian and circannual periodic changes in the metabolic activity of the pineal tissue. The higher number of perivasal terminals in reptiles and birds may correspond to the higher metabolic activity of the tissues in more differentiated species.
Collapse
Affiliation(s)
- C L Frank
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
7
|
Cozzi B, Mikkelsen JD, Ravault JP, Møller M. Neuropeptide Y (NPY) and C-flanking peptide of NPY in the pineal gland of normal and ganglionectomized sheep. J Comp Neurol 2004; 316:238-50. [PMID: 1349311 DOI: 10.1002/cne.903160208] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The present immunohistochemical study describes the presence and distribution of nerve fibers containing neuropeptide Y (NPY), and C-Flanking Peptide Of NPY (CPON) in the pineal gland of the sheep. Nerve fibers were detected by using a series of antisera directed against NPY or against CPON. Many positive immunoreactive nerve fibers were identified in the pial capsule of the pineal, in connective septae and in the parenchyma between pinealocytes. The intraparenchymal fibers were particularly evident and created an extensive network throughout the gland. Nerve fibers immunoreactive for all the peptides were also observed in the posterior commissure and in the stria medullaris thalami. No NPY- or CPON-positive neurons were found in the pineal gland. In order to study the site of origin of NPY- and CPON-immunoreactive nerve fibers, the superior cervical ganglia were bilaterally removed in a series of animals. Sympathetic denervation was checked by using an antiserum against tyrosine hydroxylase (TH). Nearly all TH-immunoreactive elements disappeared in the pineal glands of animals sacrificed 15 days after surgery. Also the density of NPY- and CPON-immunoreactive nerve fibers decreased in the animals after the ganglionectomy. However, a number of nerve fibers still remained in the gland. These data indicate that some NPY- and CPON-immunoreactive nerve fibers of the sheep pineal gland derive from an extrasympathetic origin. The very dense innervation of the sheep pineal gland with nerve fibers containing NPY and CPON strongly indicates a functional role for this family of peptides in the pineal gland of this species.
Collapse
Affiliation(s)
- B Cozzi
- Institute of Anatomy of Domestic Animals, University of Milan, Italy
| | | | | | | |
Collapse
|
8
|
Fabris C, Cozzi B, Hay-Schmidt A, Naver B, Møller M. Demonstration of an orexinergic central innervation of the pineal gland of the pig. J Comp Neurol 2004; 471:113-27. [PMID: 14986306 DOI: 10.1002/cne.20007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Orexins/hypocretins, two isoforms of the same prepropeptide, are widely distributed throughout the brain and are involved in several physiological and neuroendocrine regulatory patterns, mostly related to feeding, sleep, arousal, and cyclic sleep-wake behaviors. Orexin-A and orexin-B bind with different affinities to two G-protein-coupled transmembrane receptors, orexin-1 and orexin-2 receptors (OR-R1 and OR-R2, respectively). Because of the similarities between the human and the swine brain, we have studied the pig to investigate the orexinergic system in the diencephalon, with special emphasis on the neuroanatomical projections to the epithalamic region. By using antibodies against orexin-A and orexin-B, immunoreactive large multipolar perikarya were detected in the hypothalamic periventricular and perifornical areas at the light and electron microscopic levels. In the region of the paraventricular nucleus, the orexinergic neurons extended all the way to the lateral hypothalamic area. Immunoreactive nerve fibers, often endowed with large varicosities, were found throughout the hypothalamus and the epithalamus. Some periventricular immunoreactive nerve fibers entered the epithalamic region and continued into the pineal stalk and parenchyma to disperse among the pinealocytes. Immunoelectron microscopy confirmed the presence of orexinergic nerve fibers in the pig pineal gland. After extraction of total mRNA from the hypothalamus and pineal gland, we performed RT-PCR and nested PCR using primers specific for porcine orexin receptors. PCR products were sequenced, verifying the presence of both OR-R1 and OR-R2 in the tissues investigated. These findings, supported by previous studies on rodents, suggest a hypothalamic regulation of the pineal gland via central orexinergic nervous inputs.
Collapse
Affiliation(s)
- Chiara Fabris
- Department of Experimental Veterinary Science, University of Padua, I-35020 Legnaro, Italy.
| | | | | | | | | |
Collapse
|
9
|
Simonneaux V, Ribelayga C. Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol Rev 2003; 55:325-95. [PMID: 12773631 DOI: 10.1124/pr.55.2.2] [Citation(s) in RCA: 449] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Melatonin, the major hormone produced by the pineal gland, displays characteristic daily and seasonal patterns of secretion. These robust and predictable rhythms in circulating melatonin are strong synchronizers for the expression of numerous physiological processes in photoperiodic species. In mammals, the nighttime production of melatonin is mainly driven by the circadian clock, situated in the suprachiasmatic nucleus of the hypothalamus, which controls the release of norepinephrine from the dense pineal sympathetic afferents. The pivotal role of norepinephrine in the nocturnal stimulation of melatonin synthesis has been extensively dissected at the cellular and molecular levels. Besides the noradrenergic input, the presence of numerous other transmitters originating from various sources has been reported in the pineal gland. Many of these are neuropeptides and appear to contribute to the regulation of melatonin synthesis by modulating the effects of norepinephrine on pineal biochemistry. The aim of this review is firstly to update our knowledge of the cellular and molecular events underlying the noradrenergic control of melatonin synthesis; and secondly to gather together early and recent data on the effects of the nonadrenergic transmitters on modulation of melatonin synthesis. This information reveals the variety of inputs that can be integrated by the pineal gland; what elements are crucial to deliver the very precise timing information to the organism. This also clarifies the role of these various inputs in the seasonal variation of melatonin synthesis and their subsequent physiological function.
Collapse
Affiliation(s)
- Valerie Simonneaux
- Laboratoire de Neurobiologie Rythmes, UMR 7518 CNRS/ULP, 12, rue de l'Université, 67000 Strasbourg, France.
| | | |
Collapse
|
10
|
Sakai Y, Hira Y, Matsushima S. Central GABAergic innervation of the mammalian pineal gland: a light and electron microscopic immunocytochemical investigation in rodent and nonrodent species. J Comp Neurol 2001; 430:72-84. [PMID: 11135246 DOI: 10.1002/1096-9861(20010129)430:1<72::aid-cne1015>3.0.co;2-t] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Light and electron microscopic immunocytochemical observations were made to demonstrate central pinealopetal fibers immunoreactive for gamma-aminobutyric acid (GABA) and synapses between their terminals and pinealocytes in the pineal gland of four rodent (Wistar-King rat; mouse; Syrian hamster, Mesocricetus auratus; Hartley strain guinea pig) and one nonrodent (tree shrew, Tupaia glis) species. GABA-immunoreactive myelinated and unmyelinated fibers and endings were found in the parenchyma of the pineal gland of all the animals examined. In the rodent species, GABAergic fibers were mainly found in the intermediate and proximal portions of the pineal gland and were nearly or entirely absent in the distal portion of the gland. Abundant GABAergic fibers were evenly distributed throughout the gland of the tree shrew. In all the animals, the habenular and posterior commissures contained abundant GABA-positive fibers, and some of them were followed to the pineal gland. GABA-positive endings made synaptic contact with pinealocytes, occasionally in mice and guinea pigs, and frequently in tree shrews; no synapses were observed in Syrian hamsters and rats. In the pineal gland of all the animals, GABA-immunoreactive cell bodies were not detected, and sympathetic fibers were not immunoreactive for GABA. These data indicate that GABAergic fibers are main pinealopetal projections from the brain. In view of the difference in the distribution of these fibers, central GABAergic innervation may play a more significant role in nonrodents than in rodents. The frequent occurrence of GABAergic synapses on pinealocytes in the tree shrew suggests that GABA released at these synapses directly controls activity of pinealocytes of this animal.
Collapse
Affiliation(s)
- Y Sakai
- Department of Anatomy, Asahikawa Medical College, Asahikawa, 078-8510, Japan.
| | | | | |
Collapse
|
11
|
Abstract
The intergeniculate leaflet (IGL) and the ventral lateral geniculate nucleus (VLG) are ventral thalamic derivatives within the lateral geniculate complex. In this study, IGL and VLG efferent projections were compared by using anterograde transport of Phaseolus vulgaris-leucoagglutinin and retrograde transport of FluoroGold. Projections from the IGL and VLG leave the geniculate in four pathways. A dorsal pathway innervates the thalamic lateral dorsal nucleus (VLG), the reuniens and rhomboid nuclei (VLG and IGL), and the paraventricular nucleus (IGL). A ventral pathway runs through the geniculohypothalamic tract to the suprachiasmatic nucleus and the anterior hypothalamus (IGL). A medial pathway innervates the zona incerta and dorsal hypothalamus (VLG and IGL); the lateral hypothalamus and perifornical area (VLG); and the retrochiasmatic area (RCA), dorsomedial hypothalamic nucleus, and subparaventricular zone (IGL). A caudal pathway projects medially to the posterior hypothalamic area and periaqueductal gray and caudally along the brachium of the superior colliculus to the medial pretectal area and the nucleus of the optic tract (IGL and VLG). Caudal IGL axons also terminate in the olivary pretectal nucleus, the superficial gray of the superior colliculus, and the lateral and dorsal terminal nuclei of the accessory optic system. Caudal VLG projections innervate the lateral posterior nucleus, the anterior pretectal nucleus, the intermediate and deep gray of the superior colliculus, the dorsal terminal nucleus, the midbrain lateral tegmental field, the interpeduncular nucleus, the ventral pontine reticular formation, the medial and lateral pontine gray, the parabrachial region, and the accessory inferior olive. This pattern of IGL and VLG projections is consistent with our understanding of the distinct functions of each of these ventral thalamic derivatives.
Collapse
Affiliation(s)
- R Y Moore
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
| | | | | |
Collapse
|
12
|
|
13
|
Abstract
Besides the noradrenergic sympathetic system originating from the superior cervical ganglion, a cholinergic innervation of the mammalian pineal gland has been studied over the past three decades. In 1961, it was shown that lesion of the parasympathetic greater superficial petrosal nerve of the monkey resulted in degeneration of nerve fibers in the pineal gland. This was supported by ultrastructural studies of nerve terminals within the pineal gland, demonstrating the presence of cholinergic terminals containing small clear transmitter vesicles. Biochemical studies further showed the presence of the enzyme acetylcholinesterase in several mammalian species. During the last decade, several advanced and more elaborate technologies have been developed, allowing pinealogists to establish the presence of cholinergic fibers and their receptors. Thus, choline acetyltransferase was shown in bovine pineal by immunohistochemistry. Muscarinic and nicotinic receptors were identified, characterized, and localized. Gene expression of receptors was visualized, and the receptor-mediated effector systems and functions were elucidated. Taken together, the present data suggest the presence of a cholinergic innervation of the mammalian pineal gland originating in peripheral parasympathetic ganglia. However, some of the neuronal projections to the pineal gland with origin in the brain (the central innervation) might also be cholinergic. The cholinergic nerve fibers enter the gland, where they are located both in the perivascular spaces and between the pinealocytes. Some of the terminals make synapses on pinealocytes or intrapineal neurons. The released acetylcholine from the terminals interacts with the receptors, then alters the cascade of receptor-mediated events, which results in decreased N-acetyltransferase enzyme activity, thus leading to decreased melatonin synthesis. This counterbalance mechanism between the sympathetic noradrenergic and the cholinergic systems maintains the homeostasis of pineal functions.
Collapse
Affiliation(s)
- P Phansuwan-Pujito
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | | | | |
Collapse
|
14
|
Abstract
The present article reviews the literature relative to VIP- and PHI-containing nerve fibers in the pineal gland of mammals. The article summarizes data on the presence and distribution of the two peptides in the brain of mammals, their role in neuronal metabolism, and the significance and origin of VIPergic and PHIergic cerebrovascular nerve fibers. Special emphasis is placed on VIP- and PHI-containing nerves in the pineal gland. The morphology of the fibers, the nature of the innervation, and the distribution of immunoreactive nerves within the pineal gland are examined. The review discusses the nature of the classical and "central" innervation of the pineal gland. The possible site of origin of pinealopetal VIPergic and PHIergic fibers is investigated, with special reference to ganglia of the head, and particularly to the pterygopalatine, otic, and trigeminal ganglia. The nature of VIP (and PHI) receptors is examined with reference to the most recent acquisitions in the field. Based on the data, a role for VIP (and PHI) in pineal metabolism is discussed.
Collapse
Affiliation(s)
- B Cozzi
- Department of Animal Sciences, University of Padua, Legnaro-Agripolis (PD), Italy.
| |
Collapse
|
15
|
Leander P, Vrang N, M�ller M. Neuronal projections from the mesencephalic raphe nuclear complex to the suprachiasmatic nucleus and the deep pineal gland of the golden hamster (Mesocricetus auratus). J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980914)399:1<73::aid-cne6>3.0.co;2-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Phansuwan-Pujito P, Jitjaijamjang W, Ebadi M, Govitrapong P, Møller M. Opioidergic innervation of the tree shrew pineal gland: an immunohistochemical study. J Pineal Res 1998; 24:209-14. [PMID: 9572529 DOI: 10.1111/j.1600-079x.1998.tb00534.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The tree shrew (Tupaia glis) has been described as a missing link relating primate to insectivore stock. The pineal gland of the tree shrew consists of a superficial pineal and a deep pineal, which are connected by a long and slender pineal stalk. A monoclonal antibody against leu-enkephalin was used in an immunohistochemical investigation of the tree shrew pineal gland. A moderate innervation of leu-enkephalin immunoreactive nerve fibers has been demonstrated in both superficial and deep pineal gland of the tree shrew. The density of the nerve fibers was slightly higher in the superficial pineal than that of the deep one. The number of immunoreactive nerve fibers were observed in the capsule of the pineal gland from where they entered the pineal parenchyma. Only a few immunoreactive fibers were found in the habenular area and the area rostral to the pineal recess, connecting the habenula and the deep pineal. Furthermore, some positive fibers were located in the pineal stalk. There was no evidence of leu-enkephalin immunoreactive intrapineal cells as seen in the other species of mammal. Therefore, the interspecies variation of opioidergic innervation among the mammals may exist. The lack of intrapineal perikarya is interpreted to indicate that the sources of leu-enkephalin nerve fibers were outside the gland. The anatomical location of the leu-enkephalin immunoreactive nerve fibers in the tree shrew pineal gland supports to both central and peripheral pinealopetal pathways in this species.
Collapse
Affiliation(s)
- P Phansuwan-Pujito
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand.
| | | | | | | | | |
Collapse
|
17
|
Nagatsu I, Takeuchi T, Sakai M, Arai R, Karasawa N, Nagatsu T. Transient appearance of GTP cyclohydrolase I — positive non-monoaminergic neurons in the ventral lateral geniculate nucleus of postnatal mice. Neurosci Lett 1996. [DOI: 10.1016/0304-3940(96)12934-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Cipolla-Neto J, Bartol I, Seraphim PM, Afeche SC, Scialfa JH, Peraçoli AM. The effects of lesions of the thalamic intergeniculate leaflet on the pineal metabolism. Brain Res 1995; 691:133-41. [PMID: 8590045 DOI: 10.1016/0006-8993(95)00654-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The aim of the present work was to study, in rats, the effects of lesions of the thalamic intergeniculate leaflet (IGL) and the deep pineal/lamina intercalaris region (DP) on the diurnal profile of N-acetylserotonin (NAS) and on the nocturnal pineal reactivity to acute retinal light stimulation (1 or 15 min). The 24-h experiment shows that there is no phase-shifting on the diurnal NAS curve of groups of rats with bilateral IGL lesion compared to the controls. On the other hand there is a significant reduction on the amplitude of pineal NAS content observed in every nocturnal point of the curve. The pineal glands of IGL-lesioned rats, after 1 min of retinal light stimulation, keep their NAS content equal to the lesioned dark-killed rats. Nonetheless, after 15 min of photostimulation, the pineal NAS content is reduced to nearly zero equally to the control animals. DP lesion does not modify the content of NAS in the pineal gland of rats killed in the dark. However, the pineal photo-inhibition process induced by 1 min of light exposure is impaired. These results suggest that: (1) the intergeniculate leaflet has a role in regulating the amplitude of the diurnal rhythm of pineal NAS production rather than its phase entrainment to light-dark cycle. This effect is not dependent on the direct geniculo-pineal connections. (2) The nocturnal pineal photo-inhibition phenomenon could be decomposed in two processes. One, triggered by short pulses of light and totally dependent on the IGL and partially dependent on the direct monosynaptic pathway between this structure and the pineal gland.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J Cipolla-Neto
- Department of Physiology and Biophysics, University of São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
19
|
Morin LP, Blanchard J. Organization of the hamster intergeniculate leaflet: NPY and ENK projections to the suprachiasmatic nucleus, intergeniculate leaflet and posterior limitans nucleus. Vis Neurosci 1995; 12:57-67. [PMID: 7536441 DOI: 10.1017/s0952523800007318] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The intergeniculate leaflet (IGL) is an integral part of the circadian visual system. It receives direct retinal input and relays photic information to the circadian clock in the suprachiasmatic nucleus (SCN) through a geniculohypothalamic tract (GHT). In both rat and hamster, neuropeptide Y immunoreactive (NPY-IR) IGL cells project through the GHT to the SCN. However, the hamster GHT also contains enkephalin-IR (ENK-IR) fibers, presumably of IGL origin. In the present investigations, the IGL was examined for NPY-, ENK-, or dual-IR cells. Their projections to the SCN, contralateral IGL and pretectum were also studied. The results show that the hamster IGL contains both NPY- and ENK-IR neurons and that about 50% of these are immunoreactive to both peptides. Double-label retrograde analysis indicates that cells of each peptide class project to the SCN. Similarly, IGL neurons, many of which are NPY- and ENK-IR, project to the pretectum, particularly the posterior limitans nucleus. While numerous IGL neurons project contralaterally, very few are NPY- or ENK-IR. The distribution of SCN- and pretectum-projecting cells, in conjunction with the distribution of peptide-IR neurons, allows expansion of the IGL definition to include the region medial to the ventral lateral geniculate nucleus (VLG). The VLG is ventrolateral to the IGL and does not contain either neurons projecting to the SCN nor NPY- or ENK-IR cells, but does have numerous neurons projecting to the pretectum. The results substantiate and expand the previous definition of the hamster IGL, elaborate the species difference in IGL organization, and demonstrate the increased breadth of the circadian visual system.
Collapse
Affiliation(s)
- L P Morin
- Department of Psychiatry, University at Stony Brook, New York
| | | |
Collapse
|
20
|
Mikkelsen JD. Analysis of the efferent projections of the lateral geniculate nucleus with special reference to the innervation of the subcommissural organ and related areas. Cell Tissue Res 1994; 277:437-45. [PMID: 7954683 DOI: 10.1007/bf00300216] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In order to define central neurons projecting to the subcommissural organ (SCO) and to related areas in the postero-medial diencephalon, Phaseolus vulgaris-leucoagglutinin (PHA-L) was injected into the lateral geniculate nucleus of the rat. PHA-L-labelled neurons send axonal processes medially through the posterior thalamic nuclei and the posterior commissure to the other hemisphere. Branches of fibres originating from this projection form a plexus of nerve terminals in the underlying precommissural nucleus and in the nucleus of the posterior commissure. A small number of PHA-L-immunoreactive nerve fibres penetrate from the precommissural nucleus into the lateral part of the SCO. A few labelled fibres penetrate directly from the posterior commissure into the medial part of the caudal SCO. Most of the PHA-L-immunoreactive fibres occur in the hypendymal layer, although a few terminate near the ependymal cells of the organ. Many labelled fibres are found in the ventricular ependyma adjacent to the SCO, some fibres lying close to the ventricular lumen. These results were obtained only if the tracer was delivered into the intergeniculate leaflet of the lateral geniculate nucleus (IGL). The IGL innervates both the suprachiasmatic nucleus and the pineal organ; the connections between the IGL and the midline structures, including the SCO, suggest that these areas are influenced by the circadian system.
Collapse
Affiliation(s)
- J D Mikkelsen
- Institute of Medical Anatomy B, University of Copenhagen, Denmark
| |
Collapse
|
21
|
Moore RY, Card JP. Intergeniculate leaflet: an anatomically and functionally distinct subdivision of the lateral geniculate complex. J Comp Neurol 1994; 344:403-30. [PMID: 8063960 DOI: 10.1002/cne.903440306] [Citation(s) in RCA: 227] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The intergeniculate leaflet (IGL) in the rat is a distinctive subdivision of the lateral geniculate complex that participates in the regulation of circadian function through its projections to the circadian pacemaker, the suprachiasmatic nucleus (SCN) of the hypothalamus. The present investigation was undertaken to provide a precise definition of the IGL and a characterization of its neuronal organization including neuronal morphology, chemical phenotype, connections, and synaptic organization. The IGL extends the entire rostrocaudal length of the geniculate complex and contains a distinct population of small to medium neurons. In Golgi preparations, the neurons are multipolar with dendrites largely confined to the IGL. The neurons can be subdivided into three groups on the basis of neurotransmitter content and projections: (1) neurons that contain GABA and neuropeptide Y and project to the SCN; (2) neurons that contain GABA and enkephalin and project to the contralateral IGL; and (3) a small group of neurons that projects to the SCN but not characterized as yet by neurotransmitter content. The IGL receives dense, bilateral input from retinal ganglion cells and dense substance P input of unknown origin. A number of neurons in the anterior hypothalamic area and, particularly, the retrochiasmatic area project to the IGL, and there are sparse projections from brainstem monoamine and cholinergic neurons. The synaptic organization of the IGL is complex with afferents terminating in glomerular complexes that include axoaxonic synaptic interactions. Virtually all IGL afferents synapse upon dendrites and spines, with the densest synaptic input occurring on the distal portions of the dendritic arbor. The organization of the IGL and its connections as revealed in this analysis is in accord with its role in the integration of visual input with other information to provide feedback regulation of the SCN pacemaker.
Collapse
Affiliation(s)
- R Y Moore
- Department of Psychiatry, University of Pittsburgh, Pennsylvania 15261
| | | |
Collapse
|
22
|
Ying SW, Zhang DX, Rusak B. Effects of serotonin agonists and melatonin on photic responses of hamster intergeniculate leaflet neurons. Brain Res 1993; 628:8-16. [PMID: 8313174 DOI: 10.1016/0006-8993(93)90931-c] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Retinal input to the suprachiasmatic nuclei (SCN) and the intergeniculate leaflet (IGL) is involved in photic entrainment of mammalian circadian rhythms. The activating effects of light on firing rates of IGL cells may be regulated by serotonin (5-HT), since the IGL receives a dense serotonergic input from the midbrain raphe. We investigated the effects of 5-HT agonists and melatonin (a derivative of 5-HT) on single-unit discharges of light-sensitive cells in the hamster IGL area, using a microiontophoretic technique. 5-HT and a 5-HT1A-selective agonist, 8-OH-DPAT, potently suppressed both spontaneous and light-induced activity of IGL cells in a dose-related manner. This suppression was unchanged or potentiated by concurrently applied Mg2+, suggesting a direct action. Furthermore, the suppressive effects of both agonists were antagonized by a nonselective 5-HT antagonist, metergoline, and a 5-HT1A-directed antagonist, pindobind-5-HT1A. However, other putative 5-HT1A antagonists were weak (propranolol) or ineffective (pindolol and spiperone) in blocking the effects of 8-OH-DPAT. Neither of two 5-HT2 antagonists tested was able to block the effects of 5-HT. Melatonin generally mimicked the effects of 5-HT agonists on IGL cells, but these effects were not attenuated by 5-HT antagonists. The results indicate that both 5-HT and melatonin exert inhibitory effects on spontaneous activity and photic responses of cells in the hamster IGL, and that these effects are mediated via a 5-HT1A-like receptor and a melatonin receptor, respectively.
Collapse
Affiliation(s)
- S W Ying
- Department of Psychology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
23
|
Redecker P. Close microtopographical relationships between sympathetic nerve terminals and bulbous process endings of pinealocytes in the pineal gland of the Mongolian gerbil. J Pineal Res 1993; 15:199-207. [PMID: 8120798 DOI: 10.1111/j.1600-079x.1993.tb00905.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Previous studies have shown that pinealocytes of the gerbil pineal gland exhibit processes that form terminal swellings filled with abundant electron-lucent microvesicles. The membrane of these presumptive secretory microvesicles is known to contain synaptophysin, a major integral glycoprotein of neuronal synaptic vesicles. The present study was conducted to evaluate the microtopographical relationships between the vesicle-rich process swellings and intra-pineal nerve terminals. For this purpose, both nerve terminals and pinealocyte process endings were visualized immunohistochemically in the same semi-thin sections of plastic-embedded gerbil pineals, using antibodies directed against synaptophysin. This approach consistently revealed close spatial associations of punctate immunopositive nerve endings with intensity stained bulbous process terminals of pinealocytes in or near the perivascular spaces. The light-microscopic observations of intimate neuronal-pinealocytic relationships were corroborated at the electron-microscopic level. Perivascular varicosities with ultrastructural features characteristic of sympathetic nerve terminals were frequently juxtaposed to vesicle-filled process endings of pinealocytes. Analysis of serial thin sections showed that multiple point-to-point contacts are encountered between noradrenergic nerve terminals and pinealocytic process swellings. Our morphological findings imply that bulbous process terminals, at least in the gerbil pineal gland, are major targets for the neuronal control of the secretory activity of pinealocytes.
Collapse
Affiliation(s)
- P Redecker
- Department of Anatomy, Hannover Medical School, Germany
| |
Collapse
|
24
|
Phansuwan-Pujito P, Pramaulkijja S, Govitrapong P, Møller M. An immunohistochemical study of neuropeptide Y in the bovine pineal gland. J Pineal Res 1993; 15:53-8. [PMID: 8229646 DOI: 10.1111/j.1600-079x.1993.tb00510.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An immunohistochemical study of the bovine pineal gland was performed using rabbit polyclonal antibodies raised against neuropeptide Y (NPY) or against the C-terminal flanking peptide of proNPY (CPON). A large number of NPY/CPON-immunoreactive (IR) nerve fibers were demonstrated throughout bovine pineal gland. The IR-fibers were located in the capsule of the gland, usually piercing into the gland together with blood vessels. In the gland itself, the fibers were also located intraparenchymally between the pinealocytes. Within the rostral and caudal areas of the pineal stalk, NPY-IR fibers were also observed, and these fibers could be followed not only into the gland but also to the habenular and posterior commissures. The morphological localization of the NPY-IR nerve fibers in the bovine pineal gland indicate that the majority of fibers originate from the superior cervical ganglion. However, some fibers probably originate from the brain itself.
Collapse
Affiliation(s)
- P Phansuwan-Pujito
- Department of Anatomy Faculty of Medicine, Srinakarinwirot University at Prasarnmít, Bangkok, Thailand
| | | | | | | |
Collapse
|
25
|
Mikkelsen JD, Panula P, Møller M. Histamine-immunoreactive nerve fibers in the rat pineal gland: evidence for a histaminergic central innervation. Brain Res 1992; 597:200-8. [PMID: 1472993 DOI: 10.1016/0006-8993(92)91475-t] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An immunohistochemical method that utilizes carbodiimide as a fixative and antisera directed against histamine was applied to investigate the location of histamine in the rat pineal complex. Numerous histamine-immunoreactive cell bodies were observed in different subdivisions of the tuberomammillary nucleus of the posterior hypothalamus, and a few cell bodies were present in the posterior and dorsal part of the periventricular hypothalamic nucleus. Histamine-immunoreactive fibers were observed to leave the posterior hypothalamus in various directions of which one dorsally projecting tract was followed in the periventricular area of the caudal diencephalon to the epithalamus. Several histamine-immunoreactive nerve fibers of this tract continued through the posterior commissure directly into the deep pineal gland. A few immunoreactive fibers were also observed in the habenular commissure. In midsagittal sections, histamine-immunoreactive nerve fibers were observed to enter the pineal stalk from the deep pineal gland. Most of histamine-immunoreactive fibers in the stalk continued towards the superficial pineal gland, but their number decreased in more distal locations of the stalk, indicating that some fibers terminate in the stalk as well. A few fibers were found to terminate in the most rostral part of the superficial pineal gland. The immunoreactive nerve fibers in the epithalamus and pineal complex were endowed with prominent varicosities. Taken together, these results indicate that histaminergic nerve fibers, originating from the posterior hypothalamus, project to the pineal complex of the rat. Histamine must therefore be considered a putative neurotransmitter contained in the central innervation of the pineal gland, but its function in pineal physiology has so far not been elucidated.
Collapse
Affiliation(s)
- J D Mikkelsen
- Institute of Medical Anatomy, University of Copenhagen, Denmark
| | | | | |
Collapse
|
26
|
Mikkelsen JD, Mick G. Neuropeptide Y-lmmunoreactive Nerve Fibres in the Pineal Gland of the Macaque (Macaca fascicularis). J Neuroendocrinol 1992; 4:681-8. [PMID: 21554655 DOI: 10.1111/j.1365-2826.1992.tb00219.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The distribution of neuropeptide Y (NPY)- and the C-fianking peptide of NPY (CPON)-immunoreactive elements in the pineal gland of the macaque was investigated by means of immunohistochemistry. NPY- and CPON-immunoreactive nerve fibres were located in the precommissural nucleus, around the stria medullaris, and in the posterior commissure. NPY- and CPON-immunoreactive nerve fibres endowed with bulbous varicosities, were traced from the brain via the pineal stalk into the rostral part of the pineal gland. Furthermore, CPON-immunoreactive, and to a lesser extent NPY-immunoreactive nerve fibres, were distributed in the méninges, the choroid plexus and the vasculature related to the pineal organ. Nerve fibres located in the pineal capsule penetrated into the pineal parenchyma, where groups of individual fibres were found most often in an interlobular position. Occasionally, individual nerve fibres dispersed between the pinealocytes were observed. In contrast to the nerve fibres originating from the brain, those originating from the periphery were endowed with smaller immunoreactive nerve terminals. Another apparent difference was that the peripheral nerve fibres innervated only the caudal two-thirds of the gland, whereas the central fibres were found exclusively in the rostral part of the pineal organ. Rarely, positive neuronal-like cells were found in the pineal parenchyma. These results show the presence of a moderate number of NPY- and CPON-immunoreactive nerve fibres within the primate pineal organ and strongly indicate that the primate pineal gland is innervated by NPYergic nerve fibres originating from both a peripheral and a central source.
Collapse
Affiliation(s)
- J D Mikkelsen
- Institute of Medical Anatomy, Department B, University of Copenhagen, Denmark. INSERM, Unité 94 Vision et Motricité, Bron, France
| | | |
Collapse
|
27
|
|
28
|
Mikkelsen JD. The organization of the crossed geniculogeniculate pathway of the rat: a Phaseolus vulgaris-leucoagglutinin study. Neuroscience 1992; 48:953-62. [PMID: 1378578 DOI: 10.1016/0306-4522(92)90283-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The intergeniculate leaflet of the thalamus is known to give rise to neuronal projections to the suprachiasmatic nuclei and the rostral part of the pineal gland. Via these projections the intergeniculate leaflet is considered to play a role in regulation of circadian rhythms. Iontophoretic injections of the anterograde tracer Phaseolus vulgaris-leucoagglutinin were placed in various subnuclei of the lateral geniculate nucleus in order to study the topographical organization of the crossed geniculogeniculate pathway in the rat. Injections involving neurons in the intergeniculate leaflet or the medial subpart of the ventral nucleus (which presumably is part of the intergeniculate leaflet of the thalamus too) gave rise to labeled nerve fibers in the opposite lateral geniculate nucleus. The axons contained in this pathway were followed either medially via the posterior commissure, or via the optic tracts and optic chiasm, to the contralateral hemisphere. In the contralateral lateral geniculate nucleus, the intergeniculate leaflet was most densely innervated, but a substantial innervation of the ventral lateral geniculate nucleus was observed as well. Only a few labeled fibers were observed in the dorsal subnucleus. However, the dense innervation of the contralateral intergeniculate leaflet not only covered the small zone between the dorsal and ventral nuclei, but also a dorsomedial part of the ventral nucleus that merged caudally with the lateral part of the zona incerta. In the remaining part of the ventral nucleus, single Phaseolus vulgaris-leucoagglutinin-labeled fibers surrounded specific cells. The demonstration of a divergent projection between the intergeniculate leaflet and specific subparts of the contralateral geniculate nuclei indicates that the two lateral geniculate nuclei are regulating each other. The function of this pathway is suggested to be related to the regulation of circadian rhythmicity, but experimental evidence for this hypothesis is still lacking.
Collapse
Affiliation(s)
- J D Mikkelsen
- Institute of Medical Anatomy, Department B, Panum Institute, University of Copenhagen, Denmark
| |
Collapse
|
29
|
Abstract
The mammalian pineal gland is innervated by peripheral sympathetic and parasympathetic nerve fibers as well as by nerve fibers originating in the central nervous system (central innervation). The perikarya of the sympathetic fibers are located in the superior cervical ganglia, while the fibers terminate in boutons containing small granular vesicles and a few large granular vesicles. Both noradrenaline and neuropeptide Y are contained in these neurons. The parasympathetic fibers originate from perikarya in the pterygopalatine ganglia. The neuropeptides, vasoactive intestinal peptide and peptide histidine isoleucine, are present in these fibers, the boutons of which contain small clear transmitter vesicles and larger granular vesicles. The fibers of the central innervation originate predominantly from perikarya located in hypothalamic and limbic forebrain structures as well as from perikarya in the optic system. These fibers terminate in boutons containing small clear and, in certain fibers, an abundant number of large granular vesicles. In rodents, the majority of the central fibers terminate in the deep pineal gland and the pineal stalk. From these areas impulses might be transmitted further caudally to the superficial pineal gland via neuronal structures or processes from pinealocytes. Several hypothalamic neuropeptides and monoamines might be contained in the central fibers. The intrapineal nerve fibers are located both in the perivascular spaces and intraparenchymally. The majority of the intraparenchymally located fibers terminate freely between the pinealocytes. However, some nerve terminals make synaptic contacts with the pinealocytes and in some species with intrapineal neurons. In fetal mammals, sympathetic, parasympathetic, and central fibers are also present. In addition, an unpaired nerve, connecting the caudal part of the pineal gland with the extreme rostral part of the mesencephalon, is present. This nerve is a homologue to the pineal nerve (nervus pinealis) observed in lower vertebrates.
Collapse
Affiliation(s)
- M Møller
- Department B, University of Copenhagen, Denmark
| |
Collapse
|
30
|
López-Muñoz F, Calvo JL, Boya J, Carbonell AL. Coexpression of vimentin and glial fibrillary acidic protein in glial cells of the adult rat pineal gland. J Pineal Res 1992; 12:145-8. [PMID: 1403607 DOI: 10.1111/j.1600-079x.1992.tb00041.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the present work, coexpression of vimentin (VIM) and glial fibrillary acidic protein (GFAP) is demonstrated in the glial cells of the adult rat pineal gland. Serial consecutive Epon semithin sections (0.5 microns thick) were alternately immunostained for VIM and GFAP. GFAP positive cells and processes were found in the proximal region of the pineal gland, near the pineal stalk. Most of these cells were also immunostained for VIM in adjacent semithin sections. The significance of the coexpression VIM-GFAP and the restricted location of GFAP positive cells is discussed in relation with the maturation of pineal glial cells.
Collapse
Affiliation(s)
- F López-Muñoz
- Department of Histology, Faculty of Medicine, University Complutense, Madrid, Spain
| | | | | | | |
Collapse
|
31
|
Zhang ET, Mikkelsen JD, Møller M. Tyrosine hydroxylase- and neuropeptide Y-immunoreactive nerve fibers in the pineal complex of untreated rats and rats following removal of the superior cervical ganglia. Cell Tissue Res 1991; 265:63-71. [PMID: 1680561 DOI: 10.1007/bf00318140] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The distribution of tyrosine hydroxylase (TH)- and neuropeptide Y (NPY)-immunoreactive(IR) nerve fibers in the pineal complex was investigated in untreated rats and rats following bilateral removal of the superior cervical ganglia. In normal animals, a large number of TH- and NPY-IR nerve fibers were present in the pineal capsule, the perivascular spaces, and intraparenchymally between the pinealocytes throughout the superficial pineal and deep pineal gland. A small number of TH-IR and NPY-IR nerve fibers were found in the posterior and habenular commissures, a few fibers penetrating from the commissures into the deep pineal gland. To elucidate the origin of these fibers, the superior cervical ganglion was removed bilaterally in 10 animals, and the pineal complex was examined immunohistochemically. Two weeks after the ganglionectomy, the TH-IR and NPY-IR nerve fibers in the superficial pineal gland had almost completely disappeared. On the other hand, in the deep pineal and the pineal stalk, the TH-IR and NPY-IR fibers were still present after ganglionectomy. These data show that the deep pineal gland and the pineal stalk possess an extrasympathetic innervation by TH-IR and NPY-IR fibers. It is suggested that the extrasympathetic TH-IR and NPY-IR nerve fibers innervating the deep pineal and the pineal stalk originate from the brain.
Collapse
Affiliation(s)
- E T Zhang
- Institute of Medical Anatomy, Panum Institute, University of Copenhagen, Denmark
| | | | | |
Collapse
|