1
|
Sánchez-Crisóstomo I, Fernández-Martínez E, Cariño-Cortés R, Betanzos-Cabrera G, Bobadilla-Lugo RA. Phytosterols and Triterpenoids for Prevention and Treatment of Metabolic-related Liver Diseases and Hepatocellular Carcinoma. Curr Pharm Biotechnol 2019; 20:197-214. [DOI: 10.2174/1389201020666190219122357] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/10/2018] [Accepted: 02/09/2019] [Indexed: 12/17/2022]
Abstract
Background:
Liver ailments are among the leading causes of death; they originate from viral
infections, chronic alcoholism, and autoimmune illnesses, which may chronically be precursors of
cirrhosis; furthermore, metabolic syndrome may worsen those hepatopathies or cause Non-alcoholic
Fatty Liver Disease (NAFLD) that may advance to non-alcoholic steatohepatitis (NASH). Cirrhosis is
the late-stage liver disease and can proceed to hepatocellular carcinoma (HCC). Pharmacological
treatment options for liver diseases, cirrhosis, and HCC, are limited, expensive, and not wholly effective.
The use of medicinal herbs and functional foods is growing around the world as natural resources
of bioactive compounds that would set the basis for the development of new drugs.
Review and Conclusion:
Plant and food-derived sterols and triterpenoids (TTP) possess antioxidant,
metabolic-regulating, immunomodulatory, and anti-inflammatory activities, as well as they are recognized
as anticancer agents, suggesting their application strongly as an alternative therapy in some
chronic diseases. Thus, it is interesting to review current reports about them as hepatoprotective agents,
but also because they structurally resemble cholesterol, sexual hormones, corticosteroids and bile acids
due to the presence of the steroid nucleus, so they all can share pharmacological properties through activating
nuclear and membrane receptors. Therefore, sterols and TTP appear as a feasible option for the
prevention and treatment of chronic metabolic-related liver diseases, cirrhosis, and HCC.
Collapse
Affiliation(s)
- Isabel Sánchez-Crisóstomo
- Center for Research on Reproductive Biology, School of Health Sciences, Autonomous University of Hidalgo's State, Pachuca, Mexico
| | - Eduardo Fernández-Martínez
- Laboratory of Medicinal Chemistry and Pharmacology, Department of Medicine, School of Health Sciences, Autonomous University of Hidalgo's State, Pachuca, Mexico
| | - Raquel Cariño-Cortés
- Center for Research on Reproductive Biology, School of Health Sciences, Autonomous University of Hidalgo's State, Pachuca, Mexico
| | - Gabriel Betanzos-Cabrera
- Laboratory of Medicinal Chemistry and Pharmacology, Department of Medicine, School of Health Sciences, Autonomous University of Hidalgo's State, Pachuca, Mexico
| | | |
Collapse
|
2
|
Valitova JN, Sulkarnayeva AG, Minibayeva FV. Plant Sterols: Diversity, Biosynthesis, and Physiological Functions. BIOCHEMISTRY (MOSCOW) 2017; 81:819-34. [PMID: 27677551 DOI: 10.1134/s0006297916080046] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sterols, which are isoprenoid derivatives, are structural components of biological membranes. Special attention is now being given not only to their structure and function, but also to their regulatory roles in plants. Plant sterols have diverse composition; they exist as free sterols, sterol esters with higher fatty acids, sterol glycosides, and acylsterol glycosides, which are absent in animal cells. This diversity of types of phytosterols determines a wide spectrum of functions they play in plant life. Sterols are precursors of a group of plant hormones, the brassinosteroids, which regulate plant growth and development. Furthermore, sterols participate in transmembrane signal transduction by forming lipid microdomains. The predominant sterols in plants are β-sitosterol, campesterol, and stigmasterol. These sterols differ in the presence of a methyl or an ethyl group in the side chain at the 24th carbon atom and are named methylsterols or ethylsterols, respectively. The balance between 24-methylsterols and 24-ethylsterols is specific for individual plant species. The present review focuses on the key stages of plant sterol biosynthesis that determine the ratios between the different types of sterols, and the crosstalk between the sterol and sphingolipid pathways. The main enzymes involved in plant sterol biosynthesis are 3-hydroxy-3-methylglutaryl-CoA reductase, C24-sterol methyltransferase, and C22-sterol desaturase. These enzymes are responsible for maintaining the optimal balance between sterols. Regulation of the ratios between the different types of sterols and sterols/sphingolipids can be of crucial importance in the responses of plants to stresses.
Collapse
Affiliation(s)
- J N Valitova
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan, 420111, Russia
| | | | | |
Collapse
|
3
|
Tomazic ML, Poklepovich TJ, Nudel CB, Nusblat AD. Incomplete sterols and hopanoids pathways in ciliates: Gene loss and acquisition during evolution as a source of biosynthetic genes. Mol Phylogenet Evol 2014; 74:122-34. [DOI: 10.1016/j.ympev.2014.01.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/16/2013] [Accepted: 01/27/2014] [Indexed: 10/25/2022]
|
4
|
Lecanu L, Hashim AI, McCourty A, Papadopoulos V. A steroid isolated from the water mold Achlya heterosexualis induces neurogenesis in vitro and in vivo. Steroids 2012; 77:224-32. [PMID: 22138207 DOI: 10.1016/j.steroids.2011.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/14/2011] [Accepted: 11/17/2011] [Indexed: 01/28/2023]
Abstract
Using 22R-hydroxycholesterol as a sub-structure to screen natural compound databases, we identified a naturally occurring steroid (sc-7) with a 16-acetoxy-22R-hydroxycholesterol moiety, in which the hydroxyl groups in positions 3 and 22 are esterified by an acetoxy group and in which the carbon in position 26 carries a functional diacetylamino. sc-7 is an analog of the sex steroids dehydro-oogoniol and antheridiol, can be isolated from the water mold Achlya heterosexualis, and promoted neurogenesis in vitro and in vivo. Mouse embryonic teratocarcinoma P19 cells exposed to sc-7 for 2days followed by a 5-day wash-out differentiated into cholinergic neurons that expressed specific neuronal markers and displayed axonal formation. Axons continued growing up to 28days after treatment. In vivo, infusion of sc-7 for 2weeks into the left ventricle of the rat brain followed by a 3-week wash-out induced bromodeoxyuridine uptake by cells of the ependymal layer and subventricular zone that co-localized with doublecortin and glial fibrillary acidic protein immunostaining, demonstrating induction of proliferation and differentiation of neuronal progenitors. Migrating neuroblasts were also observed in the corpus callosum. Thus, under these experimental conditions, adult ependymal cells resumed proliferation and differentiation. Taken together, these results suggest that sc-7 is an interesting molecule for stimulating in situ neurogenesis from resident neuronal progenitors as part of neuron replacement therapy. sc-7 did not bind to nuclear steroid receptors and was not metabolized as a steroid, supporting our hypothesis that the neurogenic effect of sc-7 is not likely due to a steroid-like effect.
Collapse
Affiliation(s)
- Laurent Lecanu
- The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| | | | | | | |
Collapse
|
5
|
Rahier A. Dissecting the sterol C-4 demethylation process in higher plants. From structures and genes to catalytic mechanism. Steroids 2011; 76:340-52. [PMID: 21147141 DOI: 10.1016/j.steroids.2010.11.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 11/26/2010] [Accepted: 11/30/2010] [Indexed: 02/01/2023]
Abstract
Sterols become functional only after removal of the two methyl groups at C-4. This review focuses on the sterol C-4 demethylation process in higher plants. An intriguing aspect in the removal of the two C-4 methyl groups of sterol precursors in plants is that it does not occur consecutively as it does in yeast and animals, but is interrupted by several enzymatic steps. Each C-4 demethylation step involves the sequential participation of three individual enzymatic reactions including a sterol methyl oxidase (SMO), a 3β-hydroxysteroid-dehydrogenase/C4-decarboxylase (3βHSD/D) and a 3-ketosteroid reductase (SR). The distant location of the two C-4 demethylations in the sterol pathway requires distinct SMOs with respective substrate specificity. Combination of genetic and molecular enzymological approaches allowed a thorough identification and functional characterization of two distinct families of SMOs genes and two 3βHSD/D genes. For the latter, these studies provided the first molecularly and functionally characterized HSDs from a short chain dehydrogenase/reductase family in plants, and the first data on 3-D molecular interactions of an enzyme of the postoxidosqualene cyclase sterol biosynthetic pathway with its substrate in animals, yeast and higher plants. Characterization of these three new components involved in C-4 demethylation participates to the completion of the molecular inventory of sterol synthesis in higher plants.
Collapse
Affiliation(s)
- Alain Rahier
- Institut de Biologie Moléculaire des Plantes, UPR-CNRS 2357, 28 rue Goethe, 67083 Strasbourg, France.
| |
Collapse
|
6
|
Xu PJ, Xiao JH, Xia QY, Murphy B, Huang DW. Apis mellifera has two isoforms of cytoplasmic HSP90. INSECT MOLECULAR BIOLOGY 2010; 19:593-597. [PMID: 20522122 DOI: 10.1111/j.1365-2583.2010.01015.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Unlike most other insects, annotated genomic data suggest that Apis mellifera has two homologous copies of the cytoplasmic gene HSP90. In this study, we did a phylogenetic analysis on these two copies with some other insects HSP90 genes, and we also manipulated a reverse transcript (RT)-PCR to find all the putative transcripts for both copies. Phylogenetic analysis indicates that A. mellifera possesses two isoforms of cytoplasmic HSP90: The 'traditional' isoform clusters with cytoplasmic HSP90 of other insects. The other isoform, which occurs phylogenetically as the sister group of all insects, may be a new gene and specific to A. mellifera. The results of RT-PCR indicate that this new isoform contains at least eight transcripts derived from the same genomic locus by complicated alternative splicing (GenBank accession numbers: FJ713701, FJ713702, FJ713703, FJ713704, FJ713705, FJ713706, FJ713707 and FJ713708, respectively). The existence of this specific HSP90 might be related to the caste differentiation of bees.
Collapse
Affiliation(s)
- P J Xu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | | | | | | | | |
Collapse
|
7
|
Abstract
Heat-shock proteins (hsps) have been identified as molecular chaperones conserved between microbes and man and grouped by their molecular mass and high degree of amino acid homology. This article reviews the major hsps of Saccharomyces cerevisiae, their interactions with trehalose, the effect of fermentation and the role of the heat-shock factor. Information derived from this model, as well as from Neurospora crassa and Achlya ambisexualis, helps in understanding the importance of hsps in the pathogenic fungi, Candida albicans, Cryptococcus neoformans, Aspergillus spp., Histoplasma capsulatum, Paracoccidioides brasiliensis, Trichophyton rubrum, Phycomyces blakesleeanus, Fusarium oxysporum, Coccidioides immitis and Pneumocystis jiroveci. This has been matched with proteomic and genomic information examining hsp expression in response to noxious stimuli. Fungal hsp90 has been identified as a target for immunotherapy by a genetically recombinant antibody. The concept of combining this antibody fragment with an antifungal drug for treating life-threatening fungal infection and the potential interactions with human and microbial hsp90 and nitric oxide is discussed.
Collapse
Affiliation(s)
- James P Burnie
- Department of Medical Microbiology, Clinical Sciences Building, University of Manchester, Manchester Royal Infirmary, Manchester, UK.
| | | | | | | |
Collapse
|
8
|
Brunt SA, Silver JC. Molecular cloning and characterization of two different cDNAs encoding the molecular chaperone Hsp90 in the Oomycete Achlya ambisexualis. Fungal Genet Biol 2004; 41:239-52. [PMID: 14732269 DOI: 10.1016/j.fgb.2003.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The chaperone Hsp90 plays a key role in the maturation and activation of many 'client' proteins in eukaryotic cells. In the oomycete Achlya ambisexualis two populations of hsp90 transcripts that differ slightly in size (2.8 and 2.9 kb) are present in heat-shocked mycelia. Only the 2.8 kb transcripts are seen in vegetative mycelia and in mycelia undergoing antheridiol-induced differentiation. Two different hsp90 cDNAs were isolated and characterized. Although nearly identical, an additional eight nucleotide sequence was present at the end of the 3'UTR of one of the two cDNAs. RT-PCR analyses indicated that hsp90 transcripts containing the eight nucleotide extension, were present only in heat-shocked mycelia. Hsp90 transcripts lacking this sequence were present in vegetative mycelia and the levels of these transcripts increased in both heat-shocked and hormone-treated mycelia. Each hsp90 cDNA encoded a nearly identical Hsp90 protein. However, two Hsp90 proteins (86 and 84 kDa) were observed on immunoblots of mycelial proteins. Only one of these, i.e., the 86 kDa protein was detected by an anti-phosphoserine antibody, suggesting that the difference in mass of the two Hsp90 isoforms, was due at least in part, to different levels of phosphoserine residues.
Collapse
Affiliation(s)
- Shelley A Brunt
- Department of Medical Genetics and Microbiology and Department of Life Sciences, University of Toronto at Scarborough, Toronto, Ont., Canada M1C 1A4
| | | |
Collapse
|
9
|
Abstract
In recent years, the impressive development of molecular genetics tools, the sequencing of the Arabidopsis thaliana genome, the availability of DNA or transposon tagged mutants, and the multiple possibilities offered by stable transformation with DNA in sense and antisense orientation have enabled the application of a strategy of gain or loss of function to study the sterol biosynthesis pathway. Here we describe the results obtained with these techniques. The results essentially confirm data obtained previously with sterol biosynthesis inhibitors (SBIs) and enable the precise dissection of biosynthetic pathways. We discuss the advantages and disadvantages of molecular genetics techniques as applied to sterol metabolism. The greater selectivity of these techniques constitutes an invaluable advantage and has led to the discovery of a role for sterols in plant development.
Collapse
Affiliation(s)
- Pierre Benveniste
- Institut de Biologie Moleculaire des Plantes, Departement Biogenese et Fonctions des Isoprenoides, UPR-CNRS 2357, 28 rue Goethe, 67083 Strasbourg, France.
| |
Collapse
|
10
|
Affiliation(s)
- Pierre Benveniste
- Institut de Biologie Moleculaire des Plantes, Departement Biogénèse et Fonctions des Isoprénoides, UPR-CNRS 2357, 28 rue Goethe, 67083-Strasbourg, France
| |
Collapse
|
11
|
|
12
|
Brunt SA, Borkar M, Silver JC. Regulation of hsp90 and hsp70 genes during antheridiol-induced hyphal branching in the oomycete Achlya ambisexualis. Fungal Genet Biol 1998; 24:310-24. [PMID: 9756712 DOI: 10.1006/fgbi.1998.1056] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When mycelia of Achlya ambisexualis J. Raper strain E87 were undergoing antheridial branching, a marked increase was observed in the levels of transcript populations encoding the heat shock protein chaperone Hsp90 and transcript populations encoding three different Hsp70-family heat shock protein chaperones, respectively. Although up to 90% of hyphae in the hormone-treated thalli were undergoing antheridial branching, no similar increase in the level of transcripts encoding actin was observed. Nuclear run-on assays demonstrated that the observed antheridiol-induced increases in the levels of the chaperone RNAs resulted from increased transcription. Although not tested for function, the nucleotide sequence of the 5' flanking region of each of the two A. ambisexualis hsp90 genes revealed a diversity of sequences and motifs similar or identical to the sequences of known transcription factor response elements. Among these potential response element sequences observed in the A. ambisexualis genes were motifs observed also in animal steroid hormone response elements. Surrounding the primer-extension determined transcription start site of each A. ambisexualis hsp90 gene was a 16-nucleotide sequence that matched in 14 out of 16 nucleotides a sequence found in the transcription initiation region of many different oomycete genes.
Collapse
Affiliation(s)
- S A Brunt
- Division of Life Sciences, University of Toronto at Scarborough, Scarborough, Ontario, M1C 1A4, Canada
| | | | | |
Collapse
|
13
|
Xavier IJ, Khachatourians GG. Heat-shock response of the entomopathogenic fungus Beauveria brongniartii. Can J Microbiol 1996. [DOI: 10.1139/m96-078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The heat-shock response of five strains of the entomopathogenic fungus Beauveria brongniartii was studied using two-dimensional (2D) gel electrophoresis. The fungal cells were heat shocked at 45 °C for 1 h and the total cellular protein was subjected to 2D gel electrophoresis. Proteins were separated in the first dimension using isoelectric focusing (pH range of 3.0–10) and in the second dimension by sodium dodecyl sulphate – polyacrylamide gel electrophoresis. More than 150 polypeptides for each strain were visualized by silver staining and have been assigned individual numbers as polypeptide coordinates. Analysis of the polypeptide map obtained by 2D gels indicated three patterns; several unique heat-shock proteins (HSPs) were (i) induced, (ii) enhanced, or (iii) repressed. Some of the HSPs induced by 45 °C were unique for each of the strains tested. Identification of heat-inducible protein synthesis or repression has ramifications for field survival and performance of entomopathogenic fungi. As well, the HSPs can be used as "signature proteins" for identification pruposes and this raises the possibility of using HSPs as a diagnostic tool applicable to other pest control fungi.Key words: heat-shock proteins, heat-shock response, two-dimensional electrophoresis, entomopathogenic fungi, Beauveria brongniartii.
Collapse
|
14
|
Quraishi H, Rush SJ, Brown IR. Expression of mRNA species encoding heat shock protein 90 (hsp90) in control and hyperthermic rabbit brain. J Neurosci Res 1996; 43:335-45. [PMID: 8714522 DOI: 10.1002/(sici)1097-4547(19960201)43:3<335::aid-jnr8>3.0.co;2-k] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Northern blot and in situ hybridization were employed to investigate regional and cell type differences in the expression of hsp90 mRNA species in control and hyperthermic rabbit brain. Riboprobes specific to hsp90 alpha and beta mRNA species were utilized in time-course Northern blot studies on cerebral hemispheres and the cerebellum. Following hyperthermia, levels of hsp90 alpha and beta mRNA were elevated in both brain regions; however, the magnitude of induction was more robust in the cerebellum than in cerebral hemispheres. The pattern of expression of hsp90 genes in rabbit brain was analyzed by in situ hybridization. These studies revealed that hsp90 genes are preferentially expressed in neuronal cell populations in the unstressed mammalian brain. The distribution of hsp90 alpha and beta mRNA was similar, though the signal for the latter was stronger. Following hyperthermia, changes were not detected in the pattern of hsp90 beta mRNA expression in the hippocampus. In the cerebellum, a rapid induction of hsp90 beta mRNA was apparent in the neuron-enriched granule cell layer, followed by a delayed accumulation in Purkinje neurons. Unlike hsp70, induction of hsp90 was not detected in glial cells of hyperthermic rabbit brain. The localization of hsp90 to neurons suggests that this heat shock protein plays an important role in neuronal function.
Collapse
Affiliation(s)
- H Quraishi
- Department of Zoology, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
15
|
Szent-Gyorgyi C. A bipartite operator interacts with a heat shock element to mediate early meiotic induction of Saccharomyces cerevisiae HSP82. Mol Cell Biol 1995; 15:6754-69. [PMID: 8524241 PMCID: PMC230929 DOI: 10.1128/mcb.15.12.6754] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Although key genetic regulators of early meiotic transcription in Saccharomyces cerevisiae have been well characterized, the activation of meiotic genes is still poorly understood in terms of cis-acting DNA elements and their associated factors. I report here that induction of HSP82 is regulated by the early meiotic IME1-IME2 transcriptional cascade. Vegetative repression and meiotic induction depend on interactions of the promoter-proximal heat shock element (HSE) with a nearby bipartite repression element, composed of the ubiquitous early meiotic motif, URS1 (upstream repression sequence 1), and a novel ancillary repression element. The ancillary repression element is required for efficient vegetative repression, is spatially separable from URS1, and continues to facilitate repression during sporulation. In contrast, URS1 also functions as a vegetative repression element but is converted early in meiosis into an HSE-dependent activation element. An early step in this transformation may be the antagonism of URS1-mediated repression by IME1. The HSE also nonspecifically supports a second major mode of meiotic activation that does not require URS1 but does require expression of IME2 and concurrent starvation. Interestingly, increased rather than decreased URS1-mediated vegetative transcription can be artificially achieved by introducing rare point mutations into URS1 or by deleting the UME6 gene. These lesions offer insight into mechanisms of URS-dependent repression and activation. Experiments suggest that URS1-bound factors functionally modulate heat shock factor during vegetative transcription and early meiotic induction but not during heat shock. The loss of repression and activation observed when the IME2 activation element, T4C, is substituted for the HSE suggests specific requirements for URS1-upstream activation sequence interactions.
Collapse
Affiliation(s)
- C Szent-Gyorgyi
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| |
Collapse
|
16
|
Affiliation(s)
- G W Gooday
- Department of Molecular and Cell Biology, University of Aberdeen, UK
| | | |
Collapse
|
17
|
Silver JC, Brunt SA, Kyriakopoulou G, Borkar M, Nazarian-Armavil V. Regulation of two different hsp70 transcript populations in steroid hormone-induced fungal development. DEVELOPMENTAL GENETICS 1993; 14:6-14. [PMID: 8482012 DOI: 10.1002/dvg.1020140103] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the filamentous oomycete fungus Achlya, the differentiation of gamete bearing structures on vegetative hyphae of the male mating type, is induced by the Achlya steroid hormone, antheridiol. Among the several metabolically labeled intracellular proteins whose synthesis or accumulation is altered by hormone treatment are steroid-induced 85-kDa and 68- to 78-kDa proteins. The 85-kDa protein was previously shown to be the Achlya heat shock protein hsp85 [Brunt et al., 1990; Brunt and Silver, 1991], a component of the putative Achlya steroid hormone receptor. It was of interest to determine if the antheridiol-induced "70-kDa" proteins were hsp70-family heat shock proteins and if hormone treatment-induced changes in the level of hsp70 transcripts. Two different Achlya hsp70 genomic sequences were cloned and used to investigate these questions. The two hsp70 sequences recognized two different mycelial transcript populations, one of which was regulated also by decreased glucose. Of note, both of the two hsp70 transcript populations were found to be regulated by antheridiol. The hormone-induced changes in hsp70 transcript levels were temporally correlated with the onset of massive lateral hyphal branching and alterations in the pattern of secreted N-linked glycoproteins which occur in hormone-treated mycelia. To our knowledge, this represents one of the first reports on changes in hsp70 proteins and transcripts during fungal differentiation. Our results may have implications for the role of heat shock proteins in hyphal branching and secretion in filamentous fungi and perhaps other cell types.
Collapse
Affiliation(s)
- J C Silver
- Department of Microbiology, University of Toronto, Scarborough, Ontario, Canada
| | | | | | | | | |
Collapse
|