1
|
Oyebanji O, Zhang R, Chen SY, Yi TS. New Insights Into the Plastome Evolution of the Millettioid/Phaseoloid Clade (Papilionoideae, Leguminosae). FRONTIERS IN PLANT SCIENCE 2020; 11:151. [PMID: 32210983 PMCID: PMC7076112 DOI: 10.3389/fpls.2020.00151] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/31/2020] [Indexed: 05/21/2023]
Abstract
The Millettioid/Phaseoloid (MP) clade from the subfamily Papilionoideae (Leguminosae) consists of six tribes and ca. 3,000 species. Previous studies have revealed some plastome structural variations (PSVs) within this clade. However, many deep evolutionary relationships within the clade remain unresolved. Due to limited taxon sampling and few genetic markers in previous studies, our understanding of the evolutionary history of this clade is limited. To address this issue, we sampled 43 plastomes (35 newly sequenced) representing all the six tribes of the MP clade to examine genomic structural variations and phylogenetic relationships. Plastomes of the species from the MP clade were typically quadripartite (size ranged from 140,029 to 160,040 bp) and contained 109-111 unique genes. We revealed four independent gene losses (ndhF, psbI, rps16, and trnS-GCU), multiple IR-SC boundary shifts, and six inversions in the tribes Desmodieae, Millettieae, and Phaseoleae. Plastomes of the species from the MP clade have experienced significant variations which provide valuable information on the evolution of the clade. Plastid phylogenomic analyses using Maximum Likelihood and Bayesian methods yielded a well-resolved phylogeny at the tribal and generic levels within the MP clade. This result indicates that plastome data is useful and reliable data for resolving the evolutionary relationships of the MP clade. This study provides new insights into the phylogenetic relationships and PSVs within this clade.
Collapse
Affiliation(s)
- Oyetola Oyebanji
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Rong Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Si-Yun Chen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
2
|
Tabatabaei I, Dal Bosco C, Bednarska M, Ruf S, Meurer J, Bock R. A highly efficient sulfadiazine selection system for the generation of transgenic plants and algae. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:638-649. [PMID: 30144344 PMCID: PMC6381783 DOI: 10.1111/pbi.13004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/17/2018] [Indexed: 05/02/2023]
Abstract
The genetic transformation of plant cells is critically dependent on the availability of efficient selectable marker gene. Sulfonamides are herbicides that, by inhibiting the folic acid biosynthetic pathway, suppress the growth of untransformed cells. Sulfonamide resistance genes that were previously developed as selectable markers for plant transformation were based on the assumption that, in plants, the folic acid biosynthetic pathway resides in the chloroplast compartment. Consequently, the Sul resistance protein, a herbicide-insensitive dihydropteroate synthase, was targeted to the chloroplast. Although these vectors produce transgenic plants, the transformation efficiencies are low compared to other markers. Here, we show that this inefficiency is due to the erroneous assumption that the folic acid pathway is located in chloroplasts. When the RbcS transit peptide was replaced by a transit peptide for protein import into mitochondria, the compartment where folic acid biosynthesis takes place in yeast, much higher resistance to sulfonamide and much higher transformation efficiencies are obtained, suggesting that current sul vectors are likely to function due to low-level mistargeting of the resistance protein to mitochondria. We constructed a series of optimized transformation vectors and demonstrate that they produce transgenic events at very high frequency in both the seed plant tobacco and the green alga Chlamydomonas reinhardtii. Co-transformation experiments in tobacco revealed that sul is even superior to nptII, the currently most efficient selectable marker gene, and thus provides an attractive marker for the high-throughput genetic transformation of plants and algae.
Collapse
Affiliation(s)
- Iman Tabatabaei
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdam‐GolmGermany
| | - Cristina Dal Bosco
- Department für Biologie ILudwig‐Maximilians‐Universität MünchenMünchenGermany
- Present address:
Pioneer Hi‐Bred Northern Europe Service Division GmbHEschbachGermany
| | - Marta Bednarska
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdam‐GolmGermany
| | - Stephanie Ruf
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdam‐GolmGermany
| | - Jörg Meurer
- Department für Biologie ILudwig‐Maximilians‐Universität MünchenMünchenGermany
| | - Ralph Bock
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdam‐GolmGermany
| |
Collapse
|
3
|
Kaila T, Chaduvla PK, Saxena S, Bahadur K, Gahukar SJ, Chaudhury A, Sharma TR, Singh NK, Gaikwad K. Chloroplast Genome Sequence of Pigeonpea ( Cajanus cajan (L.) Millspaugh) and Cajanus scarabaeoides (L.) Thouars: Genome Organization and Comparison with Other Legumes. FRONTIERS IN PLANT SCIENCE 2016; 7:1847. [PMID: 28018385 PMCID: PMC5145887 DOI: 10.3389/fpls.2016.01847] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/23/2016] [Indexed: 05/09/2023]
Abstract
Pigeonpea (Cajanus cajan (L.) Millspaugh), a diploid (2n = 22) legume crop with a genome size of 852 Mbp, serves as an important source of human dietary protein especially in South East Asian and African regions. In this study, the draft chloroplast genomes of Cajanus cajan and Cajanus scarabaeoides (L.) Thouars were generated. Cajanus scarabaeoides is an important species of the Cajanus gene pool and has also been used for developing promising CMS system by different groups. A male sterile genotype harboring the C. scarabaeoides cytoplasm was used for sequencing the plastid genome. The cp genome of C. cajan is 152,242bp long, having a quadripartite structure with LSC of 83,455 bp and SSC of 17,871 bp separated by IRs of 25,398 bp. Similarly, the cp genome of C. scarabaeoides is 152,201bp long, having a quadripartite structure in which IRs of 25,402 bp length separates 83,423 bp of LSC and 17,854 bp of SSC. The pigeonpea cp genome contains 116 unique genes, including 30 tRNA, 4 rRNA, 78 predicted protein coding genes and 5 pseudogenes. A 50 kb inversion was observed in the LSC region of pigeonpea cp genome, consistent with other legumes. Comparison of cp genome with other legumes revealed the contraction of IR boundaries due to the absence of rps19 gene in the IR region. Chloroplast SSRs were mined and a total of 280 and 292 cpSSRs were identified in C. scarabaeoides and C. cajan respectively. RNA editing was observed at 37 sites in both C. scarabaeoides and C. cajan, with maximum occurrence in the ndh genes. The pigeonpea cp genome sequence would be beneficial in providing informative molecular markers which can be utilized for genetic diversity analysis and aid in understanding the plant systematics studies among major grain legumes.
Collapse
Affiliation(s)
- Tanvi Kaila
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science & TechnologyHisar, India
| | - Pavan K. Chaduvla
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
| | - Swati Saxena
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
| | | | - Santosh J. Gahukar
- Biotechnology Department, Biotechnology Centre, Dr. Panjabrao Deshmukh Krishi VidyapeethAkola, India
| | - Ashok Chaudhury
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science & TechnologyHisar, India
| | - T. R. Sharma
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
| | - N. K. Singh
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
| | - Kishor Gaikwad
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
- *Correspondence: Kishor Gaikwad
| |
Collapse
|
4
|
Magee AM, Aspinall S, Rice DW, Cusack BP, Sémon M, Perry AS, Stefanović S, Milbourne D, Barth S, Palmer JD, Gray JC, Kavanagh TA, Wolfe KH. Localized hypermutation and associated gene losses in legume chloroplast genomes. Genome Res 2010; 20:1700-10. [PMID: 20978141 DOI: 10.1101/gr.111955.110] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Point mutations result from errors made during DNA replication or repair, so they are usually expected to be homogeneous across all regions of a genome. However, we have found a region of chloroplast DNA in plants related to sweetpea (Lathyrus) whose local point mutation rate is at least 20 times higher than elsewhere in the same molecule. There are very few precedents for such heterogeneity in any genome, and we suspect that the hypermutable region may be subject to an unusual process such as repeated DNA breakage and repair. The region is 1.5 kb long and coincides with a gene, ycf4, whose rate of evolution has increased dramatically. The product of ycf4, a photosystem I assembly protein, is more divergent within the single genus Lathyrus than between cyanobacteria and other angiosperms. Moreover, ycf4 has been lost from the chloroplast genome in Lathyrus odoratus and separately in three other groups of legumes. Each of the four consecutive genes ycf4-psaI-accD-rps16 has been lost in at least one member of the legume "inverted repeat loss" clade, despite the rarity of chloroplast gene losses in angiosperms. We established that accD has relocated to the nucleus in Trifolium species, but were unable to find nuclear copies of ycf4 or psaI in Lathyrus. Our results suggest that, as well as accelerating sequence evolution, localized hypermutation has contributed to the phenomenon of gene loss or relocation to the nucleus.
Collapse
Affiliation(s)
- Alan M Magee
- Smurfit Institute of Genetics, Trinity College, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Jansen RK, Wojciechowski MF, Sanniyasi E, Lee SB, Daniell H. Complete plastid genome sequence of the chickpea (Cicer arietinum) and the phylogenetic distribution of rps12 and clpP intron losses among legumes (Leguminosae). Mol Phylogenet Evol 2008; 48:1204-17. [PMID: 18638561 DOI: 10.1016/j.ympev.2008.06.013] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2008] [Revised: 06/12/2008] [Accepted: 06/15/2008] [Indexed: 01/06/2023]
Abstract
Chickpea (Cicerarietinum, Leguminosae), an important grain legume, is widely used for food and fodder throughout the world. We sequenced the complete plastid genome of chickpea, which is 125,319bp in size, and contains only one copy of the inverted repeat (IR). The genome encodes 108 genes, including 4 rRNAs, 29 tRNAs, and 75 proteins. The genes rps16, infA, and ycf4 are absent in the chickpea plastid genome, and ndhB has an internal stop codon in the 5'exon, similar to other legumes. Two genes have lost their introns, one in the 3'exon of the transpliced gene rps12, and the one between exons 1 and 2 of clpP; this represents the first documented case of the loss of introns from both of these genes in the same plastid genome. An extensive phylogenetic survey of these intron losses was performed on 302 taxa across legumes and the related family Polygalaceae. The clpP intron has been lost exclusively in taxa from the temperate "IR-lacking clade" (IRLC), whereas the rps12 intron has been lost in most members of the IRLC (with the exception of Wisteria, Callerya, Afgekia, and certain species of Millettia, which represent the earliest diverging lineages of this clade), and in the tribe Desmodieae, which is closely related to the tribes Phaseoleae and Psoraleeae. Data provided here suggest that the loss of the rps12 intron occurred after the loss of the IR. The two new genomic changes identified in the present study provide additional support of the monophyly of the IR-loss clade, and resolution of the pattern of the earliest-branching lineages in this clade. The availability of the complete chickpea plastid genome sequence also provides valuable information on intergenic spacer regions among legumes and endogenous regulatory sequences for plastid genetic engineering.
Collapse
Affiliation(s)
- Robert K Jansen
- Section of Integrative Biology and Institute of Cellular and Molecular Biology, Biological Laboratories 404, University of Texas, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
6
|
Plank DW, Gengenbach BG, Gronwald JW. Effect of iron on activity of soybean multi-subunit acetyl-coenzyme A carboxylase. PHYSIOLOGIA PLANTARUM 2001; 112:183-194. [PMID: 11454223 DOI: 10.1034/j.1399-3054.2001.1120206.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Multi-subunit acetyl-coenzyme A carboxylase (MS-ACCase; EC 6.4.1.2) isolated from soybean chloroplasts is a labile enzyme that loses activity during purification. We found that incubating the chloroplast stromal fraction under anaerobic conditions or in the presence of 5 mM FeSO4 stimulated ACCase (acetyl-CoA-->malonyl-CoA) and carboxyltransferase (malonyl-CoA-->acetyl-CoA) activity. Fe-stimulation of activity was associated with 59Fe binding to a stromal protein fraction. ACCase and carboxyltransferase activities measured in the stromal protein fraction containing bound 59Fe were 2-fold and 6-fold greater, respectively, than the control (stromal fraction not pretreated with FeSO4). Superose 6 gel filtration chromatography indicated 59Fe comigrated with stromal protein of approximately 180 kDa that exhibited carboxyltransferase activity, but lacked ACCase activity. Anion exchange (Mono-Q) chromatography of the Superose 6 fraction yielded a protein peak that was enriched in carboxyltransferase activity and contained protein-bound 59Fe. Denaturing gels of the Mono-Q fraction indicated that the 180-kDa protein was composed of a 56-kDa subunit that was bound by an antibody raised against a synthetic beta-carboxyltransferase (beta-CTase) peptide. Incubation of the Mono-Q carboxyltransferase fraction with increasing concentrations of iron at a fixed substrate concentration resulted in increased initial velocities that fit well to a single rectangular three parameter hyperbola (v=vo+Vmax[FeSO4]/Km+[FeSO4]) consistent with iron functioning as a bound activator of catalysis. UV/Vis spectroscopy of the partially purified fraction before and after iron incubation yielded spectra consistent with a protein-bound metal cluster. These results suggest that the beta-CTase subunit of MS-ACCase in soybean chloroplasts is an iron-containing enzyme, which may in part explain its labile nature.
Collapse
Affiliation(s)
- David W. Plank
- Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA Plant Science Research Unit, USDA-ARS, St. Paul, MN 55108, USA
| | | | | |
Collapse
|
7
|
The biogenesis and assembly of photosynthetic proteins in thylakoid membranes1. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1411:21-85. [PMID: 10216153 DOI: 10.1016/s0005-2728(99)00043-2] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Elborough KM, Winz R, Deka RK, Markham JE, White AJ, Rawsthorne S, Slabas AR. Biotin carboxyl carrier protein and carboxyltransferase subunits of the multi-subunit form of acetyl-CoA carboxylase from Brassica napus: cloning and analysis of expression during oilseed rape embryogenesis. Biochem J 1996; 315 ( Pt 1):103-12. [PMID: 8670092 PMCID: PMC1217156 DOI: 10.1042/bj3150103] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the oilseed rape Brassica napus there are two forms of acetyl-CoA carboxylase (ACCase). As in other dicotyledonous plants there is a type I ACCase, the single polypeptide 220 kDa form, and a type II multi-subunit complex analogous to that of Escherichia coli and Anabaena. This paper describes the cloning and characterization of a plant biotin carboxyl carrier protein (BCCP) from the type II ACCase complex that shows 61% identity/79% similarity with Anabaena BCCP at the amino acid level. Six classes of nuclear encoded oilseed rape BCCP cDNA were clones, two of which contained the entire coding region. The BCCP sequences allowed the assignment of function to two previously unassigned Arabidopsis expressed sequence tag (EST) sequences. We also report the cloning of a second type II ACCase component from oilseed rape, the beta-carboxyltransferase subunit (betaCT), which is chloroplast-encoded. Northern analysis showed that although the relative levels of BCCP and betaCT mRNA differed between different oilseed rape tissues, their temporal patterns of expression were identical during embryo development. At the protein level, expression of BCCP during embryo development was studied by Western blotting, using affinity-purified anti-biotin polyclonal sera. With this technique a 35 kDa protein thought to be BCCP was shown to reside within the chloroplast. This analysis also permitted us to view the differential expression of several unidentified biotinylated proteins during embryogenesis.
Collapse
Affiliation(s)
- K M Elborough
- Lipid Molecular Biology Group, Biological Sciences Department, University of Durham, U.K
| | | | | | | | | | | | | |
Collapse
|
9
|
Downie SR, Katz-Downie DS, Wolfe KH, Calie PJ, Palmer JD. Structure and evolution of the largest chloroplast gene (ORF2280): internal plasticity and multiple gene loss during angiosperm evolution. Curr Genet 1994; 25:367-78. [PMID: 8082181 DOI: 10.1007/bf00351492] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have determined the nucleotide sequence of the Pelargonium x hortorum ORF2280 homolog, the largest gene in the plastid genome of most land plants, and compared it to published homologs from Nicotiana tabacum, Epifagus virginiana, Spinacia oleracea, and Marchantia polymorpha. Multiple alignment of protein sequences requires an extraordinary number of gaps, indicating a very high frequency of insertion/deletion events during the evolution of the protein; however, the overall predicted size of the protein varies relatively little among the five species. At 2,109 codons, the Pelargonium gene is smaller than other land plant ORF2280 homologs and exhibits a rate of nucleotide substitution several times higher relative to Nicotiana, Epifagus, and Spinacia. Southern-blot and restriction-mapping studies were carried out to uncover length variation in ORF2280 homologs from 279 species (representing 111 families) of angiosperms. In many independent angiosperm lineages, this gene has sustained deletions ranging in size from 200 bp to almost 6 kb. Based on the severity of deletions, we postulate that the chloroplast homolog of ORF2280 has become nonfunctional in at least four independent lineages of angiosperms.
Collapse
Affiliation(s)
- S R Downie
- Department of Biology, Indiana University, Bloomington 47405
| | | | | | | | | |
Collapse
|
10
|
Dinkins RD, Bandaranayake H, Green BR, Griffiths AJ. A nuclear photosynthetic electron transport mutant of Arabidopsis thaliana with altered expression of the chloroplast petA gene. Curr Genet 1994; 25:282-8. [PMID: 7923416 DOI: 10.1007/bf00357174] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The nuclear photosynthetic mutant, hcf2, of Arabidopsis thaliana was isolated by screening M2 seedlings for abnormally-high chlorophyll fluorescence (hcf), indicative of a block in photosynthetic electron transport. Fluorescence induction kinetics, photosynthetic electron transport activity assays and immunoblotting revealed that all the complexes involved in photosynthetic electron transport were affected to some extent. The most striking effect of the mutation was on the relative steady state levels of the petA transcript (encoding the apoprotein of cytochrome f) which were more than five-times higher in the mutant plants than in their wild-type siblings.
Collapse
Affiliation(s)
- R D Dinkins
- Department of Botany, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
11
|
Sasaki Y, Hakamada K, Suama Y, Nagano Y, Furusawa I, Matsuno R. Chloroplast-encoded protein as a subunit of acetyl-CoA carboxylase in pea plant. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74577-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
12
|
Li SJ, Cronan JE. Putative zinc finger protein encoded by a conserved chloroplast gene is very likely a subunit of a biotin-dependent carboxylase. PLANT MOLECULAR BIOLOGY 1992; 20:759-761. [PMID: 1361155 DOI: 10.1007/bf00027147] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
|
13
|
Wolfe KH, Morden CW, Palmer JD. Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci U S A 1992; 89:10648-52. [PMID: 1332054 PMCID: PMC50398 DOI: 10.1073/pnas.89.22.10648] [Citation(s) in RCA: 341] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Complete nucleotide sequencing shows that the plastid genome of Epifagus virginiana, a nonphotosynthetic parasitic flowering plant, lacks all genes for photosynthesis and chlororespiration found in chloroplast genomes of green plants. The 70,028-base-pair genome contains only 42 genes, at least 38 of which specify components of the gene-expression apparatus of the plastid. Moreover, all chloroplast-encoded RNA polymerase genes and many tRNA and ribosomal protein genes have been lost. Since the genome is functional, nuclear gene products must compensate for some gene losses by means of previously unsuspected import mechanisms that may operate in all plastids. At least one of the four unassigned protein genes in Epifagus plastid DNA must have a nongenetic and nonbioenergetic function and, thereby, serve as the reason for the maintenance of an active genome. Many small insertions in the Epifagus plastid genome create tandem duplications and presumably arose by slippage mispairing during DNA replication. The extensive reduction in genome size in Epifagus reflects an intensification of the same processes of length mutation that govern the amount of noncoding DNA in chloroplast genomes. Remarkably, this massive pruning occurred with a virtual absence of gene order change.
Collapse
Affiliation(s)
- K H Wolfe
- Department of Biology, Indiana University, Bloomington 47405
| | | | | |
Collapse
|
14
|
Kasten B, Wehe M, Kruse S, Reutter K, Abel WO, Reski R. The plastome-encoded zfpA gene of a moss contains procaryotic as well as eucaryotic promoter consensus sequences and its RNA abundance is modulated by cytokinin. Curr Genet 1992; 22:327-33. [PMID: 1394516 DOI: 10.1007/bf00317930] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Plastid DNA of the moss Physcomitrella patens has been sequenced. An open reading frame (ORF 315) was identified downstream from rbcL, between trnR-CCG and psaI. This ORF shares homology with zfpA, a putative regulatory gene in Pisum sativum. The moss ORF is preceded by a Shine-Dalgarno sequence, two plastid promoter consensus sequences, and three TATA boxes. A specific probe detected three transcripts of low abundance in the wild-type moss and a cytokinin-sensitive chloroplast mutant. Steady state levels of zfpA transcripts were different in the two genotypes. In mutant protonemata treated with cytokinin, steady state levels of the largest transcript decreased significantly.
Collapse
Affiliation(s)
- B Kasten
- Institut für Allgemeine Botanik, Hamburg, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Recent findings have established cracks in the straight-laced image of the plastid genome as a molecule whose sole function is photosynthesis and whose gene content is highly conserved. Genes for numerous non-photosynthetic functions have been identified. Algal plastid genomes contain many genes with no homologs in angiosperms, and the recent transfer of genes from the plastid to the nuclear genome has been described. Wholesale abandonment of genes encoding photosynthetic and gene-expression functions has occurred in the plastid genomes of a non-green plant and alga. The origins of plastid DNA, its use in phylogenetic studies, and the origins of plastid introns are also reviewed.
Collapse
Affiliation(s)
- K H Wolfe
- Department of Biology, Indiana University, Bloomington 47405
| | | | | |
Collapse
|