1
|
Cai LN, Zhang LH, Lin YJ, Wang JY, Storey KB, Zhang JY, Yu DN. Two-Fold ND5 Genes, Three-Fold Control Regions, lncRNA, and the "Missing" ATP8 Found in the Mitogenomes of Polypedates megacephalus (Rhacophridae: Polypedates). Animals (Basel) 2023; 13:2857. [PMID: 37760257 PMCID: PMC10525163 DOI: 10.3390/ani13182857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
In prior research on the mitochondrial genome (mitogenome) of Polypedates megacephalus, the one copy of ND5 gene was translocated to the control region (CR) and the ATP8 gene was not found. Gene loss is uncommon among vertebrates. However, in this study, we resequenced the mitogenomes of P. megacephalus from different regions using a "primer bridging" approach with Sanger sequencing technologies, which revealed the "missing" ATP8 gene in P. megacephalus as well as three other previously published Polypedates. The mitogenome of this species was found to contain two copies of the ND5 genes and three copies of the control regions. Furthermore, multiple tandem repeats were identified in the control regions. Notably, we observed that there was no correlation between genetic divergence and geographic distance. However, using the mitogenome, gene expression analysis was performed via RT-qPCR of liver samples and it was thus determined that COIII, ND2, ND4, and ND6 were reduced to 0.64 ± 0.24, 0.55 ± 0.34, 0.44 ± 0.21 and 0.65 ± 0.17, respectively, under low-temperature stress (8 °C) as compared with controls (p < 0.05). Remarkably, the transcript of long non-coding RNA (lncRNA) between positions 8029 and 8612 decreased significantly with exposure to low-temperature stress (8 °C). Antisense ND6 gene expression showed a downward trend, but this was not significant. These results reveal that modulations of protein-coding mitochondrial genes and lncRNAs of P. megacephalus play a crucial role in the molecular response to cold stress.
Collapse
Affiliation(s)
- Ling-Na Cai
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.-N.C.); (Y.-J.L.); (J.-Y.W.)
| | - Li-Hua Zhang
- Taishun County Forestry Bureau, Wenzhou 325200, China;
| | - Yi-Jie Lin
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.-N.C.); (Y.-J.L.); (J.-Y.W.)
| | - Jing-Yan Wang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.-N.C.); (Y.-J.L.); (J.-Y.W.)
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Jia-Yong Zhang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.-N.C.); (Y.-J.L.); (J.-Y.W.)
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Dan-Na Yu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (L.-N.C.); (Y.-J.L.); (J.-Y.W.)
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
2
|
Ghiselli F, Gomes-Dos-Santos A, Adema CM, Lopes-Lima M, Sharbrough J, Boore JL. Molluscan mitochondrial genomes break the rules. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200159. [PMID: 33813887 DOI: 10.1098/rstb.2020.0159] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The first animal mitochondrial genomes to be sequenced were of several vertebrates and model organisms, and the consistency of genomic features found has led to a 'textbook description'. However, a more broad phylogenetic sampling of complete animal mitochondrial genomes has found many cases where these features do not exist, and the phylum Mollusca is especially replete with these exceptions. The characterization of full mollusc mitogenomes required considerable effort involving challenging molecular biology, but has created an enormous catalogue of surprising deviations from that textbook description, including wide variation in size, radical genome rearrangements, gene duplications and losses, the introduction of novel genes, and a complex system of inheritance dubbed 'doubly uniparental inheritance'. Here, we review the extraordinary variation in architecture, molecular functioning and intergenerational transmission of molluscan mitochondrial genomes. Such features represent a great potential for the discovery of biological history, processes and functions that are novel for animal mitochondrial genomes. This provides a model system for studying the evolution and the manifold roles that mitochondria play in organismal physiology, and many ways that the study of mitochondrial genomes are useful for phylogeny and population biology. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.
Collapse
Affiliation(s)
- Fabrizio Ghiselli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy
| | - André Gomes-Dos-Santos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, and Department of Biology, Faculty of Sciences, University of Porto, Portugal
| | - Coen M Adema
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, USA
| | - Manuel Lopes-Lima
- CIBIO/InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| | - Joel Sharbrough
- Department of Biology, Colorado State University, Fort Collins, USA
| | - Jeffrey L Boore
- Providence St Joseph Health and the Institute for Systems Biology, Seattle, USA
| |
Collapse
|
3
|
Abstract
Ever since its discovery, the double-stranded DNA contained in the mitochondria of eukaryotes has fascinated researchers because of its bacterial endosymbiotic origin, crucial role in encoding subunits of the respiratory complexes, compact nature, and specific inheritance mechanisms. In the last few years, high-throughput sequencing techniques have accelerated the sequencing of mitochondrial genomes (mitogenomes) and uncovered the great diversity of organizations, gene contents, and modes of replication and transcription found in living eukaryotes. Some early divergent lineages of unicellular eukaryotes retain certain synteny and gene content resembling those observed in the genomes of alphaproteobacteria (the inferred closest living group of mitochondria), whereas others adapted to anaerobic environments have drastically reduced or even lost the mitogenome. In the three main multicellular lineages of eukaryotes, mitogenomes have pursued diverse evolutionary trajectories in which different types of molecules (circular versus linear and single versus multipartite), gene structures (with or without self-splicing introns), gene contents, gene orders, genetic codes, and transfer RNA editing mechanisms have been selected. Whereas animals have evolved a rather compact mitochondrial genome between 11 and 50 Kb in length with a highly conserved gene content in bilaterians, plants exhibit large mitochondrial genomes of 66 Kb to 11.3 Mb with large intergenic repetitions prone to recombination, and fungal mitogenomes have intermediate sizes of 12 to 236 Kb.
Collapse
Affiliation(s)
- Rafael Zardoya
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| |
Collapse
|
4
|
Chatzoglou E, Kyriakou E, Zouros E, Rodakis GC. The mRNAs of maternally and paternally inherited mtDNAs of the mussel Mytilus galloprovincialis: Start/end points and polycistronic transcripts. Gene 2013; 520:156-65. [DOI: 10.1016/j.gene.2013.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 02/07/2013] [Indexed: 10/27/2022]
|
5
|
Coucheron DH, Nymark M, Breines R, Karlsen BO, Andreassen M, Jørgensen TE, Moum T, Johansen SD. Characterization of mitochondrial mRNAs in codfish reveals unique features compared to mammals. Curr Genet 2011; 57:213-22. [PMID: 21484258 PMCID: PMC3097352 DOI: 10.1007/s00294-011-0338-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/27/2011] [Accepted: 03/28/2011] [Indexed: 11/25/2022]
Abstract
Expression and processing of mitochondrial gene transcripts are fundamental to mitochondrial function, but information from early vertebrates like teleost fishes is essentially lacking. We have analyzed mitogenome sequences of ten codfishes (family Gadidae), and provide complete sequences from three new species (Saithe, Pollack and Blue whiting). Characterization of the mitochondrial mRNAs in Saithe and Atlantic cod identified a set of ten poly(A) transcripts, and six UAA stop codons are generated by posttranscriptional polyadenylation. Structural assessment of poly(A) sites is consistent with an RNaseP cleavage activity 5' of tRNA acceptor-like stems. COI, ND5 and ND6 mRNAs were found to harbor 3' UTRs with antisense potential extending into neighboring gene regions. While the 3' UTR of COI mRNA is complementary to the tRNA(Ser UCN) and highly similar to that detected in human mitochondria, the ND5 and ND6 3' UTRs appear more heterogenic. Deep sequencing confirms expression of all mitochondrial mRNAs and rRNAs, and provides information about the precise 5' ends in mature transcripts. Our study supports an overall evolutionary conservation in mitochondrial RNA processing events among vertebrates, but reveals some unique 5' and 3' end characteristics in codfish mRNAs with implications to antisense regulation of gene expression.
Collapse
Affiliation(s)
- Dag H. Coucheron
- RNA and Transcriptomics group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, MH-building Breivika, 9037 Tromsø, Norway
| | - Marianne Nymark
- RNA and Transcriptomics group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, MH-building Breivika, 9037 Tromsø, Norway
| | - Ragna Breines
- RNA and Transcriptomics group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, MH-building Breivika, 9037 Tromsø, Norway
| | - Bård Ove Karlsen
- RNA and Transcriptomics group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, MH-building Breivika, 9037 Tromsø, Norway
- Marine Genomics group, Faculty of Biosciences and Aquaculture, University of Nordland, Bodø, Norway
| | - Morten Andreassen
- RNA and Transcriptomics group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, MH-building Breivika, 9037 Tromsø, Norway
| | - Tor Erik Jørgensen
- Marine Genomics group, Faculty of Biosciences and Aquaculture, University of Nordland, Bodø, Norway
| | - Truls Moum
- Marine Genomics group, Faculty of Biosciences and Aquaculture, University of Nordland, Bodø, Norway
| | - Steinar D. Johansen
- RNA and Transcriptomics group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, MH-building Breivika, 9037 Tromsø, Norway
- Marine Genomics group, Faculty of Biosciences and Aquaculture, University of Nordland, Bodø, Norway
| |
Collapse
|
6
|
Abstract
Mitochondrial transcripts of two ascidian species were reconstructed through sequence assembly of publicly available ESTs resembling mitochondrial DNA sequences (mt-ESTs). This strategy allowed us to analyze processing and mapping of the mitochondrial transcripts and to investigate the gene organization of a previously uncharacterized mitochondrial genome (mtDNA). This new strategy would greatly facilitate the sequencing and annotation of mtDNAs. In Ciona intestinalis, the assembled mt-ESTs covered 22 mitochondrial genes ( approximately 12,000 bp) and provided the partial sequence of the mtDNA and the prediction of its gene organization. Such sequences were confirmed by amplification and sequencing of the entire Ciona mtDNA. For Halocynthia roretzi, for which the mtDNA sequence was already available, the inferred mt transcripts allowed better definition of gene boundaries (16S rRNA, ND1, ATP6, and tRNA-Ser genes) and the identification of a new gene (an additional Phe-tRNA). In both species, polycistronic and immature transcripts, creation of stop codons by polyadenylation, tRNA signal processing, and rRNA transcript termination signals were identified, thus suggesting that the main features of mitochondrial transcripts are conserved in Chordata.
Collapse
Affiliation(s)
- Carmela Gissi
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università di Milano, Milano, Italy
| | | |
Collapse
|
7
|
Polziehn RO, Strobeck C. Phylogeny of wapiti, red deer, sika deer, and other North American cervids as determined from mitochondrial DNA. Mol Phylogenet Evol 1998; 10:249-58. [PMID: 9878235 DOI: 10.1006/mpev.1998.0527] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Red deer (Cervus elaphus) are divided into three subspecific groups; the first group includes seven subspecies from Europe and northern Africa, the second group includes seven subspecies from central Asia, and the third group includes nine subspecies from eastern Asia, Siberia, and North America. Recognition of the North American wapiti as a species has been denied on the basis of morphological similarity with red deer and the circumpolar distribution of C. elaphus. Sika deer (C. nippon), which are distributed in much of the same range, also share phenotypic and genotypic similarities with the red deer. A comparison of sequences from the control region of mitochondrial DNA (mtDNA) from North American and Siberian wapiti, European red deer, and Asian sika deer was used to construct a phylogenetic relationship among these cervids and other cervids found within North America, including white-tailed deer (Odocoileus virginianus), black-tailed deer (O. hemionus columbianus), moose (Alces alces), and caribou (Rangifer tarandus). The mtDNA sequence divergence between wapiti and red deer was 5.60%, between wapiti and sika deer 5.19%, and between sika deer and red deer 5.02%, suggesting that the subspecies status of North American wapiti needs to be reviewed. The mtDNA sequence divergence between white-tailed deer and black-tailed deer was 7.82% and is consistant with earlier mtDNA studies in Odocoileus.
Collapse
Affiliation(s)
- R O Polziehn
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9,
| | | |
Collapse
|